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1. Introduction 

Light-cone quantization might be a very valuable tool toward a better under- 

standing of the strong interaction. The main advantages of the formalism are the 

simple vacuum structure, the manifest boost invariance in the z-direction and the 

Hamiltonian formulation that leads to a very physical approach to field theory. 

One of the major disadvantages of the formalism1 (as for any Hamiltonian 

form of dynamics) is its non-manifest Lorentz invariance (here, rotational invari- 

ance). Being not manifestly Lorentz covarkmt one still expects that physical ob- 

servables (S-matrix elements) exhibit the full Lorentz covaria.nce of the underlying 

Lagrangian. Since the verification of Lorentz covariance of the S-matrix in a non- 

covariant formalism is in general ra,ther tedious, it has become common practice to 

simply assume covariance of the S-matrix in na.ive light-cone quantization& This 

paper deals with the problem of Lorentz covaria.nce (in particular, rotational in- 

variance) in light-cone quantization. 

A powerful test of rotationa. inva.riance is given by examining the angular 

distribution of the decay products of a hea.vy scalar particle at rest, such as 

CT--+ f5;. (14 

Starting out with the light-cone qua.ntized Yukawa model3 

fz = f(iB - ??7.) f + $(O + X2)4 + -Jf$, (14 

we note that aay deviation from a, uniform ff distribution in physical S-matrix 

elements would indicate a serious violation of rotational invariance. 
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This paper investiga.tes the decay (1.1) at the one and two loop level. A 

discussion beyond one loop is important in order to decide whether self-induced 

inertia terms: which naturally arise from normal ordering of the Hamiltonian, could 

cure the problem. Violations at higher loops would mean, in particular, that any 

clever arrangement of self-induced inertia terms cannot restore a covariant answer 

for physical S-matrix elements, since self-induced inertias are of second order in 

the coupling. 

We demonstrate an alternative treatment by adding counterterms to the La- 

grangian respecting only those symmetries, which are manifestly preserved on the 

light-cone, i.e., transverse rotations and boosts along the z-axis. The goal of this 

paper is to construct them explicitly and show how rotational invariance can be 

restored for physical S-matrix elements. To complete the discussion, in Section 4 

we address the question of why light-cone quantization leads to incorrect results, 

if naively applied. 

2. Breakdown of Covariance at the One Loop 

Level and addition of Noncovariant Counterterms 

We begin our considerations with the deca.y of a scalar particle into a fermion 

antifermion pa.ir CY + jf at tree level. The corresponding matrix element squared 

is (see Fig.1) 

(24 
Overall light-cone energy conserva.tion constrains the externa.1 momenta, leading 
to 

A’ = in2 +yt 

Y+P - cl+> * 
(2.2) 
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Note that, in order to allow for noncovarizmt counterterms, two different masses 

have been introduced” A vertex mass nz,, appears in the numerator, and a kinetic 

mass m, appears in P- conservation and in all denominators associated with the 

diagram.6 Eqs. (2.1) and (2.2) lead immediately to 

1 WI2 = -2 qy(;-~) - 2x2 + &2;. 
Sf 37 

(2.3) 

Obviously rota.tional invariance is obtained if and only if m, = m , i.e. no problems 

arise in tree-level physics. 

At the one loop level the set of dia.grams in Fig.2 contributes to the decay. Note 

that to order y4 only interference terms between one-loop and tree level diagrams 

contribute. As an example we calcula.te the contribution from interference between 

a boson-exchange graph and the tree gra.ph (see Fig.3)7 

IBos-Ez = y4 
’ dk+ J B( 1 - q+ - AT+> 

- ( 167r3) 
(E2(‘-‘)kl 

(q+ + 1;+)(1 - q+ - Ic+p+ 
0 

Tr ((6 - k t 774~5~ + 4(+ t m)(-R t m)) 
( P- - 

m2+(q1+b1 2 m.2+(ql+b1)* 
q++1+ - lmqt -k-f ) (p- - !!e&gY _ q.i _ n;:-p> 

(2.4). 

