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In the weak coupling limit of QED, it is shown how to express the parton 
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tivistic wavefunctions. A sum rule is derived, relating the momentum carried by 
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1. INTRODUCTION 

In the near future, more precise data on the total momentum carried by quarks 

in nucleons and nuclei will become available’. Using momentum conservation, one 

will thus be able to extract the fraction of the hadron’s momentum which is carried 

by the QCO gauge field. Therefore, at least in principle, one can measure the 

change in the gluon momentum when nuclei are formed out of individual nucleons. 

Another type of experiment to extract information about gluon distributions 

in the nucleon is the inclusive photoproduction of charmed hadrons2, where the 

7g + CC subprocess is used as an indirect tool to obtain information on spin and 

momentum distribution of the gluons. 

On the theoretical side, very little is known about gluon distributions beyond 

perturbation theory. In particular, in the low XBj region, soft processes and/or 

interference effects might be very important for the dynamics of long wavelength 

gluons’. In this regime, hadronic size effects as well as nuclear binding (with pos- 

sible associated scale changes) could affect the gluon distributions4 . Because of 

the complexity of the problem of calculating such distributions in &CD, I will not 

directly attempt to make predictions about gluon distributions but rather focus 

on a similar but much simpler and, as we will see in the following sections, nev- 

ertheless quite interesting problem. To get intuition about what matters in such 

computations, we will study the photon distributions in weak coupling QED (dis- 

tributions in the sense of parton-distributions). In a first approximation QED for 

small coupling corresponds to solving the Schrodinger equation of the correspond- 

ing Coulomb problem. In this article, we will go one step further and allow for 

dynamical photons. This will be done in the context of the light-front form of 

dynamics for QED 7’6’578’g. By expanding the Fock space around the SchrGdinger 
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solution, information about the photon component of the wave function can be 

obtained (see also Ref.3 ). Since the internal motion in the rest frame of a weakly 

coupled bound state is essentially nonrelativistic, one can relate the photon dis- 

tributions to the corresponding nonrelativistic wave functions. The resulting dis- 

tributions are then subject of the rest of the article, where the main focus will 

be on developing an intuitive understanding for general properties of low x pho- 

tons. Naturally, in bound systems, this includes atomic and molecular size effects 

as well as atomic and molecular binding strengths. A key result of the light-cone 

momentum distributions of photons is a sum rule that relates atomic and molecu- 

lar binding energies to the momentum carried by the photon field. Another sum 

rule will be obtained, that relates the transverse size of positronium states to the 

x + 0 limit of the photon distributions. The photon distributions, as well as the 

sum rules will be illustrated in the quasi-classical limit, as well as by performing 

explicit computations in the positronium system. 

2. PHOTON DISTRIBUTIONS FOR WEAK COUPLING 

The technique to be used in this work to compute the photon distributions in 

QED-bound states is based on a Fock-space expansion at equal light-cone time 

r = t + x in the light-cone gauge A+ = A0 + A1 = 0 5’8. Th’ 1s approach allows 

to represent the parton distributions in a given state in terms of squares of Fock- 

space amplitudes3, i.e. in a form which should be familiar from nonrelativistic 

many-body theory. This very physical approach to a relativistic quantum theory 

is explained in more detail in Ref. 10 , where the relevant definitions can be 

found.#r 

#l There are numerous studies under way to investigate similar problems for general values 
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For small CY only two Fock-space amplitudes will be relevant: the valence 

configuration (no photons present) and the state with one additional photon #2 . 

Furthermore, consistent with the one-photon approximation, interactions arising 

from instantaneous photon exchange in the excited (e+e-7) Fock-component are 

dropped 5’8. Using these approximations, it has been shown in Ref.3 that one can 

express the photon distribution G(x, k,) entirely in terms of the valence ampli- 

tudes. For example, in the case of positronium one finds3 for the unpolarized 

photon distribution #3 (h ere and in the following, vector arrows on perpendicular 

momenta are omitted for notational convenience) 

2 

+ ITHY, ld12(y q2y2 + MY - x7 11 - h)12(, _ y,2[qz 

2 
(y _ z)12 

where 

B = M2 _ PI- u2 + f-r-L2 _ li + rn2 
B 

ki 
Y-X l-y 2’ (2) 

Here m and MB are the electron and bound state masses respectively. x and y 

of CY 7’6’5’s’g. Since we will work exclusively in the weak coupling it won’t be necessary to 
introduce the whole formalism here. For more details, as well as for a discussion of the 
problems associated with the light-cone formalism11 we refer to these works and references 
therein. 

