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ABSTRACT 

+ For the next generation of e e - linear colliders in the TeV range, the energy 

loss due to beamstrahlung during the collision of the e+e- beams is expected to 

be substantial. One consequence is that the center-of-mass energy between the 

colliding particles can be largely degraded from the designed value. The knowl- 

edge on the differential luminosity as a function of the center-of-mass energy is 

essential for particle physics analysis on the interesting events. On the other hand, 

the beamstrahlung photon spectrum provides useful information on the low en- 

ergy backgrounds and high energy yy luminosity. In this paper, we derive analytic 

formulas for the e+e- and y energy spectra under multiple beamstrahlung pro- 

cess, and the e’e- and yy differential luminosities. Major characteristics of these 

formulas are discussed. 
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1. INTRODUCTION 

It is known that beamstrahhng [I], the synchrotron radiation from the colliding 

e+e- beams, will carry away a substantial fraction of the primary beam energy, 

Eo, in future linear colliders. This, for one thing, will result in a degradation of the 

center-of-mass energy of the colliding beams. From the high energy physics point 

of view, it is important to know the luminosity as a function of the effective e+e- 

center-of-mass, so as to unfold, e.g., the energy dependence of particle production 

processes. In addition, the low energy end of the e+e- and y spectra are also 

important for background analysis. 

When the average number of beamstrahlung photons radiated per beam par- 

ticle is much less than unity, the energy spectrum for the final e+ or e- beams 

is simply the well-known Sokolov-Ternov spectrum [2] for the radiated photons 

with the fractional photon energy, y(- E,/&), repla.ced by the corresponding fi- 

nal electron (or positron) energy, x = 1 - y. When the condition is such that the 

average number of photons radiated is not much less than unity, the effect of suc- 

cessive radiation becomes important. Previously, the multiphoton beamstrahlung 

process has been studied by Blankenbecler and Drell [3]; and independently by 

Yokoya and Chen [4]. In this paper, we shall a.dopt the formulation developed 

in Reference [4] as the basis for our derivation of the differential luminosity. In 

Section 2, we will review the electron spectrum under multiphoton beamstrahlung. 

Section 3 will be devoted to the derivation of the e+e- differential luminosity. In 

Section 4, we derive the photon spectrum, a.nd in Section 5, the yy luminosity. 

The characteristic feature of our formula is discussed and a comparison to com- 

puter simulations is presented in the last section. Unless expressed explicitly, the 

convention e = ft = c = 1 is assumed throughout this paper. 
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2. ELECTRON ENERGY SPECTRUM 

Let $(z, t) be th e energy spectral function of the electron for energy 2 G E/E0 

at time t normalized ass $(z, t)dx = 1. W e assume that the emission of the photon 

takes place in an infinitesimally short time interval. Then the interference between 

successive radiation processes is negligible, and the evolution of the spectral func- 

tion can be described by the rate equation 

w = 
1 

dt=- J 
d&Q!‘, z)+(z, t) + 

J 
dz’F(s, z’)+(z’, t) , (1) 

b 2 

where the first term corresponds to the sink, and the second term to the source, 

for the evolution of $(x, t). F is the spectral function of radiation, i.e., F(z, x’)dz’ 

is the transition probability of an electron from energy CC’ to the energy interval 

(2, z+dx) per unit time. Obviously, F(z, x’) = 0 if I 2 z’. Notice, however, that F 

does not include the probability for electrons to rema.in at the same energy without 

photon emission. Pulling out $(z, t) from the first term, which is independent of 

zr”, the remaining integral represents the average number of photon radiated per 

unit time by the electron with an instantaneous energy x: 

v(x) = 
J 

dz”F( x”, x) . (2) 
0 

The spectral function of radiation ca.n be cha.ra,cterized by the beamstra.hlung 

parameter T, defined as 

y=70; 7 (3) 
C 

where ya = Eo/mc 2, B is the effective field strength in the beam, and B, = 

m2c3/eh - 4.4 x 1013 gauss is the Schwinger critical field. High energy e+e- beams 
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generally follow Gaussian distributions in the three spatial dimensions. Thus the 

- local field strength varies inside the beam volume. It can be shown [5], however, 

through integrating over the impact parameter and the longitudinal variations, 

that the overall beamstrahlung effect can be simply described as if all particles 

experience, during an effective collision time T = l/2 = aor, a uniform mean 

field, 

B 
5 eN 

mean N sa,(o, + Q) ’ (4) 

where N is the total number of particles in a bunch, Q=, or,, oz are the rms sizes of 

the Gaussian beam, and I= 2&~, is the effective length of the oncoming bunch in 

our model. Thus in the following calculations we will assume, for the entire beam, 