Using the Brodsky trick8 to include instantaneous fermion contributions, perform- 

ing the trace, combining energy denominators and integrating over Icl, we obtain 

’ dk+ 
1 

IBM.-EL = y4 
J 

O(1 - q+ - r;+> 
- 167r3 (q+ - k+)(p~+ - q+ - k+)k+ s dcr $ 

0 0 
(2.5) 
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where 

p = - ( 
(1 - 40 - q+> 

(k+ t q+)(la- q+ - /k+> + Ic+(l - q+ - /k+> > 

M2 = p-1 . 
( ( 
- q;p (1 - 4 

(q+ t k+)(P- q+ - Ic+> + (1 - q+ - k+) > 

1122 + q; 

q+ _ k+ - 

A = 2t4m2q+2 - m2 - qf) 
tq+ t k+ - qq+ 

B = -wm2q+” - 4172q+ + m2 $ q;, 

(1 - q+)q+- * 

C aquires terms from zero and 1inea.r order in the integration variable kl of the 

Dirac trace. The linear terms give a contribution after shifting momenta. Since 

the expression is rather lengthy we do not display it here. 

Similar steps must be performed for all the other diagrams of Fig.2. This 

involves renormalizing the dia.grams using minimal subtraction and performing the 

integral over k+ a.nd cy numerically. Then rotational inva.riance can be checked for 

the total one loop S-matrix element by computing the diagrams for two different 

sets of external momenta: 

Set (I) : 
1 

q+=,, qx+ q&O 
Set (.II) : q+2 qx=o qY=o* 

4’ 7 
WY 

In both cases, we have chosen X = 1, m = fl. Since both sets obey Eq. (2.1) 

and describe a scalar at rest, i.e. Ps = P- a.nd P_L = 0 , the answer is supposed 

to be the same for both of them, unless rotational invariance is broken. 
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For the asymmetry r, i.e. the result of the numerical integration for the differ- 

ence of set (I) and set(I1) , in in terms of 

we find r = 0.02~. That mea.ns rotational invariance is broken for physical S-matrix 

elements at the one loop level. In Appendix A we give details of this calculation. 

In particular it is shown there that the piece which violates rotational invariance 

comes from the instantaneous contribution in the external self-energy diagrams 

shown in Fig.4. 

In order to keep our discussion as clear as possible, we restrict the number 

of spatial dimensions to two in what follows. This enables us to disentangle the 

specific renorma.lization procedure on the light-cone from the ordinary ones, since 

the Yukawa model is superrenormalizable in 2 + 1 dimensions. 

The remaining goa1 of this section is to show that the term that violates ro- 

tational inva.riance is of the same form as the first term in the r.h.s. of Eq. (2.3). 

Thus, by allowing independent renormalizations for m, and m one can restore 

rotational invaria.nce. 

Using light-cone perturbation theory (LCPTh) rules one finds9 for the graph 

in Fig. 4 

1-q+ 

Gl+, (?I> = 
s 

dkldk+ 
167r3 

0 

Tr ((fi - g t 772)($2 + m)iy+ (-k t m)) 
' (1 - q+ - k+)k+(l - q+) (],- - nz>q: _ "k':: _ +$+2") ' 

(2.9) 



.- 

A change of variables k + = (1 - i+)x , zl = kl$ xqI , combined with use of 

(p-q)“=p-(l-q+)-(l-q+) 7n2q:qT -qi=m2 (2.10) 

and 

X2 + kt 
t 

In2 t (qI t k1)2 X2 + m2 + (kl t qLx)2 +zqf(l - CC) 
X 1-x =y l-x x(1 - x) 

(2.11) 

yields 

1 
= o J 

dzldx Tr (. . .) 

