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Abstract 
The metrical and axionic background moduli which determine a general 

symmetric Z’,v orbifold model have to be chosen in such a way that the ro- 

tational twist leaves the underlying a-model action invariant. A thorough 

analysis of this condition will be given. We notice that it plays a key role 

in the evaluation of the four-point correlation functions of ground states 

which belong to the lowest twisted sectors. Having fixed the normalization 

of these functions we factorize them w.r.t. the twisted intermediate channel. 

This method yields the moduli dependent part of the twisted sector Yukawa 

couplings of an orbifoldized heterotic string model. We then perform vari- 

ous discrete mappings (axionic shifts, duality) on the space of background 

moduli and recognize that the induced linear transformations of the Yukawa 

couplings are essentially independent of the choice of a specific background. 

If compensating unitary redefinitions of the twist fields are applied then orb- 

ifold models whose backgrounds are related by one of the above mappings 

cannot be distinguished. For many twist orders we arrive at an explicit form 

of the phase factors needed to redefine twist fields in order that a general 

discrete axionic shift can be undone. The requirement of duality invariance 

is sufficient to determine the moduli dependence of the Yukawa couplings. 

Hence one may even bypass the evaluation of instanton actions. 
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1 Introduction 

The vacuum of the heterotic string theory [l] is a two-dimensional conformal 

field theory (2D CFT) [2, 31, which p ossesses all the necessary features to be 

a serious candidate for a unified theory of all interactions (including gravity) 

and all matter fields. The effective field theory turns out to be an N = 1 

supergravity action if a Calabi-Yau manifold describes the internal compact 

space (in this case the Kahler metric gives rise to the holonomy group SU(3)). 

Or&fold models may be understood as certain geometrically degenerate limits 

of such a manifold. Some of these compactifications [4] indeed give rise 

to four-dimensional heterotic string vacua whose particle contents closely 

resembles that of the standard model [5, 6, 71. 

For a detailed phenomenological analysis of such models a string theory 

computation of the effective action is mandatory. In order to find out how 

Yukawa couplings depend on the Kghler structure moduli of orbifold models, 

it suffices to merely consider three-point functions of bosonic twist fields u. 

The Yukawa coupling is then recovered from a string theory computation 

by also including a (moduli dependent) normalization factor. However, to 

gain a full understanding one must also allow for non-trivial Wilson line 

configurations. There are two distinct ways to embed the spatial twist into 

the Es x Es gauge algebra lattice: either a twist or a shift can be chosen. In 

the first case Wilson lines can be continuously deformed (i.e. they represent 

additional moduli) whereas in the second case their components are quantized 

[5, 81. The requisite computation of Yukawa couplings for these embeddings 

has not yet been performed. 

According to [9], [lo] th e scalar potential is entirely determined by 

K + In W + In W (1.1) 

where I( is the Kahler potential and W is the holomorphic superpotential. 

Both these quantities are given in terms of the field theory counterparts M, 

A of the moduli vertices VM and the associated charged matter vertices VA 

from the underlying N = 2 supersymmetric CFT. 
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In the orbifold limit one has to distinguish between the fields Mu, AU 

belonging to the untwisted sector U and additional fields MT, AT which 

originate from a twisted sector T. Both eVK and W contain (besides other 

terms) contributions which are cubic in the superfields AU, AT, respectively. 

In particular, the strength of these trilinear interactions (the one belonging 

to W amounts to a Y&zwa cor#ng) is governed by functions of the Kghler 

structure and complex structure moduli of the six-dimensional compactified 

target subspace. Moreover, I( and W are intimately related in compacti- 

fied heterotic string models. Because the corresponding moduli spaces are 

restricted Kghler manifolds, the set of Yukawa couplings suffices to uniquely 

determine Ii’ as well. 

A more detailed discussion of the relationship between a heterotic string 

theory and its effective action can be found in [ll], [la] where additional 

literature has been pointed out. 

Other three-point functions which correspond to Yukawa couplings ex- 

clusively involving fields from the untwisted sector have been determined in 

[13]. The knowledge of orbifold correlation functions also allows for a thor- 

ough investigation of the symmetry properties of the CFT moduli space. As 

has been argued in [14] the form of the low-energy action is severely re- 

stricted provided that the non-perturbative effects of string theory do not 

spoil these background symmetries. Furthermore, apart from their interpre- 

tation as string vacua, a study of these CFTs is worthwhile from the point of 

view of 2D quantum field theory, since they constitute examples of exactly 

solvable irrational models for a generic choice of the background parameters. 

The outline of this paper is a.s follows: In section 2 we present a detailed 

discussion of the moduli contained in the antisymmetric tensor B and the 

torus metric. We assume that the background B commutes with the twist 

operation 0 in order to have a consistent action formulation of the orbifold 

CFT. In fact, this restriction on the components of B proves to be indis- 

pensable for the calculation of the instanton contribution to the four-twist 

function (see section 3). This correlator is then used to derive the twisted 
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sector string emission coupling via s-channel factorization. 

The moduli dependent part of a twisted sector Yukawa coupling for gen- 

eral symmetric 2~ orbifolds is the subject of section 4. Discrete axionic shifts 

and the duality inversion of the background matrix modify these correlation 

functions. However by introducing unitary redefinitions of the twist fields 

w.r.t. the new background values any such change can be compensated. An 

analysis of these two types of symmetry operations is presented in section 5 

and 6. We discuss the main results and present a list of some open questions 

in section 7. 

2 Action description and moduli 

The starting point for the construction of two-dimensional (2D) orbifold 

conformal field theories ( CFTs) is the linear a-model action [15] 

(24 
where B,, = -B,, denotes the components of the (constant) antisymmetric 

background tensor B. The d-dimensional target manifold, whose constant 

metric is conveniently chosen to be1 G = fld, is parametrized by the string 

coordinate fields Xp(z, 2). 

To define a toroidal orbifold we invoke two sorts of closed string boundary 

conditions: 

X( e2aiz, e-273) = X(Z,Z) + 2rej (1 5 j 5 d) 

’ 
(2.2) 

They will now be discussed in turn. The set of winding vectors { el, . . . , ed} 

is assumed to form a basis of Rd. Let us introduce the basis matrix e whose 

j-th column vector is ej (1 5 j 5 d). Ob viously one has to identify points 

of the target space if their difference 27rw is an element of the d-dimensional 

lattice Ad := {en; n E Zd}. Thus the first restriction forces the string to 

propagate on the torus Td = md/(2rAd). The second condition features t 

‘This corresponds to the Regge slope parameter Q’ = 2. 
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rotations Ok which generate a finite point group P. We take it for granted 

that each 8k acts as an isometry on the fundamental lattice Ad. By repeated 

composition of strings subject to (2.2) one finds that the complete set of 

boundary conditions amounts to the semidirect product P MAP which is 

called the space group 5’. Being a subgroup of the Euclidean group in Rd 

its elements can be conveniently labeled (0, w). Actually we might tolerate 

certain rotations 19 even if they will not act as isometries of Ad. However 

it must again be possible to arrive at a (discrete) space group of the form 

P x & where the new lattice & comprises Ad. 

In the sequel we will concentrate on symmetric ZN orbifolds where a twist 

0 acts in the same way on the right- and left-moving parts2 of X(Z,Z). Since 

in this case P is generated by a rotation 0 of finite order N (ON = Id) we 

have 

S = {(O”,w)lk = 0,. . . , N - 1; w E Ad} . P-3) 

As has been pointed out in [13], the action (2.1) is well-defined only ip 

[I&O] = 0 . (2.4) 

This strong condition will be solved below. Later (see section 3) we will 

recognize that it is both necessary and sufficient to permit the computation 

of the classical parts of twist field correlation functions. 

We will first concern ourselves with the case of even d. Upon an orthog- 

onal change of basis 0 becomes block-diagonal: 

where 

‘The two-dimensional wave equat,ion @X(z, Z) = 0 follows from (2.1). Its solution 
can obviously be split according to X(z, 5) = X,(Z) + XL,(T). Observe that the coupling 
via B,, is just a divergence whence it cannot affect the equation of motion. 

3The corresponding condition [G, 01 = 0 is trivially fulfilled for our preferred choice 
G= fl. 

6 



. . 

O(kj) = (; -;);{ ;k;;;;e;;;;mll . (2.6) 

Hence the possibility of having fixed subspaces under 0 will not be taken 

into account. Likewise we decompose B into 2 x 2 blocks (w.r.t. our new 

coordinate system): 

B;j := B2i-1,2j-1 B2i-1,2j &i,zj-l &i,2j (i,j E {l,..., g,, * 

The condition (2.4) now reads 

B;jO(kj) - O(k;)B;j = 0 (2.8) 
(no summation over i, j). It is convenient to parametrize 

(2.7) 

when the indices i, j are kept fixed. 