YrY 
5 +yo N 

mean = scm,(a, + CJy) ’ 
(5) 

where r, is the classical electron radius, and cy is the fine structure constant. For 

‘I’ < 1, the radiation is in the classical regime, such a.s tha,t in the SLC, where 

Y- 0.004. In contrast, for the next-generation linear colliders, Y N 0.1 to 1, 

and it starts to enter into the quantum. regime. Notice, however, that the typical 

number of photons radiated per beam particle is of the order unity. Thus even 

in the classical regime, such as that in SLC, the discrete nature of beamstrahlung 

should not be overlooked. 

The transition probability F derived by Sokolov and Ternov [2] is 

(G) 
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where [ s 3x/Y/2, 7 = ~[(l/x) - (1./x’)], and for convenience, K - 2/(3Y). To 

- be sure, while Y (and therefore K) is a global parameter in beamstrahlung, the 

parameter [ as defined here is not. For any given Y, t ranges from 0 to 3Y/2, 

according to the instantaneous energy carried by the individual particle between 

successive radiation processes. 1CL.s are the modified Bessel functions and v,l is 

the number of photons per unit time (or length, with c = l), calculated by the 

classical theory of radiation. By definition, this is also the limiting case for V(X) 

where CC --f 0, 

V,l = Y(X = 0) = LKY 
243 reY0 

. (7) 

Note that for a given field strength v,l is independent of the particle energy. In 

general, however, 

where 

{ 

1 7 

Uo(v) = (284/45)I’(2/3)(3v)-l/3 = 1.012~-‘/~ , 

x [ 1 + ?J2/3]-1/2 . 

v+o ) 

v--too , 

To look for a compact analytic solution for $ in Equation (l), the exact 

Sokolov-Ternov spectral function in Equation (6) is somewhat cumbersome. One 

can instead invoke an approximate expression [4], which is independent of t, to 

replace f (tT,d in Equation (6): 

1 
fh9 = r(l,3)71 

-2/3,-~ 
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With this approximation, Equation (1) can be solved by proper Laplace transfor- 

- mations. The details can be found in Reference [4]. The solution is 

+(x, t) = e-“‘I2 [6(1 - x) + zh(yi’3vcit)] , Y<l ) 

where qt - n[(l/x) - 11, and 

X+im 

h(u) = & J exp(up -1’3 + PWP = g n,&3) 7 
X-i00 

(10) 

(11) 

with X > 0 and 0 2 u 5 00. The first term in Equation (10) represents the electron 

population that suffers no radiation. The rzlh term in the Taylor expansion of the 

second term corresponds to the process of ?I-photon emissions. 

For finite values of Y, the rate equation cannot be solved exactly since V(X) 

is not constant in time anymore. However, in the imermediate regime where Y ;S 

O( lo), Y(X) should not deviate from v,l too significantly. This suggests a solution 

based upon minor perturbation from the above classical result. It is found [4] that 

$(x, t) = eeuTL [S(l - r) + Eh(q:‘3fit)] . YSlO , (12) 

for the intermediate regime, where 

vy E v(x = 1) = UO(Y)VC/ ) V~XV,~$(l -X)Vy . (13) 

In effect, v is a linear interpolation between the two extrema v,1 and v-,. We see 

that V + v,l as x + 1, since for the electron to remain a.t high energy after n- 

photon process, it can only have radiated classically. On the other hand, 6 + vy 

as x + 0. This indicates that low energy electron spectrum is mostly contributed 

by quantum radiations. 
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3. CENTER-OF-MASS e+e- LUMINOSITY 

To find the differential luminosity C(s) as a function of the effective center-of- 

mass energy squared, s, one needs to convolute the energy spectrum of one beam, 

$(zr,t), with the other, $(52,t). Let t = 0 when the e+e- bunches first meet. 