(16r3) ,q _ 
> (1 - q+)‘ 

(2.12) 

To write this in a more compact form, we define the q+ and q’ independent function 

’ di&dx 
f(m7 ‘) = J (1(+) 

2-x 
( * x(1 - ~)rn.~ - X3(1 - 2) - m2x - Zt 

(2.13) 

0 

Discarding odd terms in gl , which do not contribute to the integral, we obtain 

I = (2.14) 

1 - 2q+ = 1-q+ fhW= (2 - +q) m-G9 (2.15) 

A similar calculation for the dia.gram that correspond to the anti fermion self- 

energy, yields 

T= 2 - --$ f(?72,X), 
( ) 

(2.16) 

which contains the same function f(m, X). The total answer,i.e. the sum of I and 
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Itot = 4 - 
1 

QS(l - q+> > 
f h A> * (2.17) 

This result has the remarkable feature that it contains the same q+ dependence as 

the term in Eq. (2.3) tl1a.t violates rota.tional invariance. Hence the violation of 

rotational invariance at the one loop level can be cured by an appropriate renor- 

malization of 772 and nz,, i.e. by using different bare values for m and m, in the 

light-cone Hamiltonian. 

3. Breakdown of Covariance at the Two Loop Level 

In this section it is shown that violations of rotational invariance in the light- 

cone formulation are not restricted to the one loop level. This statement is correct 

even if the one loop subdivergences are treated covariantly. 

In order to constrain the number of dia.grams that contribute to the S-matrix, 

we introduce a second fermion fla.vor a.nd bosons, which change isospin, into the 

2+1 dimensional Yukawa model. However a.11 couplings at fermion-boson vertices 

are assigned differently, so that isospin symmetry is broken. The new interaction 

Lagrangian is 

In this two-flavor model only the rainbow self-energy (Fig.5) and the ladder vertex 

correction (Fig.6) contribute at order & . s$, to the decay 40 + jip. All other 

diagrams contribute with other combina.tions,of coupling constants and must be 

separately covariant, if covariance is assumed for all values of the couplings. 



. . 

The rainbow self-energy contribution is shown diagramatically in Fig.5 . The 

third diagram restores covariance at the one loop ‘level. Diagrams which contain 

Sm, d2)rn are one and two loop mass counterterms respectively. 

As in Section 2, we consider the instantaneous contribution to the self-energy 

diagrams in Fig.7 separately from the rest. Table 1 shows the result of the nu- 

merical integration for both sets of momenta in (2.7). As in the one loop case, 

rotational invariance is violated for the instantaneous contribution to the external 

self-energy diagrams. 

The ladder vertex contributions yield the 6 time-orderings shown in Fig.6. The 

result of the numerical integration is given in Table 2 . 

Thus the ladder diagrams appear to be rotationally invariant by themselves, 

and a possible cancellation of the noncovariant terms in the self-energy diagram 

cannot occur. Details of this calcula.tion a.re given in Appendix B.l” 

In the remainder of this section we want to demonstrate that the breakdown of 

covariance, as in the one loop case, can be cured by an appropriate renormalization 

of m, and m. Since the calculation is similar to that of the one-loop case, we restrict 

ourselves to an illustration of this procedure. 

We start out with the ma.trix element in Fig.8 in two loops. In Appendix 

C it is shown that the two loop self-energy I,,If contains a noncovariant piece 

proportional to Cy+/p+ ( see also ref.3), where C is independent of the incoming 

fermion momentum.” Thus, after on-shell mass renormalization, one finds 

Llf = ($-$) c 

+ (21) - n2).h(p2) t (p2 - m2)f2(p2) . 

(3.2) 
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The instantaneous self-energy contribution of Fig.7 becomes 

1 y+ 1 
(-~tm)~'+;(jtm) 

= 47% 
p+ - k+ 2p+ - 1 

P+ 
= 4y2c 

P+ 
(3.3) 

=4y2c 2 - A- 
( > PS ’ 

where we have set /J = m for the external fermion in Fig. 7 , and used the following 

y+y+ = 0, ks + p+ = 1 and Uysu = 2ps. 