#2 Since we will deal with charge neutral systems only there are no problems arising from 
infrared divergences that might spoil the perturbative arguments3. UV-divergences are 
taken care of by working with a fixed cutoff. 

#3 Hyperfine splitting effects and the associated polarization of the photon structure function 
are higher order in (Y effects and will not be considered here. 
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are the longitudinal momentum fractions carried by the photon and electron. The 

wavefunctions and distributions are normalized such that s&11 Jo* dylt,b(y, 11)12 = 

1. Then J d21cl Ji dxxG(x, Icl) is th e momentum fraction carried by the gluons. 

In the following we will work in leading order in CL Although this will lead to 

expressions which look familiar from nonrelativistic (NR) quantum mechanics or 

which involve the NR wavefunction in the rest frame of the positronium system, the 

entire calculation will nevertheless be fully relativistic and exact to leading order in 

#4 a. In this limit, the e+e--component of the positronium wavefunction $(y,Z,) 

is sharply peaked around y = i and one finds (for y = 3 + O(o), I: = S(m2cy2)) 

(here th e on 1 u ma momentum 1~ = 2m(y - a) has been expressed in terms of 1 g’t d’ 1 

the light-cone momentum fraction y). Thus for the ground state of positronium 
10 

(4) 

In the Appendix A such relations will be used to calculate the various parton 

distributions for the lowest lying positronium states. 

The photon distribution can be divided up into a piece associated with self- 

interactions, which contains I$(y, 11)j2 or j$(y - x, II - Ic1)12, and an interaction 

piece, containing the interference term $(y, Il)$*(y - z, II - Icl) + C.C. . Using 

#4 For most purposes the difference between NR and weak coupling approximation is irrele- 
vant. However, there is at least one important distinction that arises if one wants to use 
the wavefunctions thus obtained for the calculation of relativistic processes - in particular 
deep inelastic scattering in order to meaSure these parton distributions - which is, strictly 
speaking, no longer possible once one has performed the NR limit. 
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Mi = (2~7z)~+O(cr~) and y = $+O( cy one finds for the photon distribution arising ) 

from the emission and absorption of the photon from the same particle (x = O(o), 

sum of e+e--contribution) 

Gserf(x) z 
J 

d2kLB(A; - kl)Gse’f(x, kl) 

with 

xG.yx, kl) = 2cy k: T2 [ki + pmx)2]2 + s(a2L 

(5) 

(6) 

hence 

xGSe’f(x) = (7) 

where a transverse momentum cutoff Al has been introduced (implicitly the pho- 

ton distributions will thus be cutoff dependent). Hereafter all corrections of order 

O(k) will be dropped. Note that this result is independent of the bound state 

wavefunction and mass, i.e. it is equal to the photon distribution around a free 

1#5 electron and positron with momentum fraction y = 2. 

For the interaction term one finds (Fig. 1.) 

xGint(x, IQ) = -5 r, 3 , 5 ,,,2 / d2h / dy[~(Y,II)~*(Y-x,II-Icl)+c.c.l ,cI 

In the case of positronium #6 one can express this result in terms of an expression 

#5 Eq.(S)is correct only for t = U(o). However, the correct expression for larger values of 
z will also be independent of the bound state wavefunction and binding energies and thus 
drops out when different states with the same valence content are compared. 

#6 For systems with more than two valence particles this is no longer possible. 

6 



I : 

that looks like an elastic form factor F(z) using (3) 

J d31'[$,,(W+&$~ - ALA - h> +c.c.l =~F(~L$.L), 

(9) 

where we used /CL = 27-4~ - 3). Th e cancellation of the various IR-singularities 

can be seen most clearly by considering3 

One finds the compact expression for the photon distribution in the e+e-y com- 

ponent of positronium (Fig. 2.) 

3. 
Gtot”+, kl) = 2 

7r2 [“i + (;mx)2]2 

1 

dylll(y, L) - $J*(Y - x,11- h)12. 

(11) 

This result for positronium exhibits most of the general features of photon dis- 

tributions in electromagnetically bound systems. For example, it turns out that 

xGtol(x) is finite for x + O3 

= F (In [(Fe+ - ?e-)fAi]). 