A similar restriction is obtained for Bj; = -Bs: 

B;jO(kj)T - O(k;)TBij = 0 . (2.10) 

Upon forming both the sum and the difference of (2.8) and (2.10) we learn 

that 

(cj - c;)B;~ = 0 

s;B;j + sjcB;jt = 0 ; tY= 
(2.11) 

Clearly, non-trivial solutions for B;j require that cj = c;. We may then 

distinguish between three possible cases: 

(q = 0, if i = j) 

2. S; = -Sj # 0 + B;j = 



3. Si = Sj = 0 + B;j = (q=t=Oandr=-s,ifi=j). 

These restrictions on the 2 x 2 blocks of B will prove to be crucial in the anal- 

ysis of the instanton contribution to the four-twist field correlation function 

(see section 3). But before taking up this issue we wish to count the number 

of independent background moduli in the case of 2~ orbifold models. 

For this purpose we relate the backgrounds G, B w.r.t. the target space 

basis to their counterparts g, b in the lattice basis: 

g := eTGe ; b := eTBe . (2.12) 

Note that all the information about the torus metric is encoded in g whereas 

G might be an arbitrary non-singular symmetric matrix. 

If only torus boundary conditions (S 2 Ad) are imposed g and b contain 

Id d + 1) and id(d - 1) independent moduli, respectively. These numbers 2 ( 

are in general smaller for orbifold models with S > Ad. 

We first analyse B. Let us denote by vk the number of blocks O(k) 

contained in D. The above discussion of (2.11) reveals that the blocks B;j 

for which O(k;) = O(kj) = -1, can be chosen at will. Considering that B 

is antisymmetric we are left with 
( 1 

d; 
2 

independent B-moduli from the 

d;-dimensional subspace R where D acts as a reflection (d; = 2vQ. 

The subspace where D acts blockwise via O(k), O( 1 - k) (k # f) pro- 

vides (vk + vi-k) real parameters from blocks Bjj along the diagonal and 

2rk+2-k) 
parameters from off-diagonal blocks B;j. Thus we obtain 

another (Vk + Vr-k)2 moduli. As a consequence of (2.4) B;j vanishes when- 

ever c; # cj; therefore the total number of antisymmetric background moduli 

is 

MB = 
dl 

( ) 
; + CCVP + Q-Pj2 7 (2.13) 

PEJ 

where J denotes the set of all rational numbers in the interval IO, f[. 



Next we address the analogous problem for the background metric g = 

aeTe. Let us consider continuous (invertible) deformations U E GL(d, IR) of 

a lattice basis es: 

eo H e = Ueo (2.14) 

such that the automorphic action of D on the lattice is not affected: 

De0 = e,-JC 3 De = eK (Ii E SL(d,Z)) . (2.15) 

Hence we require 

DUeo = De = eK = UeoK = UDeo , (2.16) 

which reduces to [U, D] = 0. 

The invariant quantity of interest however is the lattice metric g = ieTe. 

The above deformation causes go H g = iecUTUeo; admittedly some com- 

binations of continuous parameters U depends on might drop out in UTU. 

Indeed if we perform a real polar decomposition U = OS (where 0 is or- 

thogonal and S is symmetric4) g is seen not to depend on 0. 

Hence we have to restrict ourselves to U = S with [S, D] = 0. This 

resembles (2.4) were it not for the fact that S is symmetric. An entirely 

similar counting procedure leads to the number 

(2.17) 

of lattice moduli. The number Mb of moduli which parametrize the invariant 

background b equals MB since b = e$( UT BU)eo. Here the reference basis es 

is kept fixed and the antisymmetric matrix (UTBU) is again subject to (2.4). 

Thus the total number of (real) background moduli is given by 

41t is not difficult to determine solutions for the factors 0, S. By an orthogonal 
transformation 6 the symmetric matrix UTIJ can be diagonalized: Ug E fiTlJTU6 = 
diag(uq, . . . , u:) with UD = diag(ul,. . . , ud) (UI E EL). We then define S := fiU~fi~, and 
0 := US-' evidently is orthogonal. 
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Mg + Mb = (dQ2 + 2 x(5, + ~1-p)~ 
PEJ 

, (2.18) 

and &,I := (Mg - Mb) 5 d coincides with the (real) dimension d; of the 

subspace R which is precisely the (Hodge) number of real complex structure 

moduli of a 2~ orbifold target space. 

The case d = 6 which is of immediate physical interest is easily surveyed. 

We assume here that R = 8. This then leads to Mg = Mb E {3,5,9}. In fact, 

K&hler manifolds with these (complex) dimensions which are parametrized 

by the set Mu of untwisted moduli fields have already been discovered before 

(see Pll, PW. 

Finally we touch on the case of an odd dimension d. Since 0 is supposed 

not to leave any direction fixed the multiplicity di of the subspace R has to 

be odd as well. We again adopt the basis where the twist takes the block- 

diagonal form (2.5) g au mented by a diagonal entry -1 which represents the 

unpaired “last” direction of R. As a rule both B,, and the symmetric 

deformation matrix element S,, must vanish if m denotes a dimension of R 

while n does not (and vice versa). Of course, if the dimensions m, n both 

belong to R these matrix elements can be arbitrarily chosen were it not for 

the (anti-)symmetry of (B) S. F rom these arguments we infer that the above 

expressions for Mb, MS continue to hold for odd values of d. 

3 The four-twist field correlation function 

In order to invoke the boundary conditions (2.2) for the coordinate vector 

X(Z, Z) one has to exploit its operator product expansion with the primary 

fields associated to highest weight states. In the untwisted sector (k = 0 in 

(2.3)) we choose the physical twist invariant vertex operators 

v$yz,z) = -$g : exp[i(@‘PL)TXL(Z) + i(CYPR)TXn(Z)] : 

(34 
= p+(G-B)w (w E Ad, P E A;> 

PL = p-(G+B)w 
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which describe the emission of untwisted strings carrying the Narain momen- 

tum [17] P = (Pn,p~).~ Up on analytic continuation of X(2,.5) V$Y(O, 0) 

about the origin (i.e., z H e2aiz, z I+ e -2ai%) the coordinate field receives 

the shift 2&w from the Z-th exponential operator in (3.1). Of course this 

operator product is not twist invariant because X(z, Z) is degraded to an 

auxiliary field when the torus Z’d is transformed into an orbifold. 

The monodromy of X(Z,Z) about the world sheet locations of (3.1) is 

therefore described by the subset (1, 0,) of the space group S where 

0, := (0’~; 0 5 1 5 N - 1) (3.2) 

denotes the O-orbit of the winding vector 20. (1, 0,) is stable under conju- 

gation with arbitrary elements of S and thus forms a conjugacy class. Quite 

generally, the classical monodromy caused by some vertex operator must be 

phrased in terms of such classes. Indeed, if .si,s2 E S then the constraints 

si, (s;~s~s~) have to be considered as being equivalent because the configu- 

rations X, s2 . X cannot be distinguished within an orbifold model. 

Analogously the first twisted sector of the orbifold’s Hilbert space endows 

strings with boundary conditions of the type (0, X) (X E Ad). The conjugacy 

classes have the form (0, [f) where 

[f - f + (1 - O>Ad (3.3) 

represents a coset of lattice translations. There exist Ni = det( 1 - 0) ground 

state twist fields a;(~, Z) which impose elements of a conjugacy class (0, [f]) 

on the coordinate mapping X(Z,Z). The characteristic winding vector f 

can be chosen to be any representative of the quotient space Ad/(1 - O)Ad. 

Whatever element designates a particular coset the twisted string solution 

possesses the fixed point 2 = (1 To)f mod 27rAd under 0. 

To display the local monodromy of X(x, Z) in the vicinity of a twist field 

UT we introduce complex coordina.tes (as well as their complex conjugates) 

5Tlle accompanying cocycle operators which are mandatory within the operator quan- 
tization are thoroughly discussed in [13]. 
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Yj := X2j-1 + 2X2j ; (1 9 I i) (3.4) 
w.r.t. a system which guarantees (2.5). It follows from (2.2) that 

dX(e2”iz, emsriZ) = DdX(z, 2) ; 

this quantum monodromy condition is assured by the following set of operator 

products: 

-(l-k,) +j dYj(Zl, 51) c$(zz, 22) = 212 Tj (zz,z2) +... 

Nj(Zl, 21) alf(z2,22) = z;2kJ T-j+yz2, 52) + . . . 