An analogous ca.lculation for the c1ia.gra.m which corresponds to the anti fermion 

self-energy, yields 

7= 47°C (2-&T) ’ 

, so that the total contribution becomes 

ItL4y2C 4- 
( 

1 

> PS(l -p+> * 

(3.4) 

(3.5) 

Again we see that Eq.(3.5) 1la.s th e same form as the piece that violates rotational 

invariance in Eq.(2.3) , which means tha,t rotational invariance can be restored by 

tuning the vertex mass and the kinetic mass differently.12 
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4. Surface and Zero Mode Contributions 

In the previous sections we have discussed the breakdown of rotational invari- 

ance in light-cone quantization and described a way to cure the problem by adding 

noncovariant counterterms. In order to make the discussion more complete, we 

will investigate in this section the question of why rotational invariance is broken 

if light-cone quantization is applied na.ively. The conclusion will be that naive 

light-cone quantization omits important surface and zero mode contributions. 

We start our discussion with the 12 + 1 loop self-energy diagram in Fig.8 in 

d dimensions and cova.ria.nt perturba.tion theory. Since the theory is based on a 

manifestly covariant La.grangian, one expects for the 72-100~ self-energy Ife,, the 

following structure after mass renormalization 

(4.1) 

where f;” must have a spectral representation 

ds P1(4 
q2 - s + it5 

so>0 
(4.2) 

with no poles for q2 5 0. We discuss here only the zero mode effects induced by 
13 

f?. For f; the same consi-derations can be made yielding similar results. 

One finds for the fr contribution to the self-energy in n + 1 loops 

J dD 
I - n+l = .mb - d2>(fi - k -I- 4 

self (27$ ((p - y)” - I?22 + ic) (q2 - X2 + ic) 
(4.3). 
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_ Since problems are expected for the y+-component only3, we compute 

fXP - d2> 
((p - q)2 - n-h2 + it) (q2 - X2 + ic) 

+ J 

where 

q- = -$ (q2 - x2 t (ql t x2)) (4.5) 

was used. 

It should be emphasized that even though light-cone variables have been in- 

troduced, only algebra.ical steps have been performed so far, i.e. no breakdown of 

covariance can have occurred at this point. The trouble occurs when the integration 

over q - is performed, in order to obtain LCPTh. 

The first integral in Eq. (4.4) 1 2oses problems at the one loop level, i.e. f = 1, 

when trying to perform the q- integra.tion. This is because the integrand falls off 

no faster than l/q- for ps - qs = 0 or q+ = 0. Whereas the first case should 

give rise to a contribution of measure 0, we expect nonvanishing contributions from 

the surface term in the second case, since the denominators are multiplied by a 

function which diverges for qs --+ 0. 

What we encounter h&e is nothing else but the one loop problem of the self- 

energy which has been noticed by ma.ny 
l&15,16 

a.uthors. 

However, in higher loops we expect no trouble arising from this term. To 

illustrate this we use the spectral decomposition of Eq. (4.2) and write the first 

12 



contribution to Eq. (4.4) as _ 

I1=Jads/$$ (psmq’~12) ((p--q)2--s+i~(~-q)2-m2+iL) 

so 

’ (q2 - i2 + ie) ’ 

If sufficiently regular behavior for pl (s) is assumed, the integrand falls off like 

N (~/cJ-)~ or faster, which means that surface terms do not 17lsl9 
contribute. 