(12) 

Notice that the divergent UV-behaviour of this expression implies a logarithmic 

dependence on the cutoff. Suppose one uses an invariant mass cutoff, like 8(A2-D), 

instead. In the small x-region the argument of the e-function can be effectively 
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replaced by zA2 - Ic:, which has the same effect as the cutoff used in (12) but with 

A”I = xA2. Thus a In k divergence would then also appear in in IS. (12). In the 

following the simpler Icl-cutoff (5) will be used throughout. 

The generalization of this formalism to general atomic systems with more than 

two charged particles and unequal masses is straightforward, yielding 

xGse’f(x, kl) = (13) 

x@‘(x, kl) =z ki 
T2 [k; + (J,fx)2]2 d21L J J dy 
Ceiej~(Yi,Yj,IiI,Ijl)~*(Yi-X,Yj + x,lil- kI,IjL + Icl-), 
ifi 

(14) 

where 

M=):77Xi 

i 

(15) 

is the total mass of the system (at leading order in cx one can neglect binding for 

the total #7 mass). The summation runs over particles and e; are the charges in 

units of the electron charge. 

For neutral systems, Ci e; = 0, hence Cifj eiej = - Ci ef, the sum of Gse’f 

#7 One might be surprised to find M (15), the total invariant mass of the system, in an 
expression for the photon distribution arising from self-energy graphs, which (to leading 
order in a) should not be affected by binding effects. The reason is purely kinematic. For 
an electron with momentum fraction 1, only its own mass would appear in the denominator 
of the expression for the photon distribution, but, sine all constituents have about the same 
average velocity, they carry a mean momentum fraction of yi = 2, which explains the 
appearance of M in (13). 
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and Gtola’ can be rewritten in the form 

xG~otal(x, kL) = -2 ” 79 [“i + (M2)212 d21L J J dy 

Ceiej [+(Yi,Yj,Iil, ljl)- $(Yi - X,Yj +x7 lil - kL,ljl + k1)]2 * 
i<j 

(16) 

For convenience, only those momentum variables (here: labeled i and j), which 

actually change during the photon exchange process, have been displayed. 

The generalization of Eq.(12) t o more than two particles reads 

lim xGtota'(~) = -$ C e;ej (In [(< - ?"):A:] ) . 
2+0 

w 
(17) 

As was already mentioned above, these formulae are correct (to order a) only 

for x = O(F) and Icl = O(om). However, large kl photons are important only 

for the self-energy (extrinsic) cloud of the charged particles since large momentum 

transfers in the interaction term are suppressed by wavefunction effects. Since the 

self-energy cloud of the constituents is (for small CY) not affected by binding, the 

error at large x = O(1) cancels out if one compares similar atomic or molecular 

systems A and B, and the resulting AG(x) = GA(X) - GB(x) is correct, even for 

large x. 
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3. THE PHOTON MOMENTUM SUM RULE 

In the following we will evaluate the total momentum fraction of atoms carried 

by the photons. As a typical example we will consider a hydrogen-like system, i.e. 

the two body problem with opposite charges and - to keep the discussion general 

- unequal masses. In order to discuss some interesting phenomena which appear 

#8 in confining theories as well we will work in Dl transverse dimensions. One can 

also use this device as a regulator, but this is not the purpose here. For Dl + 2 

we will use the Icl cutoff. Using (8), one finds for the photon momentum arising 

from the interactions in state A 

(x,)2t = j ~XX J dDl k&(x, kl) 
0 

1 

= -20 JJ dx dDLkl kl 1 

JJ dD’ II 

0 
[kn + (xM12] 2 z dy ,DI kh zd+?dY - X, b. - h) 

(18) 
(in Dl dimensions, we choose o = --&). If the atom A is an I= 0 state, the form 

factor on the r.h.s. of (18), 

is immediately rotational invariant, i.e. 

FA(x, kl) = F/j ((Xhf)2 + k;) . (20) 

In the general case (with 1 # 0) one first sums over polarization states in (18) 

#8 Note that the QED interactions confine charged particles for Dl _< 1. 
#9 Note that the integration bounds in (19) h ave not been specified, but we will assume 

integration from --oo to 00 and $(y, 11) is assumed to vanish for y outside [0, 11. Actually, 
for weak coupling such distinctions are irrelevant, since $J is extremely localized (3). 
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and then applies the argument of rotational invariance as well. The virtue of a 

rotational invariant form factor (19) is that this allows to replace 

(21) 

in the numerator of Eq. (IS), yielding 

1 
DI 

(‘,,y” = -20D1 + 1 o JJ dx 
dDlkl ’ JJ dY 

dDLll 
6: + (d4)2 --g+A(!h h)+fi(Y-s, kkl). 