8Yj(Zl, 21) qz2,.4 = z;2kJ 5+yz2, z2) + . . . 
--. --(l-k,) -+j dY’(Zl,Zl) af(zz,z2) -= 212 Tj (-7292) +... (Icj El07 l[) - 

(3.5) 
Here excited twist fields r+, . . . appear as local operators on the right hand 

side. They of course represent unphysical fields of the string theory be- 

cause their conformal spin is in no case an integral number. The conformal 

dimension h+ = h+ of the twist field CT; can then be determined via the 

stress-energy method: 

Similarly the ground states ~1~ of the first antitwisted sector of the 

Hilbert space are in one-to-one correspondence with the conjugacy classes 

(O-l, -[f]). The fixed p oints of nearby string coordinate fields are again lo- 

cated at x = (1 ?@) f (mod 27rAd). The state ~1~10) is the world sheet CPT 

conjugate of a,+ IO) ; consequently the conformal dimension of aIf coincides 

with the one given in (3.6). 

The four-twist field correlation function 
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provides us with various threeipoint couplings of the orbifold CFT upon 

factorization. The winding vectors f; are subject to the space group selection 

rule [18, 191 

f21 + f43 E (1 - D)Ad; fij := fi - fj . (3.8) 

Z{,} is obtained by performing the path integration over all mappings Xp 

from the spherical world sheet into Rd which are compatible with the mon- 

odromy conditions imposed by the four twist fields. Since the action func- 

tional is quadratic in the coordinates Xfi, Zffi> naturally splits into two 

factors: one contribution arises from classical instanton solutions in the path 

integral, the other accounts for the quantum fluctuations about this classical 

sector [18]: 

Z{,;)(X,Z) = PU(x,z) Z$)(X,Z) . (3.9) 
We will primarily be concerned with Z$iI since Zq” is not sensitive to the 

background (g + b) and has already been evaluated in [18] for d = 2. Here we 

simply have to multiply the quantum correlations related to the individual 

planar subspaces in which D acts as O(lcj) (cf. (2.5)) in order to arrive at 

the d-dimensional generalization (d is again supposed to be even): 

42 
.P(x, 2) = vlx( 1 - x)1-4”’ n 

j=l 21Fj(xt12(Tj)2 
(3.10) 

(3.11) 

where F’(z) is a shorthand for the hypergeometric function F(lcj, 1 - Icj; 1; x). 

The normalization constant v in Zq” will be fixed at the end of this section. 

The classical instanton part is given by 

z$l(x, z) = c e-SE[ax=‘,axc’l , (3.12) 
XC’ 

where the Xc’ are solutions of the classical equation of motion, aaX(z, Z) = 0, 

subject to the monodromy conditions imposed by the four twist fields in (3.7). 
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To facilitate the evaluation of (3.12) we first split 

(3.13) 

With the help of the parametrization (2.9) and after a change to complex 

coordinates Yk we arrive at 

(3.14) 

The four cut diflerentials aY:l, a%‘:‘, aY:l, and aYF1 of the j-th planar 

subspace are completely determined by the local monodromy rules (3.5) 

apart from constant prefactors: 

-- 
(y’ = (8 p)* = Uj ((2 - O)(Z - l)}-k’ (z _ x)-(l-k,) 

a~ = (gYcl)* = dj ((2 - O)(Z - l)}-“-k’) (2 - ~)-‘“-1 
(3.15) . 

In order to fix aj, dj ,we consider the zero net twist loop Ci (Cz) which 

surrounds the world sheet positions 0, II: (z, 1). The global monodromy of 

X around Cl (C 2 is restricted to the (space group) product of the conjugacy ) 

class (D, [fz]) with (D-l, -[jr]) or with (D-l, -[fs]) in the second case: 

‘Under the twist Yjcl, yjc’ are multiplied by the phase factor e2xikj, e-2*ikj, respectively. 
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. . 

A,,yl E 
f 

dz do’ + 
f 

dz a~’ = 2~uj E a~[f,,]j 

Cl Cl 

A,,vr G 
f 

dz a~’ + 
f 

dz a~’ = 2rvj E 2~[f23]j (3.16) 

c2 c2 

where the subscript j E (1,. . . , -$} attached to a coset [f reminds us to 

rewrite its projection onto the j-th plane in terms of complex vectors as in 

(3.4). 

The solution of the inhomogeneous system (3.16) of linear equations is 

given by (cf. [IS]) 

with 

aj = 

(3.17) 

Ij(Zc, 2) = Fj(Z)Fj(l - 2) + Fj(1 - Z)Fj(Z) 

Pj = -i eXp( --iTkj) . 

We have also used (3.11). 

(3.18) 

If the endpoint x of the branch cut is encircled clockwise the instanton 

differential 8X”’ will be rotated by D (th is explicitly follows from the form 

(3.15) of cut d ff i erentials w.r.t. the eigenbasis of 0). It is important that the 

integrand (Lagrangian) in (3.13) b e a single-valued function on C. However, 

employing (3.17), t i can be demonstrated that the d2 different products which 

are both linear in the holomorphic and the antiholomorphic cut differentials 

(3.15) are independent functions on Cx [f2i] x[fzs] where the coset factors 

allow to distinguish the various instantons (see (3.16)). Hence we have to 

guarantee 

[B,D] = 0 (3.19) 

in order that the multitude of instanton actions is well-defined (cf. also 
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[13]). Recall that th e ensuing restrictions for the blocks Bij have already 

been worked out in section 2. 

To determine Ss( u, o) we employ the auxiliary formula (see [ 181, [20]) 

J dzdZ I(2 - O)(Z - l)]-2kj ]Z - xI-~(~-~J) = sinFLj)lj(x,Z) . (3.20) 

(This integral is invariant under the substitution kj H (1 - kj) in the inte- 

grand.) We then derive (recall the results (3.17)) 

d’2 7TIj(X, 2) &‘(u,v) = c 
j=l 4sin(rkj) {Jail2 + ldj12> 

42 
= 

j_,4sin(T1j)(Tj)2 c {Iujl" + JTj)2)uj)2 + (Tj)l(pjGjvj +,BjujGj)} 

= 
(3.21) 

with the d-dimensional diagonal matrix 

H = HI + iH2 := diag ? 
sin(rkj) 

(3.22) 

Observe that the last line of (3.21) g a ain contains lattice vectors w.r.t. the 

real coordinate system (we have refrained from introducing new symbols to 

emphasize this difference). In particular, the factor Pj 
sin(~kj) turned into 

1, ‘“,(kj)* 
According to our findings in section 2 the contribution Sj/ to the instanton 

action vanishes except .for the following cases: 

1. kj = kl # f : We have 

2 sin(~k ,) [(q + ir)d,dl + (q - ir)aju/] 
3 

(3.23) 

since we are forced to set q = t and r = -s. 
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2. kj = 1 - kl # f: Here 

2 sin(Tkj) [(q - ir)djul + (q + ir)ajdll 

because the elements of Bij must satisfy q = -t and r = s. 

(3.24) 

3. kj = kl = f: 

Sjl(u, v) = m[ q(Gj + Jj)(al+ dl) + t(aj - dj)(al- dl) 
2 -ir(tij + dj)(ul - d/) + is(Ej - dj)(al + dl)] 

(3.25) 

since any choice of Bjl is compatible with [D, B] = 0.‘. 

To proceed further we have to remember that S;j and Sj; depend on the 

same set of modular parameters E {q, r, s, t}. With the help of the auxiliary 

formula’ 

- 
djdl - alaj = I.( ’ -) (Pj”jul - P,GlVj> 

f x,x 

we establish for kj = kl # f (p = pj = PI) that 

(3.26) 

(Sjl + Slj)(U, V) = 
+ir ((Uj,B Vl - GjPVl) + (j 

* 1)) > 

= -27ri Ol+ u~B~~*vj > 
(3.27) 

where we resorted once more to a real coordinate system at the end. It 

is then fairly easy to derive the contribution (Sjl + S/j) in the case where 

kj = 1 - k,. Observe .first that ,@ = pj holds. By comparing (3.23) with 

(3.24) we recognize that it is sufficient to perform the following substitutions 

in (3.27): r H -r, u[ H ifi,, 0, +b 61. As concerns the bottom line of (3.27) 

the complex conjugation of (complex) vectors carrying the label j amounts 

70f course for j = I we must set q = t = 0 and r = --s since B is antisymmetric. 
1.(x, 5) 

“Observe that (Tj)2 = e. 
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to the insertion of an extra factor 
1 0 f ) 0 -1 

in front of their real basis 

counterparts. Together with r H -r the blocks Bjl, Blj in (3.27) adopt then 

the form which is appropriate to kj = 1 - kr (see section 2). 

In addition the bottom line of (3.27) applies also when kj = kl = f. 