The situation is different for the second integral in Eq. (4.4) however. Per- 

forming the q - integration leads to 20 

1 z dq-dD-2 
I 

= L qp+ - q+> I 
dD4. fX(P - d2> 

p+ (q - p)2 + m2 $ ic * 

(4.7) 
This is because for p+ # q+ the contour of the left-hand side can be chosen such 

that its contribution vanishes. The rest follows from 

1 
1 
5 

0 

The point is that naive light-cone quantization omits the zero- mode contribution 

on the right-hand side of Eq. (4.7) and thereby causes a violation of rotational 

invariance. This also predicts that the piece that violates rotational invariance is 

always proportional to l/j,+, which is in perfect a,greement with all our experiences 

at the one, two and three-loop level.“Since the right hand side of Eq. (4.7) does 

not depend on the outer boson mass, we see that using a heavy Pauli-Villars 

boson regulator instead of dimensional regularization would have taken care of the 

problem.21 
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To complete this section we want to list again the properties of the diagrams 

in Fig.& 

l It is very likely that non-covariances appear in any order of perturbation 

theory. 

l The noncovariant piece is always pl and p- independent and of the form 

Cy+ 
P+ * 

l The noncovariant zero-mode contribution is independent of the outer boson 

mass, which expla.ins why a. Pauli-Villars regulator plays an extraordinary 

role among regulators. 

l Dimensional regularization is not sufficient, neither is the so-called “covariant 
22 

cut-off”. 

l Even supersymmetric theories suffer from this problem (see Appendix D). 

5. Surnnmry and Conclusions 

We have shown that naive light-cone quantization leads to a violation of ro- 

tational invariance in physical S-matrix elements. To do this we investigated the 

decay of a heavy scalar particle at rest and observed a deviation from a uniform 

distribution of its decay products. The aaalysis shows that the effect is not re- 

stricted to one loop. Following the general arguments of Section 4 one expects a 

violation at any order in perturbation theory. 

At the one and two loop level, we explicitely show that the problem can be 

cured by tuning the vertex mass na, differently from the kinetic mass m. This 

procedure corresponds to adding noncova,riant counterterms, which preserve only 

the kinematic light-cone symmetries. That requires an additional renormalization 

condition, compared to a, manifestly covaria.nt theory. 
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We suggest the decay of a heavy boson at rest because violation of covariance 

is obvious in this case. Once the a.dditional counterterm is fixed the statement of 

renormalizability requires that all processes can be evaluated to the same order 
24 

in perturbation theory23without encountering any further violations. To complete 

our discussion, we investigated the question of why light-cone quantization goes 

wrong if it is not applied carefully enough. We found that nonvanishing surface 

contributions accompanied by a zero mode problem at one loop and missing zero 

mode contributions at higher loop orders cause a breakdown of the covariant struc- 

ture of the theory. At this point it should be mentioned that the same problems 

are expected to occur in gauge theories (in A + = 0 or any other gauge), quantized 

on the light-cone. As far as practical methods are concerned, such as DLCQ2’ 

or the Tamm-Da,ncoff-procedurePadditionil.1 violations of rotational invariance are 

anticipated. This is because one is forced to work with a finite value of a cut-off 

which by itself breaks Lorentz invariance. In this paper, we have discussed only 

those violations of rotational invaria.nce which survive the continuum limit. 
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APPENDIX A 

Using LCPTh theory for the self-energy contribution I,,.f (Fig.S), one finds 

I Y4 J 
O(1 - q+ - Ic+> -- 

self - 1(jn3 (1 - q+)k+( 1 - q+ - Ic+> 

Tr (($2 + m)(#l + nz)(h + m)(-b + m>> (A4 
X 

( 
P- 

where pl = 0 and p + 7 = 1. Note that an off-shell value for p- has been assigned 

in order to deal with the double pole. At the end of the calculation, p- is taken 

on shell. If one shifts variables to 

the Dirac trace can be reduced to the simple form Ait + C, where 

A = 2(4m2q+ - 3,x2 + q+?? - 3+X” + 4i + X2)/k; (A-3) 

and C contains terms of zero and linear order in the integration variable 6 of the 

Dirac trace. This is correct only after terms are disca.rded which do not contribute 

to the integral. The linear terms give a contribution after shifting momenta. Since 

the expression is rather lengthy we do not display it here. The kl integration can 

be trivially performed, yielding 

1 

Y4 1 
= -- 

167r3 s 

dk+ O(1 - (I+ - A:+) 
(1 - q+)’ 