2 
(22) 

A comparison of Eq. (22) with the expectation value of the light-cone potential 

energy due to photon exchange lo for weak coupling, 

1 

( > 
VLC hat = -2M2a dx JJ dDL kl ’ 

A k; + (xM)~ JJ dY 
dDLll 
a,,tiA(& bb&b--2, b-h), 

0 2 

shows a remarkable similarity which leads to a number of results. Consistent 

with the weak coupling approximation, one can express (VLc) in terms of the 

expectation value of the NR Coulomb interaction. If MA is the invariant mass of 

the bound state one can write 

M; = (TLC)A + (VLc)A, (24) 

where (TLC), = M2 + 0,(a2) is th e expectation value of the light-cone kinetic 

energy, but also 

(25) 

where TNR and VNR are the NR kinetic and potential energy respectively. Com- 
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paring (24) and (25) yields, up to order 0(02), 

(TLC) = M2 t 2M (TNR) 

and 

(VLC)=2M(VNR), 

which implies 
#lO#ll 

201 lVNR), 
tx,):” = DI+ 1 M - 

(26) 

(27) 

(28) 

Obviously, (x,)2” is always negative, as is (V~~)f4n~ (if we restrict ourselves to 

electromagnetically bound states). But this should not come as a surprise, since 

we have omitted the photons arising from self energy processes so far. Including 

those effects, one obtains of course (x,)fqOta’ = (x,)2’ + (x,)ylf > 0. Notice that 

the self energy pieces will cancel when one compares states with the same valence 

content (like two H-atoms versus one H2 molecule). In the next section this point 

will be discussed in a little more detail from a semi-classical point of view. 

We will now turn our attention to discussing the impact of the sum rule (28) on 

molecular structure functions. The idea will be to compare (x7) in molecules with 

(x-,) in atoms and to investigate the role of molecular binding in this context. In 

order to keep the discussion as general as possible we introduce the NR Coulomb 

#10 For more complicated systems, i.e. more than two valence particles, the same relation holds 
where A4 is then the sum of all constituent masses. 

#ll The same factor $ which one obtains for LIl = 2, appears in the relation between energy and 
momentum if one tries to give mass and momentum of an electron a purely electromagnetic 

15 origin. See also section 4. 
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interaction for arbitrary Dl which gives rise to a power law potential of the form 

VNR o< C e;ejlF’i - FjllsDA. 
i<j 

The nonrelativistic virial theorem 

2(,NR)=c(Fi*aiV> 
i 

thus implies (using TNR + VNR = ENR) 

ENR 3-D-L = 
2 

(29) 

(30) 

(31) 

For Dl < 3 (the physically interesting cases) ENR and (VNR) always have the 

same sign - whether or not one has confinement (01 $ 1). Thus, on a qualitative 

level, one does not have to differentiate between these two cases in the following 

discussion.#‘2 

Inserting (31) into (28) and comparing two states A and B with the same 

valence particle content one finds #I3 

lxCr)A - tx7>B = (ilD;l) (3 ‘D*) E,NRn/lEBNR (32) 

(the self-energy photons cancel in Eq.(32) ). Note also that the mass M is the 

same for A and B to leading order in o. Eq.(32) h as important consequences if we 

#12 For the fermion kinetic energy one would have to, since there is a sign change in the analog 
to (31). 

#13 Although this should be clear from the derivation of (28), it should be emphasized that 
taking average over polarization states is always implied. In fact, in the Appendix A it will 
be shown that this is indeed necessary for the n = 2, I = 1 states of positronium. 
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compare two atoms (or small molecules) with a bound state of these fragments. As- 

suming that the fragments do actually bind, which implies Etttatoms > Ef$eecule, 

one will always find 

(33) 

or, if A* is an excited state of A (i.e. 0 > EA. > EA) 

(“7)A < (“7)A’ * (34) 

It is instructive to point out an important difference between QED and a Yukawa 

theory with massless (abelian) bosons. For the momentum sum rule (28) the crucial 

difference arises from the fact that like charges repel each other in QED whereas, if 

two fermions couple with the same sign to the scalar boson, they will attract each 

other. Essentially this means that there is destructive interference between self- 

energy and exchange bosons in a QED-bound state whereas there is constructive 

interference in the scalar Yukawa theory. Thus, while stronger binding implies less 

momentum carried by the bosons in QED, the opposite is true for scalar Yukawa. 