In addition, let the longitudinal coordinate z along the beam be defined such that 

z = 0 at the front of each beam. Then the first z-slice in beam #l will always 

encounter a “fresh” beam #2: 

d3L,+, 
112 

-(%~2,0) 

dxldx2dz 
a f 

J 
dt$( ~l,qJo2,O) 3 

0 

(14) 

where 1 is the total length of each bunch. As explained in the previous section, 

our model assumes a uniform field within an effective bunch length 1 = 2&rZ, in 

relating to the Gaussian distribution. The total collision time is Z/2 because both 

beams move with the speed of light against each other. A slice at z in beam #l, 

however, will always see a beam #2 which has evolved for a. time t = z/2: 

d3LC,+,- (x1, x2, z) 
112 

2 
dxl dx2dt 0: 7 

J 
dtG( x1, t)$+Q, z/2) . (15) 

0 

Adding all z-slices in beam #l together, we have 

d2&+e-(x1, x2> 

dxldx2 
a ~~d~d(x,;~)idz~(x~,z,2) 

0 0 
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Note that the two integrals in the last expression are functionally identical. Insert- 

- ing the spectral function in Equation (lo), we find, for Y’ < 1, 

(17) 

=j--[(1-e-Nc1)6(1-~)+~7i(x)] , T-cl ) 

where qZ = r;[(l/x)-11, and NC1 = u,ll/Z is the average number of photons radiated 

per particle during the entire collision of the eSe- beams. The function h(x) in 

the second term is 

where y(n + 1, N,l) is the incomplete gamma function. 

The center-of-mass energy squared for the system of two particles with energies 

~1 and x2, normalized to the reference center-of-mass energy squared, so = 4, is 

s E 51x2. The differential luminosity as a function of s is therefore 

dxldx26(s - w2)74’(~1 Mb2) , (19) 

s 0 

where Co is the nominal luminosity of the collider, including the enhancement 

factor due to the beam-beam disruption effect [6]. It is straightforward to find 

that 

dJ&+e- (4 
ds 

= ${ [l - ewNCf] 2b( 1 - s) + 2 [ 1 - ebNci] sh(s) 

’ dx J eVS-Vs/r 
+ - 

s 5 (1 -x)(1 -s/z) hohw} 7 

(20) 
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where vS = ~[(l/s) - 11. It can be shown that in the classical regime the last term 

is much smaller than unity, and is negligible. Thus 

G+,-(s) Co 
ds 

= G{ [l-e-“] 2f5(l-s)+2[l-e-NC’] EL(s)} , Y < 1 . (21) 

For the intermediate regime, the spectral function of Equation (10) should be 

replaced by Equation (12). Th e d erivation is essentially the same, and we find 

w=$J 1 - emNV) 6( 1 - x) + f-$i(x)] ) Y s 10 ) (22) 

where N, = u,Z/2, and 

(23) 

When the average energy loss per electron is becoming substantial, which is possible 

in the transition regime, the integral term in Equation (20) should be retained. The 

differential luminosity in this regime is therefore 

dL+e- (4 
ds 

1 (24) 

+ 
J 

dx erlr--‘IJlr 

7(1 - x)(1 - s/x) 
h(x)~(s/x)} ) Y ;s 10 ) 

9 

where, in addition to qS, the x dependence of ti in k(s) is also replaced by s. 
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4. PHOTON ENERGY SPECTRUM 

Next we look for the companion formulas for the beamstrahlung photons. Let 

us ignore the loss of photons due to beamstrahlung pair creation [7], which consti- 

tutes only a fraction N c-z (fine structure constant) of the total photon population. 

Then the time evolution of the spectrum is dominated by the beamstrahlung pro- 

cess alone: 

84 1 
dt= J dxJ’(x - Y, x)$(x, 4 7 

Y 

where y 3 E,/Eo is the photon fractional energy. Therefore 

t 1 

4(Y,4 = A 
J J 

dxF(x - y, x)$(x, t’) . 

0 Y 

(25) 

(26) 

Note that while J +(x,t)dx = 1, which conserves the electron (or positron) num- 

ber, the photon number accumulates along the course of collision, and in general 

JXYMY f 1. c ombining Equations (6), (9), and (lo), we have, for ‘Y < 1, 

0 

where 

I(~, t’) = 5 n,r(n,3) ey ] dxx-(n+1J~3(x - y)-lj3( 1 - x)n/3-1 e-nl(Z-y) Kn/3(u,[t’)n 
. 

n=l ’ Y 

The above integrand is exponentially suppressed when x + y for any value of 

y. On the other hand, when x + 1, it is dominated by the term (1 - x)~/~-~. So it 
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is a reasonable approximation by setting x-(~+~)/~ x 1. Under this approximation, 

- we find 

1 

J dxcx _ y)-l/3( 1 _ x)n/3--le-Kl(z--Y) 

Y 

= r(n/3)~-~/~(1 - y)n/3-1/6e-~/2(1-y)W-~+~,~ A 
( > l-y ’ 

where W fi,V(z) is the Whittaker function: 

zPes212 00 
Kwb) = J u+p--112 

qv - p + l/2) 
du 

0 (29) 

where w~,~(z) + 0 as z -+ 00. In the classical limit, IC >> 1. Thus n/(1 -y) >> 1 for 

all y, and the Whittaker function takes the asymptotic form W,,,(z) = zfie-‘j2. 