0 
(A4 
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where 

M2 = -k+(l -k+-q+) k+ x2 m2+qi m2+qi 

1 - q+ ql (1 - q+)(l -q+ _ k+) +‘- - L+ - 1 - q+ _ k+ - q+ 
> 

(A.5) 
Ceal = 0.577... is Euler’s constant. The self-energy counterterm that corresponds 

to the diagramm in Fig.10 is evaluated in a similar fashion. As in the self-energy 

diagram (see Fig.9) the instantaneous contribution is included by putting 

Pi = P- - 
1722 + q: 

cI+ 

on energy shell. Sm is given by 

s 1 
dk+&‘)kI k+(l _ k+) 

X 
C(f+ + m)u 

,na2+k2 X2+/$ 
P- - l-I;+l - I;+ > 

(A.6) 

(A-7) 

with pl = 0, p + = 1 for the initial fermion. Note that it does not matter whether 

the instantaneous contribution is included or not, since it is kl independent and 

therefore gives a vanishing contribution in dimensional regularization. 

Performing steps similar to those taken before one finds 

where 

Sm = -2 
J 

dk+(l - &A~“) 

x (-(A” - 1722) + m2( 1 - k+) + k+m2 - 2m2) 

N”=-k+(l-k+) 
x2 

p--&-F . 

Table 3 shows the result for the numerica. integration. The result is that rotational 
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invariance is broken at the one loop level. Numerically we find that the violating 

piece arises from the instantaneous self-energy contribution. 
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APPENDIX B 

We start out with the two loop rainbow self-energy diagram (Fig.5). LCPTh 

yields 

J 

1 
(p- _ m2zL - !lyi) 

(p- _ k, m>d.)(p- _ “+p:A m2p:tP:; m;q;)(p- _ k, _ k, _ ““,“iA 
Pl P: 

4 2 
gPPgPP 

J 

1 
- (167r3)2 (p- _ y _ ?ZI) 

Tr (jf+m)(-h+m) f$i+m)f$+m)fjh++) 

The momenta are given by 
I 

Pl = (1 - q+, x2 - !$A$, -q1), 

p2 =p4 = (1 -q+- k;, X2 - 9 - k;, -qI - kll), 

20 
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p3 = (1 - q+ - 1;; - k,S, q + -qI - kll - kzl) - P2 p3 ' 

fi2 = j.j4 = (1 - q+ - k;, X2 - k;, -qL - kll), 

fi3 = (l-q+-+k2+, qp+ - p2 3 , ql- ICI1 - k21) and kl = “>;:A2 , La = h’,k:A2, 
1 2 

p-& 1 = p:,.l+x2 
, P: 

, P- = X2. Note that the third diagram of Fig.5 which restores 

covariance at the one loop level ca.n be ta.ken into account by setting p3 = ‘$p; 

and fi; = $p; . This rule relates the bad component of the self-energy (y+pl) 

to the good component (7-p:) 
26 

and covariance is achieved by construction. 

The one loop mass correction 6772 is given by 

,2l 

sm = - 
s 

dk;dkzl 
(1 - k$)m2 + m2 

167r3 
0 

(-J& + kz(1 - k$)(m2 - f$ - $)’ 

The last two terms of Eq.(B.l) correspond to the two loop mass correction S(2)m. 

Note that they are defined quasi-loca.1, i.e. the SC”) m-subtraction occurs already at 

the integrands before integration. This makes the expression suitable for numerical 

integration. 