A derivation, similar to the one performed above, yields for the momentum fraction 

carried by massless scalar bosons (in states bound by the exchange of these scalar 

bosons) for weak coupling 

(2 scahr)A - (x~cah B - ) --(DI:l) (3-2DL) EaNR;EB”R, (35) 

where the nonrelativistic virial theorem (30) has again been applied. 
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4. CLASSICAL INTERPRETATION 

The main focus of this section will be on a semi-classical interpretation of 

several aspects and results in this work. Being the most important result, the 

momentum sum rule (28) will be discussed first but later we will proceed to a 

discussion of the interpretation of self-energies. 

Let us consider a classical charge distribution with associated electric field 

f((r’,i). Consistent with our weak coupling expansion, the internal motion of the 

charges can be assumed to be nonrelativistic, which implies Z? x 0 in the rest frame 

of the system and the total electromagnetic energy (including self-energies) reads 

EEM rest frame = ;Jd3i(t(iq2)t, (36) 

where Ot means: taking time average. If the system is boosted to ultra-relativistic 

velocity v’ one finds (I and 11 1 a wa y s refer to the direction of G) 

21 = y [& •t (?7 x z?jl] = $1 (37) 

El = 111 << /q (38) 

&=y o;-(?Txa’,~ [ 1 =-(v’xzq~ (39) 
z?;, = q = 0, (40) 

with y2 = 1 - G2, i.e. an observer at rest finds for the Poynting momentum 14 

4, = y2 J ( d3r’ & x (C x & >, =y2+3i(E:)t. (41) 

Taking the Lorentz contraction in the integration measure into account, and using 

rotational symmetry for expectation values in the rest frame, for example (E,?) = 
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4 Ez , on 
( > 

e concludes that the fraction 

( 
5-i M =i M =? M 

of the total momentum is carried by the electromagnetic field - which is nothing 

but the classical analog to (28). 

From the classical point of view it is quite easy to understand how binding 

can decrease the momentum carried by effective photons (which is the classical 

analog to virtual photons). For example if one compares various positronium states: 

stronger binding implies smaller size and, because of screening, less space is filled 

with electric field. In particular, if one would give the electron a finite extension 

(which we do after all if we introduce a cutoff), there is no electric field left over 

when the electron and the positron sit on top of each other, hence no effective 

#14 photons. 

The self-energy component of the photon distribution plays a role similar to the 

mass renormalization, in the sense that it separates from the bound state dynamics. 

But it should nevertheless be included into the computation of photon distributions 

(at least the finite, x-dependent part) since it changes the IR-behaviour of the 

distributions and thus reflects the screening of the long range tail of the electric 

field in a bound state. The renormalization aspect is reflected in the sign of the 

“intrinsic” component of the momentum fraction carried by the photons. For this 

purpose one recalls how a positive field energy density, like (36), can give rise to the 

negative potential energy in hydrogen. Of course the total electric field energies of 

#14 Notice the difference to the Yukawa theory with scalar bosons. Since attraction occurs 
between particles that have the same sign in the coupling constant, there won’t be screening 
in the corresponding hydrogen atom. 
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a proton, an electron as well as the composite object - the hydrogen atom - are 

positive. One obtains the negative potential energy by subtracting the self energies 

of electron and positron from the (positive) field energy of the hydrogen system and 

obtains a negative energy. Similarly, if one renormalizes the photon distribution of 

positronium, by subtracting the photon distribution of its constituents one obtains 

negative distributions and “negative momentum fractions”. 

This subject brings us close to our next subject, namely whether or not to 

include the self-energy photons into the virtual photon distribution of positron- 

ium, i.e. whether one should separate extrinsic (self-energy) and intrinsic (photon 

exchange) photons 3. The point is that it is in a sense not entirely consistent to 

take the self-energy (extrinsic3) photons into account in the weak coupling limit, 

since the weak coupling equation of motion consists of the Schrodinger equation 

where all self-energy interactions are absorbed into a redefinition of masses and 

coupling constants. However, the photon distribution around an electron - which 

in light-cone quantization arises from self-energy graphs - is a little different. 