We therefore have 

m [(l - y)%,lt’]n 
I(y, t') = (1 _ y)-113e-'Yl(1-Y) C 

n! . 
n=l 

Inserting Equation (30) into Equation (37), we find 

t 
-v(l - y)- ~/3e--rcY/P-Y) J &‘e-[l-(‘-y)2’3]Vc-t’ (31) 

0 

The integration over time is straightforward, and we finally obtain 

6113 

dYd> = qjpjY -2/3(l _ y)-i/3e-KY/u-Y)G(y) , -r-Cl , (32) 
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where 

G( y ) = --& [ 1 - e-g(Y)Vcit] , 

(33) 

g(y) = 1 - (1 - y)2/3 . 

Note that in the limit uclt < 1, the terms in the bracket can be replaced by g(y)v,lt. 

This recovers the known expression for the beamstrahlung photon spectrum using 

single-photon (i.e., disregarding the loss of e- energy between successive radiation 

processes) picture: 

KY3 
“ltm_o 4(Y7 t> = - 

w3)Y 

-2/3(1 - y)- we-~Yl(l-Y)y,lt . (34) 

In the y < 1 limit, the y dependence is approximately a ym213. 

To extend our result to the nonclassical regime, we find that a similar calcu- 

lation as above but using Equation (11) for the electron spectrum would be quite 

complex, due to the additional x dependence in V. Instead, we shall follow the same 

philosophy as in Section 2 by adopting the form of Equation (32) and replacing v,l’s 

by u-, and L, in a similar fashion. An inspection of I(y, t’) in Equation (27) suggests 

that, if one intends to extract (f/t’)n out from the integrand such that a similar 

calculation for the nonclassical regime can follow, the x-dependence in v should be 

properly averaged over the spectrum. Again, in the linear approximation, we find 

In principle, one could then express I(y, t’) in terms of the Whittaker function. 

But if one wishes to further simplify I(y, t’) through the asymptotic expansion of 

Equation (29), then it is necessary that the correction term w~,~(z) be retained. 
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In the n-photon process, the leading order n = 1 dominates, which gives p = -l/6 

- and u = l/3. Ignoring the y-dependence in z, we find, that 

We then have 

d(Y, t> = 
&3 

mY -43~~ _ y)-~/3e-~~lP-~)~(y) , rs5 , 

where 

G(Y) 
l-w 

= m 1 - e--d(y)vTt] + w[l - em’,‘] 
i 

, 

(37) 

(38) 

G(Y) = 1 - $(I - y)2/3 . 

5. CENTER-OF-MASS yy LUMINOSITY 

The ry center-of-mass luminosity can be obtained in the same way we did in 

Section 3. It amounts to looking for integration of $(y, t) over the eSe- collision 

time. We find, for Y < 1, 

112 

4(y) =f Jwm 
0 

fJ3 

=my -2/3c1 _ y)-1/3e-~~/~~-~~qy) , 

where 

G(y) = L{ 1 _ ' 
g(y) sb)Ncl 

[l - e-g(YJNcf] } . 

(39) 

(40) 
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For the nonclassical regime, the corresponding expression reads 

d(y) = 

&3 

r(l/3)Y 
-2/3(1 _y)-1/3e-nY/(l-Y)E(y) , rs5 , (41) 

where 

&Y) = Z{l- l 
G(Y)N, 

[l -e-~(y’Nj}+~{l -+[I -&]} . (42) 
Y 

The center-of-mass ry luminosity is then 

dYldY2Q - Y1!/2>4(Y1)~(Y2) . (43) 
9 0 

The integration is quite involved, and since simple expression of dL,,/ds for the 

whole range of 0 < s 5 1 is not easily attainable, numerical calculations may be 

necessary. 

6. DISCUSSION 

To confirm our theoretical formulas, we perform computer simulations using 

the code ABEL [8]. The parameters of a linear collider with a center-of-mass energy 

l/2 TeV designed by Palmer [9] (the M h ac ine G in Table 1 in Reference [9]) was 

used. 