The instanta.neous self-energy contribution can be obtained by subtracting a 

similar expression like Eq. (B. 1)from Ira;nbo.w, where py is set on mass shell. The 

two loop vertex correction is computed in a similar way. 
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APPENDIX C 

In this section we show by explicit construction that the two loop rainbow 

self-energy in naive LCPTh contains a noncovariant piece of the form  

Y+ 
“p-t (W, 

even when all subloops have been rendered covariant. C is independent of the 

incoming ferm ion momentum P. Since by assumption the l-loop self-energy 1:,1/f 

(Fig.9) is covariant, one should be able to express -Iielf in the form  (4.1),(4.2). In 

this particu1a.r example we find 

m(s) = 8; +l(D) 
s 

dz (1 - x)(+E))+% (T(X)) 

pa(s) = $-Q(D) 
J 

dx (2 - .)(T(,))+-% (T(X)) L 
m2 - s (C.2) 

where ~(2) = (x(1-z)s-(m2s+X”(1-2)) was introduced. O(o) is the volume 

of the D-dimensional unit sphere. Thus in a cova,riant formalism the 2-100~ rainbow 

self-energy becomes 

I(2) = O” d4k (PI(S) + (fi - F  + m )m(s)) 
J --03 (2r)O (k2 + i~)($ - fi - n2 + k) 

Naive LCPTh replaces I’) by If’, where 

(C.3) 
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and 111 = (p+ - I;+, p- - w _ m2it2;tkf)2 ,pl 
- h>. The problem is thus 

reduced to finding the noncovariant piece of the one-loop self-energy. This has 

been done3and the answer is of the a.sserted form of Eq. (C.l). 
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APPENDIX D 

THE TWO-LOOP SELF ENERGY IN THE SUPERSYMMETRIC WESS-ZUMINO MODEL 

When dimensional regularization is used in the Yukawa model, there is no 

need for a one loop noncovariant counterterm if the boson and fermion masses are 

equal.27This observation could be of crucial importance for the light-cone quanti- 

zation of supersymmetric field theories. In fact, in Ref. 28 it has been proposed 

to use the (finite2’) N = 4 supersymmetric Yang-Mills theory as a regularized 

extension of light-cone QC&+l. 

Compared to normal theories with similar interactions, supersymmetric theo- 

ries have a less singular UV-behaviour. Since pa.rt of the problem with the violation 

of rotational invariance is connected with the loop regularization of light-cone sin- 

gularities, one might hope that SUSY theories are less troubled by noncovariant 

self energies. Technically, the improved UV-behaviour arises from cancellations 

between various diagrams related by SUSY transformations. Perhaps something 

similar ha,ppens with the noncovariant self-energies in light-cone quantization. As 

mentioned above this is indeed the case at the one-loop level if one uses dimensional 

regularization in the transverse coordinates. In order to find out whether such a 

behaviour persists in higher loops, we will investigate the two loop self-energy of a 

fermion in the SUSY Wess-Zumino model 
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where 1c, is a Majorana spinor and A and B are respectively a scalar and a pseu- 

doscalar field. The (unsubtracted) one loop self-energies for bosons and fermions 

in this model read 

%F =klfl(P2) 2P2 ELI = ;f1(P2) P.2) 

where 

(c is some constant). Performing an on-shell mass subtraction one finds 
31 

f2(P2> 
CF = (R, - 94 fl(l,“) + (p2 - m2) ---&- 

Q? = 2 [(P” - m2) fi(P”) + (P2 - m2) j2(P2)] 

where 

f2(p2) = n22 fl(P”) - f1(m2) 
p2-,2 * (D-5) 

Inserting these one loop corrections into the one loop self-energy yields the nested 

(rainbow-type) contributions to the fermion self energy at O(CJ~)~~ 

cla(f) = z: s dDk ’ Lb- h> fl(kJ - kj2) 
I;’ - m2 + ic (p - k)2 - m2 + it 

x1*(f) = z: 
J 

dDk ’ 3-(/b- /wl(k2) 
I;2 - m2 + ie (p - k-2 - ,2 + it; 

c2u(P") = ' 
J 

dD k k2 _ ,1,2 + ic 
2( B- kd f2NP - kj2> 

(p _ k)2 _ m2 + ic 

C2b(p'l) = E 
J 

dDk ' u- /w f2(k2) 

k2 - m2 -/- ic (p - k)2 - m2 t ic 

P-6) 

where E is some constant. 
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C” and Cb correspond to insertions of X1~looP into the fermion and boson line 

respectively. 