First of all it is measurable (e.g. when a charged particle traverses matter and 

looses energy 12’13). It also h as a classical interpretation in terms of the electric 

field of the fast moving electron, which almost looks like the electro-magnetic field 

of photons. Furthermore it is a function (albeit cutoff dependent, or - in the 

classical picture - dependent on the e--radius). Fortunately, this function does 

not (to leading order o) depend on the electron energy or momentum - except 

via trivial kinematical factors. 

We will now address the aspect of rotational invariance of the photon distri- 

bution in positronium. The photon distributions are IR-divergent for small x only 

( GpjfiZed Z* i), whereas there is no such effect for small kl, i.e. in the trans- 
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verse direction. The mere fact, that G(x, k 1 is IR-divergent should not come as ) 

a surprise, since the photon is massless and one expects that each electron is sur- 

rounded by an infinite number of soft #15 photons. What might be surprising is 

the rotational asymmetry of the IR behaviour. In the following this effect will be 

investigated in some detail for a single electron, where one finds 

2 xkldx dkl 

[k; + (2~-rzx)~] 2 * 
(43) 

This should be compared with the soft component of the distribution function of 

a massless scalar boson around a fermion in a Yukawa theory 

x kldx dkl 
G&(x, Wxd2h ix [kf + (2mx)212 7 (44) 

where the IR-divergence in the x and the kl directions are the same. In order to 

investigate the difference between photons and massless scalars in more detail, one 

can approximate the electromagnetic current 3 ‘P, for small momentum transfers, 

bY 

(45) 

where p” is the four momentum of the charged particle. Furthermore, in light-cone 

gauge, E+ = 0, E* = 1, E- = 8, i.e. the matrix element for the emission of a soft 

photon 

IMI oc lj,,~“I 0: lpsl = 8 (46) 

depends on the direction of the emitted photon. Actually, Eq.(46) is nothing but 

the familiar dipole formula and reflects that dipoles do not radiate along the dipole 

#15 However, for fixed UV-cutoff, they carry only a finite momentum (zG’“‘(z) is still inte- 
grable). Thus the expansion in powers of cr still makes sense. 
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axis. Applied to the field of a moving charge this implies that there should be a 

suppression for soft photons in the forward direction (or equivalently: photons with 

+ +O). 
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5. CONNECTION TO QED EVOLUTION 

In atomic and molecular systems, interaction (intrinsic) photons (8) are im- 

portant only for values of 2 N O(o). Outside this soft regime they can in general 

be neglected compared to the self-energy (extrinsic) piece (7) (see also Fig. 2.) 

and it becomes a very good approximation to keep only the extrinsic component 

of the photon distributions. To leading order in (Y this is equivalent to perform- 

ing 1” order QED evolution similar to the well known QCD evolution l6 . From 

the point of view of the evolution equations, the interaction photons correspond 

to recombination processes (as discussed in Ref. 4 in the context of QCD) and 

can, for fixed values of x, be neglected in the limit Al + 00. However, since we 

are working at finite (though large) Al, there will always be a range of values of 

#Is x where these recombination processes become important. A rough estimate, 

where interaction photons become necessary, can be obtained as follows: for z + 0, 

the total (extrinsic $ intrinsic) momentum density of photons approaches its finite 

(for fixed cutoff) maximum value (12) xGtota~(x)~Z~O = ?$ log (Alr~)~ . For those 

values of x, where xGse’f alone exceeds this value, namely for 

1 
x < xBohr % - (47) 

the interaction photons start to become relevant and emerge from the “noise”. 

However, it is not until 

1 
x -c Xsoft = 2mAlrt (48) 

the xGse’f (x) exceeds 2xGtota’ (x) lzzo and interaction photons become essential 

#16 In fact, in positronium, screening or recombination processes modify the leading behaviour 
for z-0. 
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to prevent xG(x) from blowing up. For positronium with rl x ma one finds 

X&&r X o and, with a typical cutoff of Al = m, x,,ft M a2. 

In QCD similar processes are expected to screen the perturbative component 

of the gluon distribution at small x. However, there the non-abelian gluon-gluon 

interaction has to be taken into account which leads to different estimates of the soft 

gauge-field distributionsP Nevertheless, it is interesting to insert typical “hadronic” 

values (m = QGeV, A1 = 2GeV, ~1 = .5fm) for the parameters in Eqs.(47) and 

(48), yielding Xgohr e 0.6 and x,,ft x 0.15 respectively. 