The parameter T = 0.39 in this example uses the nominal values of gl: and oy. 

As is well known, the field intensity of a flat beam (i.e., crz >> ay) is determined 

largely by CT=. In the case when the disruption in the z-dimension is not negligible, 
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the effective gZ during collision is different from the nominal value. This is indeed 

-the case for Palmer’s G-machine. The disruption parameter is defined as 

Dx,, = 
2Nr,a, 

-Fx,&x + ug) - 
(44) 

The effective ~7~ can be deduced from the luminosity enhancement factor for round 

beams [lo]: 

Hll 2D =1+3fi , D<l . (45) 

Since the enhancement results from the reduction of the effective beam size, we 

can estimate the effective uZ as 

UX 
a, f-u - 

d- HLI . 
(46) 

In our case, D, = 0.7. Thus 5, N 0.89c,, and we find the effective T N 0.44. 

The simulation has the disruption effect included, but the beamstrahlung pa- 

rameter as defined in Equation (5) was not calculated in ABEL. Instead, for every 

photon radiated, there is a critica energy registered, using the local field strength 

and the instantaneous energy of the radiating electron prior to its radiation. The 

average of all the critical energies is then translated into an effective beamstrahlung 

parameter T N 0.43, which is in very good agreement with what we estimated 

above. Note that this effective Y from simulation ha.s been weighted by the pho- 

ton number, and does not have a fixed electron energy. 

Using this effective value of T( = 0.43), and with the bunch length 1 = 2&a, = 

0.38 mm, we calculate the number of photons $(y, 1/2)Ay, with Ay = 0.02, at the 

end of the collision using Equation (37). F g i ure 1 shows the final photon spectrum 
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from our formula and from simulations. We see that the agreement is quite good 

- for a large part of the spectrum. Both high and low energy ends of the spectrum 

from our theory, however, tend to be softer than that from the simulation. But the 

statistics from simulation is quite low at the high energy end, thus the discrepancy 

there should not be overemphasized. The average number of photons radiated per 

particle is obtained by integrating $(y, 1/2) over y. We find s +(y, 1/2)dy N 3.27. 

This agrees with the simulation result, N 3.55 photons per electron, to within 

10%. Incidentally, the direct estimation: N-, = v-,1/2 N 3.55, however, agrees 

almost perfectly with the simulation result. The discrepancy is due mainly to the 

slight underestimation of photon spectrum, Equation (37), in the y < 1 limit. 

For the e+e- differential luminosity, a two-dimensional plot from the simulation 

results of (d2L e+e-/d~rd~2)A~lA~2 per beam crossing as a function of ~1 and 

22 is shown in Figure 2. The example used in this calculation was Palmer’s F- 

machine, the so-called flat beam design, for a 0.5 TeV collider. The beamstrahlung 

parameter is Y N 0.12, considerably smaller than the G-machine. Indeed, in 

this case the average number of photons per electron is of the order one, and the 

average energy loss is only N 4%. We see that the most striking character of the 

e+e- luminosity spectrum in this particular case is that, aside from the sharp 

delta function at the nominal machine energy, other contribution to the e+e- 

luminosity comes essentially from the matching between a full energy particle and 

a beamstrahlung degraded particle. This is evidenced by the “walls” on the edges 

of the 2-D plot, which corresponds to the second term in Equation (24). The last 

(integral) term in that equation is seen to be negligible in this case. However, due 

to the stronger beamstrahlung and larger number of photons per electron, there is 

a finite contribution from this integral term in the case of Palmer’s G-machine. 
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It goes without saying that the ey .luminosity can also be derived by convoluting 

- $44 and 4(y)- 
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FIGURE CAPTIONS 

Figure 1: Final beamstrahlung photon spectrum calculated by computer sim- 

ulation, and by the analytic formula Equation (37). The number 

of photons 4(y, I/2)Ay is plotted against photon energy y, where 

Ay = 0.02 in this case. Parameters from Palmer’s G-machine where 

Y = 0.43 were used. 

Figure 2: Two-dimensional plot of the e+e- differential luminosity 

(d2C,+,-/dx1dx2)AxrAx2 per b earn crossing as a function of the 

e+ e- fractional energies, x1,x2, from computer simulation. The 

width of the bins is Ax:1 = Ax2 = 0.02. The example used is Palmer’s 

F design for a 0.5 TeV linear collider, where Y N 0.12. 
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