Here pj = -1, i+q = 
al2 and the various linear combinations of 

the coefficients d and a present in (3.25) will immediately produce the real 

components of the lattice vectors u, v (see (3.17)). 

Finally we take one half of the sum over j, 1 E { 1,. . . , $} of (3.27) and 

also include (3.21) to obtain 

Apart from the unknown prefactor v the four-twist correlation function reads 

Z,,,(x, 2) = V]X(l - .)I-“h’ -SE (%v) . (3.29) 
74f211 
ve[f231 

Our choice for v will be consistent with the normalization 

(4x7 2) a-j1 (07 0)) = 4fll,[f21 Id- *& of twist field two-point functions. The 

r.h.s. of this equation dominates ~I,,,,,,,~(x,z) as 1x1 H 0. To explore this 

limit we first have to Poisson resum the series over winding vectors E [fis] in 

(3.29). To this end we identify 

p := -Bu; 6 := &jf23 - ;Hlu; A := H2 (3.30) 

in the resummation identity 

c 
e---rr(zu+~)TA-1(w+~)+2?ricpT(w+r) = 

‘&Ad 
&Gi 

det e c 
e-?r(p+cp)TA(p+cp)-2?ripT, 

PEA:, 

(3.31) 
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After a few elementary rearrangements we get 

z{ji}(x7z) = 
/x(1 - ,)I-“h’ E 

[ 

(72)’ 
’ det e l=1 b(x, 2) sin(h) 1 

(3.32) 

xCe 
-2TiPT &f23 

42 
n Wj(X)hj tZj(it)‘“J 

PEAZ( j=l 1 
vaf211 

with 

hj = f ;?: [(p+ ;v - Bv)p12 
r=2j-1 

hj = ; 5 [(p - fv - Bv),]~ 
r=2j-1 

Space group considerations in the operator product expansion 

UZjl(O,O) uL(x,5) = f c c x-++h pt+h 
Pqi Mf211 

xC(f2, f1;p,v) V$yO,O) +. . . 

(3.33) 

inform us about the leading terms. Here h = iP:Pn, h = $PTF’L denote the 

conformal, anticonformal weight of a (string emission) vertex operator Vd’J” 

(see (3.1)) .’ The expansion coefficients 

C(f2,f1;w4 := ,,),I=, lGo14h+ (v~-,(o,o)~Ij~(l, l)~&o,Z,)) (3.35) 

will soon be determined. 

Using (3.34), (3.35) we can express (3.7) in terms of the coupling coeffi- 

cients C(. . .) in the limit x, z I-+ 0 (s-channel factorization): 

‘The factor h serves to undo an N-fold overcounting due to Vi7 = V~~,D,o, if (p, V) # 

(0,O). Notice that V$’ = fi differs from the ordinary identity operator. 
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z{ji}(xY ‘> = +xX -2h++h z-2h++71 C( f2, f1;p, v) C(f4, f3; -p, -v) 

PG”; 
-%d 

+... . 

(3.36) 

Next we get the asymptotic behaviour of the hypergeometric function Fj 

from [21]: 

Fj(x) M 1 

Fj(l-2) X f sin(rkj) [In S( kj) - In X] as 2 H 0 ) 

S(kj) = exp [2@(l) - V?(kj) - Q(1 - kj)] 
where 

9(z) = -&ml?(z) 
(3.37) 

Therefore 

‘{ji}(‘C, ‘) = & [g 2sin~7rkl)l g: x-2ht+h Z-2ht+75 
~~[f211 (3.38) 

Xe-2fliPT&f23 “ii qkj)-@,+h) + . . . . 
j=l 

Comparing with (3.36) we can now read off the string emission coupling 

constant 

&vi dl2 

1 2 d/2 

C(f2,f1;p,v) = - .[- 1 E 2 siniati) Jg ‘(k.i)-3(h’+LJ) e 

-~iP*&+f2--v) . 

G 

(3.39) 

(combine the selection rules v E [f2l] and f21 + f43 E [O].) 

As announced the normalization constant can then be fixed: 

d/2 
C(f, -f;O,O) = dw * u = det e n (2sin(nkj)) . (3.40) 

I=1 
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Therefore 

42 

j=l 

(3.41) 

This reproduces the result familiar from our earlier approach which was based 

on the operator formalism [13]. 

It is fairly easy to extend the above considerations to the (physically less 

relevant) case of an orbifold compactification od for which the target space 

dimension d is odd. Let us introduce an artificial extra coordinate which is 

subject to orbicircle bouudary conditions C, i.e. P = (-1, l}. We thus ob- 

tain an even dimensional product orbifold Od+i = od x C - a case which we 

already know how to handle. Notice that the action (2.1) relevant for Od+i 

merely is the sum of the actions which describe the od model and the or- 

bicircle construction provided that we set to zero the dfr antisymmetric tensor 

moduli which arise by the above extension. Hence we just have to divide the 

four-twist field correlation function (3.29) of the Od+i model by the correla- 

tor for the orbicircle model in order to get the desired result for od. As has 

been pointed out in [18] the square of the four twist field orbicircle correlator 

coincides with the correlation Z{,l of a two-dimensional Z2 orbifold model 

(A2 has to be a square lattice) if a particular choice of windings fi is made. 

With the help of these rema,rks the slight modifications which are necessary 

to adapt (3.29) to the case of odd values of d are rapidly worked out: we 

adopt a coordinate system where 0 aga.in takes the form (2.5) except for an 

additional entry Ddd = -1. Then the range of the products in (3.29) and 

(3.40) is adjusted to { 1, . ..,w}. M oreover an extra factor Ji& has 
to be supplied which we define by setting /& = f. It simply accounts for the 

qzlant~m correlation factor which is contributed by the oscillators associated 

to the d-th dimension. All other factors in (3.29) are meaningful for odd d 

as well and don’t have to be altered. 
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4 Yukawa couplitigs 

If the anharmonic ratios x, s approach z,, Z, the four-twist field correlation 

function Zjfil( 2, Z) factorizes w.r.t. the u-channel. The intermediate states 

belong to the second twisted sector as follows from the point group selection 

rule. We define the orbit 

0 s;f := {o’f mod( l- @")&[o 5 1< s} (4.1) 

associated to f. While one simply has Oi;f = {f} for the first twisted sector, 

O,;f generically contains several elements for s > 1. Obviously in the case 

of IO,;fI > 1 the twist field ai (which provides the boundary conditions 

(O”,f + (1 - OS)A d is not invariant under the twist 0. Hence we must ) 

resort to the more general definition 

of a physical (O-invariant) twist field. Its conformal dimension is given bylo 

1 d/2 

From the decomposition 

(4.3) 

\ (4.4) 
(P : point group) 

pab = fa + fb + (1 - 0) (1 +A&A 
d 

of the product of conjugacy classes associated to aTa, a;* into the classes 

connected with the ground states X;C’ we determine the leading terms of the 

OPE 

loWe presuppose that 0” does not possess the eigenvalue one which is tantamount to 
fixed planar subspaces. 
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4z744$4 0) = Iz12(h++-2h+) c Yfa,fb;fc .q+(o, 0) + . . . . (4.5) 
fcEPab 

The expansion coefficient 

KfaJb;fc = ,,Jp, IZ~I 4h++ #Jo, O)@, l)X,(zw %xJ> P-6) 
describes the moduli-dependent part of twisted sector Yukawa couplings in 

the effective action of the orbifold model (see our introduction). 

The four-point function (3.7) must then behave according to 

(4.7) 

in the u-channel factorization limit. 