Following Chapter 4 we substitute in the numerator of the y+ component 

-p pa k2 - m2 . 7 . -k-H- 
k+ - kY+m2 

+J -9 (p - k)2 - m2 . 7 . p- -k- H 
(P+ - k+> 

+ (PI - kd2 + m2 
(p+ -k+) * 

WI 

As we have shown there naive light-cone qua.ntization (NLCQ) simply neglects the 

first term thus omitting 

AC1” = -+,+ J 
dDk fl((p- k)“) fi (k2> - 
k+ (p - k)3 - mz 

= --$ 
s 

dDk k2 -m2 

AClb = 9 w? + 
- J 

d”k fl(k”) 
L p+ 7 1;2 - n22 

AC2” = -2 5 y+ 
PS s 

.fdk2) 
dDk k2 _ n22 

Ax2b = 2 ?- 
Pf 

One can easily verify 

Y+ J f2(k2) 
dDk j’$ _ m2 * 

that the AX terms arising from f2-insertions cancel whereas 

this does not happen for fl. Thus NLCQ falls short of the correct result by an 

amount 

dDk kzmrn2 
fdk2> f 0 . (D.9) 

In the beginning of this appendix we ra.ised the hope that SUSY theories are 

free of the zero mode problem. Unfortuna.tely this turned out to be false as Eq. 

(D.9) shows. This means that if one want to use SUSY theories as a regulator for 

other theories one still has to preregula,te them in such a way that there are no 



noncovariant terms or use some other technique (e.g. noncovariant counterterms) 

to compensate for AE. This might limit the practical use of SUSY regulators in 

light-cone quantization considerably. 
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FIGURE CAPTIONS 

1) Tree level matrix element for the decay CT t f7. The dashed line represents 

a heavy boson with mass X at rest: p+ = p-,pl = 0 .The sum runs over the 

fermion (mass m) spin labels sf, ST. 
- 

2) Fourth order contributions to CY --f f f. The Sm insertion represents the one 

loop mass counterterm. 

3) Typical contribution to the vertex correction of 0 -t fT. 

4) Instantaneous contributions to the external self-energy. 

5) Two loop rainbow self-energy contribution to CJ + ff. Sm, St2)rn denotes the 

one and two loop self-energy mass correction respectively. I corresponds to 

a counterterm which restores rotational invariance at the one loop level. 

6) Two loop la.dder vertex correction to 0 --+ ff. Six timeorderings add up to 

the covariant answer. 

7) Instantaneous self-energy correction in two loops. Momentum labels are 

assigned as indicated. 

8) n + 1 loop rainbow self-energy correction. 

9) Self-energy diagram in one loop. 

10) One loop mass correction to the self-energy. 
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TABLE CAPTIONS 

1: Self-energy contribution to ~7 + f7 in two loops. a:! describes the con- 

tribution from the instantaneous diagrams (Fig.7), which violate rotational 

invariance. al is the result of the numerical integration of the residual self- 

energy diagrams. 

2: Result of the numerical integration of the ladder vertex correction to 0 + f7 
(Fig.6). A rotational invariant answer is obtained for both sets 

3: Total one loop contribution to 0 --+ fr. 
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Set 01 a2 

(I) -1.38f 0.01 0.015 f0.004 

(II) -1.58f 0.01 -0.135 f0.002 

Table I 



Set 01 
, 

(I) -2.13f 0.01 

(II) -2.13f 0.01 

Table 2 
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Set 01 

(I) 0.04s* 0.2 * 1o-4 

(II) 0.285f 0.6 * lo-’ 

Table 3 
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