On the other hand we can explicitly deduce this limit by inspecting (3.29) 

with Y inserted from (3.4O):l’ 

Zj,>(x, Z) = det e [x(1 - x)[-“‘+ - (4.8) 

The instanton action can already be recast into a sum of two bilinear sym- 

metric forms whose kernels are a pair of complex conjugate matrices: 

SE@, v> 

7r 

where 

w* = 

S = diag( 1 sin(2w) * 1, ; 1 5 15 i”) 

T = diag(O( 9) ; 1 < I 5 $, and yl = arctan - 

(4.10) 

llIn the sequel we resort again to the particular basis where D represents the twist. 
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Because of the asymptotic relations [21] 

FI(l - x) I’(]1 - 2kl 1 

w4 
= r”(l+ + fll -l~kll)x-min(kl~l-kl’ ’ einmin(kl,l-kl) 

as Ix] + 00 
(4.11) 

the ingredients of the instanton action (4.9) will simplify enormously: 

. -inmin(kl,l-kl) 71 = ae 

Yl = r min(kl, 1 - kl) E (O,r] 
HI = 1 

S = diag ~,%l<j~$ ( > 
T O(min(kl, 1 - kl)) ; 1 2 1 5 $ > 

The factorization limit can- be readily evaluated: 

Zif,}(x, 2) E IxI-~~++ det e 

(4.12) 

d/2 [ 1 fl G2(2h) c e -sy (u-q-B)-Sy (Du+v;B) 
I=1 4f211 

vE[f231 

+... asx--+z,,Z+Z, . 
(4.13) 

We abbreviated 

&!(2;rrkl) := 
I’“(; + f]l - 2klI) 

I?(11 - 2kJ) j/FGa 

&(A; I?) := XT (g + D LB&) x . 
(4.14) 

The limit of the classical action SE(U, v) turns out to be a sum of two in- 

stanton actions SI((U - v; -B), Sy(Du + v; B) which are obtained from the 

path integral evaluation of Yi,f3;Te and Yfi,f,;,,, respectively (r, labels the 

intermediate physical state of the second twisted sector). Indeed the global 

monodromy vectors which characterize the corresponding instanton solutions 

refer to zero net twist contours (!I, & enclosing the world sheet positions of 

a pair of twist fields from either the s = 1 or the s = -1 sector. These global 

shifts read 
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i, := u - v, i2:=Du+v (4.15) 

because 61 = Cr - Cz and & = DC1 + C2 hold. (Observe that Cr changes 

into DC1 by analytic continuation to the next sheet, i.e. when the cut that 

extends between 0 and x on the complex world sheet is crossed once before 

turning onto the same path again.) However 

f31 +(l- D)(X -/J) 
f23 + Df21 + (1 - D)(DX +/i) 

)X-b}. 

which does not allow for the desired factorization right away. But it is pos- 

sible to rewrite W(fir, f 23 as a finite union of pairs of cosets (this fact has ) 

been demonstrated in [22] before), namely 

w(.f21,.f23) = u 
rEP24 

, (4.16) 

where we employed the selection rule (3.8). The union in (4.16) reflects of 

course the various intermediate physical states of type C++ (cf. (4.5)). 

We then reorganize C = C C and observe the property 
TE’P24 F&24 rEO2;r 

c -c 
e-SY (CB) - e-SY (m) 

k-r+(l+ll))[f21 k--Dr+(l+D)[f21 

We may now factorize (4.13) in o t a finite sum of products of Yukawa 

couplings as suggested by (4.7). Th e moduli dependent part of the Yukawa 

coupling reads 

B 

tEg.,a e-?rtT(tS+‘=+ * (4.17) 

where 

Mfc,fa := u {(1-D2)~d-Dkj~+(l+D)j~} . (4.18) 
kzo.1 
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For some purposes [23] a multipiication by a moduli dependent phase factor 

might prove useful. This option clearly is at one’s disposal in view of (4.7). 

The Boltzmann factor series appearing in (4.17) can even be directly eval- 

uated thereby avoiding the detour past the correlation function Z{fil. Again 

the conjugacy classes attached to the ground states ai, ai, and Cr, dictate 

the form of the classical instanton solutions Xc1 whose actions reproduce the 

exponents in (4.17). If both 8E; # 0 and aJ$ # 0 one would encounter an 

infinite contribution to the action from the I-th planar subspace. Therefore 

the above series is exclusively due to strictly holomorphic or antiholomor- 

phic instantons. The remaining metric dependence present in the prefactor 

Jdete can also be predicted within this direct approach: the four-point func- 

tion Z{fIl contains its square det e in the Lagrangian formulation (two-fold 

series over winding vectors) because upon switching to the Hamiltonian for- 

mulation (a Poisson transformation converts one of these series into a series 

over momentum vectors) this factor will disappear as demanded by the nor- 

malization condition (gf(O, O)CY:~(~, 1)) = 1. Admittedly the (background 

independent) product in (4.17) h’ h w ic contains quantum correlation factors 

is out of reach when such a direct calculation is carried out. 

It is worthwhile to display the dependence of (4.17) on the background 

tensor (G + B) in a more concise way. First we replace 

(4.19) 

In addition we reinstate the metrical factor (2G) in the first term of the 

a,ction’s bilinear form to put it on the same footing with the second term 

that is governed by B: As a last step the original lattice basis is revived 

w.r.t. which the twist is given by 0 (cf. (2.5)). This yields 

Yfa,fb;fc = (&t(‘+))i ~(0; fc) C e-r’T(‘-‘T)(GZ-ie)X . (4.20) 
tEVfc,fa 

where 
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(4.21) 

z := RZoRT . 

Notice that we continue to denote the background matrices by the familiar 

symbols. The potentially complicated matrix 2 which multiplies G must be 

viewed as the counterpart of the imaginary unit which multiplies B in the 

action kernel. This claim is part of the following set of algebraic rules: 

22 = -1 
GZ = Z*G (4.22) 
BZ = Z’B with Z* := (Z’)-1 . 

5 Discrete shifts of the moduli of the anti- 
symmetric background 

The vectors of the 2d-dimensional Narain lattice 

AN := { (&, PL); p E A&v E Ad} (5-l) 

appear in the construction of the vertex operators (3.1) from the untwisted 

sector. By means of the background tensor (g + b) one is able to parametrize 

the set of Narain lattices occurring in bosonic string theories (apart from 

trivial rotations of the coordinate system). Obviously AN is not affected 

by a shift a = eTae (aT = -a) of the antisymmetric background provided 

that akl E Z since it can be compensated by the shift p H p + CYW of the 

momentum vectors. 

This discrete symmetry group can even be generated by a group of unitary 

transformations acting on the set of vertex operators. Not only will the 

conformal dimensions h, h stick to their original values but there is also 

no way to distinguish a pair of orbifold models with backgrounds g + b and 

g+ b+a, respectively, by means of their correlation functions. Thus it suffices 
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to just consider a compact fundamental region of the antisymmetric moduli 

space for classification purposes. 

For instance, a proof of the equality 

@:jl ,‘I(vi)‘I(a~)‘h+b+a = (fl:jl Ivlb&+b (5.2) 
between the twisted sector string emission correlators in two models with dif- 

ferent backgrounds (indicated by the subscripts) has been given in [13]. The 

prime superscripts clarify that the associated fields in the “shifted model” 

differ unitarily from the conventional fields at the shifted background g+b+u: 

(vi$v)l = @xl 

(ur’)’ = uj CT; 

(UIj)’ = uju:j . 

According to [22]r2 the ph ase factors Uj have to fulfill 

(5.3) 

and 

(Uj)” = exp (-z”if’&of) (f E Ad) . (5.5) 
The first condition says that U : Ad H Sr provides a projective representa- 

tion of the abelian group Ad whereas the second condition already determines 

these phase factors up to a sign. The associativity of the composition law 

(5.4) is ensured because the phase factor which contains the shift Q is bi- 

multiplicative. Notice also that this factor has to be symmetric under an 

interchange of fr and f2. For this property to hold we have to restrict our- 

selves to modular shifts of the antisymmetric background, i.e. [o, 01 = 0. 

As promised in [13] we report here on our progress in solving (5.4) and 

(5.5). For particular winding vectors these constraints are not involved at 

12Although the emphasis was laid there on the case of two-dimensional bosonic orbifolds 
the Verlinde-type method of finding the first twisted sector representation U of a discrete 
shift b t+ b + c can obviously be extended to higher dimensional target spaces. 
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all. Consider e.g. the sublattice.2Ad c Ad. Taking fi = j2 in (5.4) and using 

(5.5) subsequently we find that 

U2 j = exp( -27rifT &jP”V) . (5.6) 
This entails U. = 1 which merely is a convenient normalization. It was 

already opted for in [22]. H owever in order for the the generalization 2f H 

f in (5.6) not to clash with (5.4) the axionic shift a (w.r.t. the lattice 

frame) would have to contain even components throughout. Of course these 

particular shifts no longer form a system of generators. 

Interestingly the transformation behaviour of the moduli dependent part 

Yja,jb;jc of the Yukawa couplings under the shift B I+ B + (Y will play a role 

when we try to explicitly determine the mapping Uj for some even order 

orbifold models. Above it was contended that the background shift gives rise 

to an equivalent model. Hence we expect 

to hold where the set of unitary redefinitions (5.3) has meanwhile been ex- 

tended to the second twisted sector: 

(cf+)’ = ur++ c;+ . (5.8) 
Actually one does not completely succeed in justifying this simple transfor- 

mation law by repeating the analysis which led to (5.3) (cf. [22]). There it 

was shown that (0;) contains an admixture of a conventional twist field at 

only if (f - t) E (1 - O)Ad. Since [f] = [t] in this case the representation 

matrix U indeed turns out to be diagonal. However the above condition 

is equally valid w.r.t. a (higher) s-th twisted sector of the theory whereas 

the winding vector set ‘yiL1 (@jf + (1 - @)A,) gives the translation group 

part of a conjugacy class. Therefore off-diagonal admixtures to, say, (ET+)’ 

cannot a priori be excluded (( 1 - @)A, c (1 - O’)Ad). 

On the other hand we need not anticipate a generalization of (5.8) since 

the second twisted sector might also (for a moment) be looked upon as the 
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first twisted sector of another o&fold model for which the shifts a are indeed 

represented diagonally (see ([22]) on the set of det(1 - 0”) ground states. 

To evaluate (5.7) we recall that the discrete shift cr is supposed to commute 

with the twist. Only then will the ratio of the three-point functions (4.20) 

w.r.t. the above pair of modular backgrounds boil down to a constant phase 

factor. We end up with 

To disentangle this condition we simply choose the configuration fa = 0, 

fb = fC (which fulfills the space group selection rule) and obtain 

U++ = Uj exp(irfT&f) f (5.10) 

after symmetrizing the bilinear form in (5.9). Actually this relation is tan- 

tamount to the previous one because the product UjaUjbul' can be rapidly 

reduced with the help of (5.4) and (5.5) for any admissible set of fixed points 

(Uj* = ujc-ja = . . .). This equivalence results from the invariance of (4.20) 

under a discrete translation in target space by the fixed point vector &X 

(A E Ad). since fa H fa i- x implies fb H fb •t x as Well as fc H fc -i- (1 i- 0)x 

the series ranging over Vj,,j, (cf. (4.21)) is indeed not affected. 

Evidently, given the diagonal representation matrix U, its counterpart 

U++ for the second twisted sector may be explicitly read off, thus bypassing 

the more strenuous effort of solving the implicit conditions (5.4), (5.5) with 

O2 replacing 0. We must however keep in mind that (5.9) is not applicable 

whenever 0 possesses an eigenvalue (-1). On the other hand one might also 

solve for U once a solution U++ is at our disposal. 

Let us nonetheless inspect the set of implicit conditions for U before 

embarking on a closer examination of (5.10). Notice that we have to insist 

on 

uj = Uj+(1-0)X (A E Ad) (5.11) 
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for them to be well-defined (This condition is joined by UT' = UGF in the 

second twisted sector). Expanding the right hand side according to (5.4) one 

arrives at the simpler (but equivalent) condition 

uj=uoj . (5.12) 

We also deduce that U. = 1 and Uj = U-j will always hold (take special 

values for the above winding vectors f, h). 

Our next aim is to show that Uj is an N-th root of unity where N is the 

order of the twist. For even N we reformulate this claim, relying on (5.5), to 

read 

N/2 exp( -2WifT- l-@af)=l - (5.13) 

Resorting to the basis where the twist has a block-diagonal form (2.5) this 

can be quickly demonstrated. It suffices to recast the twist into the form D = 

( -212 ;,) whence the modular shift of B is bound to acquire the form 

a- 0 
Ct!= 

( ) 0 cd * Similarly we decompose winding vectors as f = 
( ) 

$ 

such that the upper components f- are subject to a reflection under D. Then 

f’+!& = (f_T, WT) ( fld12 ;(D,) ) ( ai ,9 ) ( $ ) 
= fTP(D)Qf + rf - q-l>)(f_TxL> 

(5.14) 

where P(U) := (1 + D’)* is a polynomial in D' with integer coef- 

ficients. This fact follows from (D')2 h aving the smaller order $ together 

with the identity 

-& = 5 &N-n (5.15) 
n=l 

which holds for any order N twist if fixed directions are absent. Of course 

the evaluation of P for arguments of a different type (namely D and (-1) E 

Z) which occurs in the second line of (5.14) merely requires their formal 
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substitution into P(D’). W e recognize the last line of (5.14) to be an integer 

because (fTo-f_) = 0. 

Next we consider the cases where N = lmod 2. In the subsequent calcu- 

lation we will repeatedly use (5.4), (5.12), and the fact that H simply 

gives an integer polynomial in 0: 

1 = Uj+~j+...+m j = V-MN exp (-2ai (y) .f’&f) 
(uj)N(u;)(:) = (Uj)N2 

(5.16) 
= . 

Our claim follows since (5.15) tells us that (Uj)” is an N-th root of unity 

(cf. (5.5)) and since the binomial coefficient is divisible by (odd) N. 

This result permits us to determine 

Uj = (UT)mv = {exp(2*;fT&f)} 2 (N odd) . (5.17) 

It is then easily checked that the implicit relations (5.4) and (5.5) are both 

satisfied. Also the stability condition (5.12) is trivially fulfilled. 

In view of the absence of explicit factors N in the ratio of Yukawa cou- 

plings featuring on the right hand side of (5.9) one is tempted to recast (5.17) 

to get rid of the manifest dependence on the twist order. By combining (5.15) 

with 

(1+ K)(1+ K2 +...+ (Ii-')+q = 1 (N odd) (5.18) 

we obtain the key relation 

N 1 -= 
1 - I( 

-mod2 . 
1 + Ii- 

Hence the desired elimination can be performed: 

Uj = exp(-27r;fr&f) = exp(-2rifT&f) . 

(5.19) 

(5.20) 

(In the first expression a symmetric bilinear form is used.) 
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On the other hand the representation matrices Uj for the class of even 

order orbifolds are much harder to find. We isolate the difficult part of their 

analysis by splitting 

Uj = exp(-inf’ &f) $r - (5.21) 

Due to the normalization prescribed by (5.5) we recognize that 4 maps Ad 

into {-1,l). W e call this function henceforth a sign distribution (on the 

lattice). It is found to be subject to 

h3j = dj 
&f+h = c$jqbh ( -l)fTOh (f, h E Ad) 

(5.22) 

upon substituting (5.21) into the primary conditions. Again 4 defines a 

projective and associative representation of the compactification lattice Ad. 

Thanks to the composition law in (5.22) the sign distribution is determined 

by its values ~$j = &, for a set of basis vectors. If we expand f = 5 ejnj and 
j=l 

introduce a d-dimensional vector t such that (-1)“~ = $j the sign distribution 

will read 

where (U+)jk = 

(5.23) 

In retrospect the composition law of (5.22) is clearly fulfilled whereas the 

accompanying condition of orbit stability can be reduced to 

4 Qe, = $ (.i E L4w 
(5.24) 

or (tT(l - K))j = (.Z’u’IC)jj mod2 

where K expresses (as. usual) the action of 0 in the lattice basis. Given 

these subsidiary conditions the number of acceptable sign distributions is in 

many cases considerably smaller than 2d (exceptional case: I< = -1). Let 

us develop a tighter upper bound. The quotient x of two sign distributions 

4, 1c, will satisfy 
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XOj = Xf 
Xf+s = xjxg 

(5.25) 

whence it gives a group homomorphism. The solutions can be parametrized 

in the form xj = ( -l)ZT” (zj E { -0,l)). One also has to impose 1 = 

(-1) 
zT(l-K)n otherwise Uj will not become a well-defined function of the 

cosets [f. A priori there are 2d different candidate vectors 2. If stability 

comes into play there must exist a vector t with even components such that 

xT = [‘.i-+-~ is true. However the replacement [ I-+ < + 2(1 - KT)m 

(with m an integer vector) only gives us back the homomorphism we have 

started with. Hence at most det(1 - K) different solutions of (5.25) may 

exist. Consider for example the sequence of Coxeter orbifolds based on the 

(N - 1)-dimensional root lattices of SU N. Here the order N of the Coxeter 

twist coincides with the number of first twisted sector ground states (which 

is the upper bound we just arrived at). In comparison with this the less 

sophisticated bound 2N-1 is too crude for large order N. We point out that 

N 1 
X en = exp(2ni--zT 

2 -4 9 1 - Ii' 
(5.26) 

where z is an arbitrary integer vector, will always solve (5.25). 

We briefly sketch two examples: 

1. The Coxeter orbifold obtained from the root lattice of SUG: Here I< has 

the non-vanishing entries Kj+i,j = 1 with j E { 1,. . . ,4}, and IC,, = -1 

for r E {l,... ,5}. This particular form permits only two different 

choices for z given that stability amounts to xi = . . . = xs mod2. 

(Here d = 5, but the considerations of this section also apply to an 

odd-dimensional target space.) Both solutions can be arrived at by 

using (5.26). 

2. The 2s orbifold with the complex basis e = (l,e”?): The twist acts 

via Ii’ = 
0 -1 

( ) 1 1 on this hexagonal lattice. We arrive at xi = x2 = 

Omod2 whence there is a unique sign distribution. Correspondingly 

(5.26) just returns the trivial solution. 
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We did not succeed in solving the consistency constraint (5.24) even for the 

simplest non-trivial order four case (if N = 2 then 0 = -1 and t can be 

arbitrarily chosen). One comes across further relations if K is replaced by 

any higher power in (5.24). Playing with these constraints a host of amusing 

identities (containing solely It and a+) can be written down, e.g. 

N-l 

c ((KT)nu’Kn)jj = Omod2 . 
n=l 

(5.27) 

At any rate (5.24) ff o ers a simple test on the existence of the sign distribution 

4 for even order orbifolds. In view of the linear dependence on the background 

shift o = e*ue-* it suffices to perform the check for the finite number of 

generators of discrete shifts u.13 

Solutions Up' of the conditions which replace (5.4) and (5.5) in a (higher) 

s times twisted sector will immediately follow once the answer for s = 1 has 

been worked out. If the twist 0 possesses an odd order N then (5.17), (5.20) 

will apply (with 0 re pl aced by its s-th power) because all higher sector twist 

operations are of odd order too. Matters are more diversified if N is an even 

number. In those sectors for which 0” is of odd order we make use of the type 

(5.17) whereas for even orders we simply resort to (5.21) and merely adapt 

the twist. Note that the first sector sign distribution 4 can be kept since 

$osj = 4j is an elementary consequence of the stability condition cited in 

(5.22). We underline once more that these recipes will fail if fixed subspaces 

should be present in the higher twisted sector. 

Now we return to (5.10) which stands for the equivalence of two orbifold 

models that are related by a discrete shift of the background B. We discuss 

again the two main orbifold classes separately. For odd N the left hand side 

of (5.10) follows with (5.20) f i we observe that fTo{ R( 0) + R( C3)T}f = 0. 

Consider then the alternative N = 0 mod 2. Here we have to allow for a 

sign distribution in the phase representations Uja, Ujb. According to (5.10) 

the phase transformation in the second twisted sector has to obey 

131t can be shown that {CX; aij E Z, [(Y, 01 = 0) is an Mb-dimensional lattice. Given a 
basis of the axionic moduli space a unit cell of this lattice can always be arrived at by the 
successive construction of several auxiliary bases. 
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Ur++ = exp(-27rifTD-4 1+02af)@j . (5.28) 

Obviously these phases do not depend upon the choice of a representative 

within the same second twisted sector conjugacy class (&j = $j holds by 

assumption). At first sight we are somewhat puzzled by the appearance of 

the first sector sign distribution in an expression for UT’. However this 

peculiarity turns into an asset when $ is odd! We just have to insert (5.17) 

(where we adjust 0 H 02, N H !F) and (5.20) into (5.10) in order to solve 

for the sign distribution $j. We arrive at 

qbj = exp(2ri$!fT$f) (5.29) 

which satisfies both axioms (5.22). Wh en verifying the composition rule the 

following identity is seen to play a decisive role: 

N1+K2 N/2 
51 - l-c2 = ; + 2K2 l-K2 =lmod2 . (5.30) 

(here we relied once more on (5.15).) M oreover these axioms guarantee that 

4 maps Ad into {-1,l). 

The appearance of the factor $ in (5.29) can be avoided by slightly 

adapting the contents of (5.18) and (5.19). We then find 

(5.31) 

Notice that ’ 1 + KT is integer due to 9 being an odd number. 

Unfortunately (5.29) is ill-defined if 0 acts as a reflection on part of 

the target space. Otherwise the phase transformation factors induced by a 

discrete axionic shift a. read 

Uj = exp 
( 

1 
;rfT(& - - cy 1-O ) f> 

(5.32) 

We have not yet studied the case where N is a multiple of 4. The phase factors 

Uj, Ur++ in (5.10) are of the type (5.21). Solving for the sign distribution $j 

included in UT+ shows that it agrees with the first sector sign distribution 
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~#j (which is not too revealing). We already know that $j is also appropriate 

for the second twisted sector. The converse is however not true in general 

because the stronger condition 4j = &j need not be satisfied by a generic 

Tb 
The above results can still be generalized provided the orbifold models 

meet certain restrictions. Let us factorize the twist order into N = 2Yz 

where the exponent y must be maximal thereby rendering an odd factor 

Z. We discard then those orbifolds from our sample whose twist operations 

have an eigenvalue exp(2?ri$k). In particular twists which reflect planar 

subspaces cannot be dealt with. For the remaining orbifolds we can at once 

construct the sign distribution 

6 = exp(irfT 1 +ooE f) 
- Y 

(5.33) 

Again (5.22) is satisfied. 

It is feasible that more cases can be explicitly investigated as soon as the 

moduli dependent factor (CTaCfr,CI;T’) of the general twisted sector Yukawa 

coupling has been correctly evaluated (for a recent attempt to evaluate these 

factors cf. [24]). Taking an entirely practical standpoint we must concede 

that the the general expressions which have been derived here apply only 

to the limited number of symmetric orbifold models with a six-dimensional 

target space. On the other hand a case by case study would have been rather 

laborious except for the geometrically simplest twist patterns (e.g. d = 2 or 

0 = -1). We underline that the construction of the axionic shift repre- 

sentation matrices was enormously facilitated by taking all mathematically 

consistent models into account. 

6 Duality (background inversion) 

Another stringy symmetry operation exchanges the momentum and wind- 

ing numbers of closed string solutions. Parallelly the modular background 

(GB ‘; e) is mapped into (G, -B ‘; zl) with 
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e” = &e* 
(6.1) * z* = (G+B)e . 

This involutive mapping is called the duality transformation. The dual torus 

model is described by the lattice Ad = {e”n; n E ZZ”} which again admits 0 

as an automorphism. 

According to (3.1) a left right asymmetric rotation of the Narain lattice 

vectors is induced which however does not affect the spectrum of conformal 

and anti-conformal weights of the associated vertices VP. 

These mappings are a consequence of the field theoretic substitutions 

XR I--+ XR = dB (G - B&t 
XL H XL = - XL 

(6.2) 

which must be implemented in every functional depending on the left- and 

rightmoving coordinate fields. The initial studies [25, 261 of the duality sym- 

metry dealt with toroidal boundary conditions which did not contain an 

antisymmetric coupling B. If the string motion is confined to a circle then 

its radius r provides the single modular parameter. We read off from (6.1) 

that the dual partner circle possesses the inverse radius f in suitably resealed 

units. The discrete symmetries of the background space relevant for (16+d, d) 

dimensional Narain compactifications have been addressed in [27]. An ex- 

tension of the duality transformation to the twisted sector of the orbicircle 

model can be found in [28]. 

The Kahler modulus of two-dimensional tori reads Q = det e(h + iG) 

(here B = 
(-B “) 

). The transformations e H Q + 1, Q H --$ describe 

the generating shift of the single axionic modulus (treated in section 5) and 

the transition to a dual background, respectively. Together they generate 

the mod&r group PSL(2, Z) h h t w ic ac s on the complex upper half plane. 

This feature generalizes to higher dimensional (orbifold) target spaces (with 

other discrete symmetry groups K at work). 

Next we have to extend the substitution law (6.2) to all sectors of an orb- 

ifold model. This task was solved in [22] for th e subclass of two-dimensional 
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symmetric ZN orbifolds. We briefly sketch the basic steps. There are three 

kinds of generators of a diferent discrete symmetry group L which acts at 

prescribed background values e: The correlation functions are invariant under 

1. a discrete translation of X(z, Z) by a vector of the fixed point lattice 

&Ad, 

2. opposite translations of XL(Z), Xn(z) by vectors taken from the resealed 

dual fixed point lattice &&A*, 

3. point reflections of X(z,Z). 

Needless to say that each of these prescriptions also induces a nontrivial 

transformation in the twisted Hilbert space sectors. 

Moreover it is possible to determine for any generator of L the unique 

operation on the Hilbert space of a partner model whose background param- 

eters are modified due to the action of an element of K: (be it an axionic 

shift or the duality inversion). One starts from the untwisted sector and 

completes this pairing by a straightforward extension to the twisted sectors. 

The representation matrix U which gives the twisted sector substitution rule 

under an axionic shift was introduced in section 5 (cf. (5.3)). It relates the 

above mentioned pair of elements of L by joining them to form a commu- 

tative diagram. Its analysis provides us with the conditions (5.4) and (5.5) 

which are to be solved for the unitary matrix U. A similar consideration 

applies to the representation matrix U ++ for the second twisted sector. In 

this case there will generically not arise as many constraints as are needed to 

determine U++. This deficiency can be attributed to the fact that a second 

twisted sector fixed point might not yet be fixed under 0. 

The duality mapping was determined by this method as well [22]. It 

amounts to the discrete Fourier transformations 
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-+ = aj $ C exp(-2*ifT&h) o+hh I 
1 &F,I 

cj = -J& hcg*), @g ‘$;lexp (2r;(o’h)T&) C+f, 
7 

(6.3) 

with the sums ranging over 

(F,*)’ = F,*/P ; ri 
F,* = (1 -;“)A; * (6.4) 

The quotient F,* contains N, := det(1 - 0”) coset representatives. Observe 

that (F;)’ = F;* and that &h is indeed a winding vector of the dual 

orbifold model as is evident from (6.1). 0 nce the ordinary coordinates and 

twist field operators have been replaced by (6.2), (6.3), respectively, the 

correlation functions referring to the duality transformed background should 

coincide with their counterparts in the original orbifold model. 

We draw two important conclusions. Modding out the background pa- 

rameter space by the action of K we are led to a fundamental region as is well 

known for PSL(2, Z) in the case of d = 2. Orbifold models which belong 

to its complement need no longer be considered for classification purposes. 

Their phenomenological aspects are fully accounted for by suitable “repre- 

sentant” models whose background tensor is an element of the fundamental 

region. Furthermore the low energy effective action inherits K. Tight restric- 

tions were discovered for the scalar potential of an effective four-dimensional 

supergravity action (see [14]). 

Now we establish the invariance of the three-twist field correlation (4.20) 

if the complete set of transformations induced by a background inversion 

(6.1) is applied. This claim amounts to having 

Therefore we expect that the moduli dependent part of a twisted sector 

Yukawa coupling is identical to a particular linear combination of correlation 
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functions of the same type which refer to the dual background (g + b)-l (this 

conclusion extends of course to any correlation function which is parametrized 

by the set of background moduli). 

In view of the background dependence of the symmetric bilinear form 

A(G, B; e) = eT(O - OT)(GZ - iB)e (6.6) 

which characterizes the Boltzmann factors occurring in (4.20) it is advisable 

to try once more a Poisson resummation to uncover this linear relationship. 

Moreover we may focus on the reduced set {Ys,j;j; f E Ad}) of twist field 

correlators given their invariance under translations by arbitrary fixed point 

vectors .j&J! (cf. our comment below (5.10)). 

A short calculation based on (3.31) then yields 

y0 j j(G B; e) = (det(2d)t doi f> 
I ; 7 

&Ga 

C e-mnTA-l, e-2+*4T&5f 

mEZd 

(6.7) 

In order to proceed we rely on the auxiliary formula 

G~liB=(G+B)~~:;B(G-B) (6.8) 
which can be readily proven by rewriting it exclusively in terms of 2 and 

$B and then using (4.22) t o simplify it further. This identity also entails 

det(G2 - iB) = det(G - B) eit with e2i~ _ det(GZ - iB) - 
det(G2 + iB) 

. (6.9) 

We will now recast (6.7) explicitly in terms of the ordinary three-point cor- 

relators w.r.t. the dual background position: 
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x Ce -awT&-(GZ+iB)w - 27ri((G-B)~)~& j 

WE&i 

where .F2 = and h = (G - B)f” . 

(6.10) 

As a last step we had to perform a coset decomposition 

Ad = u {-f + (1 - @‘);id} 
jEF* 

(6.11) 

on the range of the series variable w which permitted us to identify IF21 

contributions of three-twist field correlations w.r.t. the dual background 

(g + b)-l. 

We need not to be worried about the background dependent phase factor 

e-“g contained in the transformation rule (6.10). It disappears upon includ- 

ing the compensating phase eif into the definition of Yfarjb;jc(G, B; e) which 

is evidently sanctioned by (4.7) (cf. also [as]). It remains to verify our claim 

(6.5) by replacing the dual twist fields C+, g-- by the superpositions (6.3) 

of ordinary twist fields w.r.t. the background tensor (g + b)-l. Since nei- 

ther of these prescriptions nor (6.10) explicitly depends on the target space 

dimension d or on the background matrices g, b we are reminded of the anal- 

ysis performed for the two-dimensional case in [22]. In order to compare 

both sides of (6.5) we may entirely rely on the discrete translation invari- 

ance of correlators which consist of the ordinary twist fields u+, C-- and on 

projection identities such as 

(6.12) 

(It converts a sum of discrete phase factors into a selection rule.) Both these 
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ingredients are likewise independent of the details of a particular compacti- 

fication. 

In view of these facts the duality invariance of the three twist field corre- 

lation function is guaranteed for symmetric 2~ orbifold constructions of the 

bosonic string. 

7 Discussion 

For the class of symmetric 2~ orbifolds an explicit parametrization of the 

(axionic) antisymmetric background B was derived assuming that [B, CD] = 0. 

This condition was recognized to be crucial for a calculation of the complete 

set of instanton actions in the case of the four-twist field correlation function. 

Via a factorization w.r.t. the “twisted channel” the moduli dependent 

part (0iCiCZJ of a particular Yukawa coupling could be read off. The 

calculation of three-point functions involving any set of (higher sector) twist 

fields {Ctk), C(‘), C(-k-‘)} in the presence of a purely metrical background g 

has been attempted in [24]. It remains to include the axionic moduli as well 

PI * 
In order to undo the change of these couplings caused by discrete shifts 

b H b + a (arc, E Z6, [cr, O] = 0) we had to resort to new twist fields which 

differ by a phase factor from the ordinary ones. The existence of a consistent 

set of such phases hinges on the validity of the algebraic condition (5.24). 

One might also reverse the argumentation: If these background operations 

constitute true symmetries of our class of 2~ orbifold models then a stringy 

proof guarantees that we can solve (5.24). Likewise the inversion in back- 

ground space (duality) was recognized not to affect the B dependent Yukawa 

couplings provided that Fourier transformed twist fields are employed as op- 

posed to the ordinary ones. Again we would like to turn the tables. Suppose 

that Yukawa couplings are duality invariant (due to the proper substitutions 

of the twist fields). Then the linear relation (6.10) which involves correla- 

tion functions of the ordinary twist fields can be immediately seen to hold. 

Equipped with some elementary knowledge of the background dependence of 
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an instanton action (which follows from (2.1)) and being aware that the global 

windings are restricted to Ufc,jo (see (4.18)) it is then possible to deduce the 

complete instanton action formula: the unknown factors must be chosen in 

such a way that (6.10) can be reconstructed via a Poisson transformation. 

Thus one can in fact bypass the awkward normalization of cut differentials 

and the subsequent complex plane integration of their norm squares (cf. sec- 

tion 2) if Yukawa couplings need to be determined only up to a numerical 

prefactor. 

Although the class of orbifolds treated in this paper is quite general some 

important cases have been skipped: 

l We avoided to discuss those backgrounds B for which [B, O] # 0. In 

this case we cannot rely on a consistent action description of the orb- 

ifold CFT which therefore complicates the evaluation of correlation 

functions. An exception is the case of an antisymmetric background 

B=Bo+Awith[&,O]=O h w ereas A which does not commute with 

0 maps Ad into AZ (i.e., eTAe E zdxd; cf. ([13]). It is quite Simple to 

introduce this background in (3.32) by letting 

p--‘p’=p+Av . 

Thereby the conformal weights hj, hj in (3.32) adapt to the shifted 

background A. The string emission coupling (3.39) is then found to 

acquire a dependence on A (cf. also [13]). A redefinition (5.3) of the 

twist fields will not enable us to eliminate this explicit dependence on 

A in view of the remark made below (5.5). Consequently only the 

antisymmetric background Bo will enter the Yukawa couplings (4.17) 

since (3.32) h as in fact not been modified by the above substitution. 

Actually for twist invariant vertex operators V,!?” to exist it suffices that 

the twist acts as an automorphism of the Narain lattice AN. To have 

this property the background matrix B must satisfy eT[B, O]e E Zdxd 

which evidently is a weaker condition than (2.4). As has been shown 
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in an appendix of [13] th ere even exist solutions b which cannot be cast 

into the form b = p + A where p = eT&e. 

With the help of the operator formulation of an orbifold CFT [13] one 

might be able to deduce three-point functions even under such circum- 

stances. Unfortunately, a calculation of correlation functions involving 

more than two twist fields cannot be handled in this way. Besides, the 

path integral approach is doomed to failure. A more promising method 

(suggested in [30]) could be to resort to a doubling of the Narain lattice 

AN (which gives a complete specification of the background data). If 

this strategy yields a new double-sized antisymmetric background B 

which commutes with the enlarged twist then the results of this paper 

carry over and various orbifold correlation functions should be accessi- 

ble. We report elsewhere [31] about this approach. 

l The definition and the evaluation of correlation functions for heterotic 

orbifolds in the presence of quantized Wilson lines remains a challenging 

problem, which is of course closely related to the bosonic situation just 

mentioned before. 
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