6. SUMMARY AND CONCLUSIONS 

We have studied the parton distributions in the weak coupling limit of QED. 

There is scaling as a function of the coupling in the sense that the fermion and 

boson distributions depend on Bjorken-x and the QED coupling Q only through 

the ratio E. Although they are the leading order in Q solutions to a relativistic 

quantum field theory one can express these distributions in terms of the nonrel- 

ativistic Schrodinger wave functions. This is possible because, for small o, the 

motion of the charges in the rest frame becomes nonrelativistic. 

We have derived general formulae to evaluate the leading order Q photon distri- 

butions from the Schrodinger wave functions. In addition, in the Appendix A, we 

computed explicitly the photon distributions for the n = 1, 1 = 0 and n = 2,1= 0,l 

positronium states analytically. On the one hand, this is very helpful in generating 

an intuitive understanding about various relations between different effects. For 

example, it is possible to relate the transverse size of the positronium states and 

the soft component of the photon distribution (see Eq.(12)). Furthermore, there 

emerges an interesting connection between the longitudinal size of the 1 = 1, 1, = 0 
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state and an enhancement of the photon distribution for the wavelength which 

matches this size. These explicit positronium results can serve as a benchmark to 

test the accuracy of numerical calculations 7’5’8 for positronium by allowing Q to 

become small. 

For small CY the momentum carried by the photons is proportional to the energy 

stored in the electric field. This has important consequences when two atoms (or 

two small molecules) bind together. The binding implies a decrease in the electric 

field energy, i.e. in molecules the virtual photons will always carry a smaller fraction 

of the total momentum than in the fragments. This result holds independent of 

the number of transverse dimensions (as long as Dl < 3), i.e. even in a regime 

(01 _< 1) where the QED interactions confine charged particles. 

It would be interesting to investigate whether the relation between energy 

stored in the gauge field and the momentum carried by the gauge bosons can be 

generalized to non-abelian &CD. For weakly coupled T systems the weak coupling 

QED results immediately carry over to QCD but this should be considered as al- 

most trivial, since the equations for weakly coupled bb are formally similar to the 

corresponding positronium equations. For the more interesting case - strongly 

coupled light quarks - the situation is less clear. But let us speculate for the mo- 

ment what would happen if the momentum sum rule would carry over. Essentially 

this would mean that gluons would carry less of the momentum of a nucleus than 

of a nucleon. Detecting such an effect would be quite challenging because the size 

of the expected effect (typically the ratio between nuclear binding energies and 

nucleon masses or the QCD scale) would range at the few per cent level. It is not 

clear whether the shadowing observed in the data is related to these phenomena. 

Supposedly, there will be a difficulty in disentangling the two phenomena for the 

22 



I : 

.- 

following reason: the usual methods to extract the momentum of the gluons - 

measuring the momentum of the quarks and subtracting the result from one - 

introduce a systematic error from shadowing into the problem. Typically, one un- 

dercounts the momentum of the quarks in a nucleus because of this effect, i.e. one 

tends to associate more momentum to the gluons in a nucleus than they actually 

carry. 

In addition to the decrease of the total gluon momentum other nuclear effects 

are conceivable. For example, the overlap of two nucleons would allow hidden 

color states and new gluon modes, with a wavelength that matches the separation 

of the di-nucleon, thus giving rise to a hump at small x in the ratio of nucleus 

versus nucleon gluon distribution. It would be interesting to compute the photon 

distribution in a hydrogen or positronium17 molecule in order to see whether such 

an effect does occur in QED and if it does to see whether it is at all of practically 

observable size. 

Furthermore, there should be the familiar Fermi motion effect for x t 1. Oth- 

erwise the field energy effect would suggest a general decrease of the gluon structure 

function in the nucleus. 
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APPENDIX A 

PARTON DISTRIBUTIONS FOR THE ENERGETICALLY LOWEST 

POSITRONIUM STATES 

In the following, the main techniques developed in this article will be applied 

to specific positronium states. This will perhaps help to illustrate the physical 

meaning of the various relations and sum rules which were derived in the main 

text. Furthermore, and this will be of particular importance for gaining an intu- 

itive understanding, special emphasis will be put on the connections between the 

shape of the photon distribution function and the corresponding electron-positron 

wavefunctions and distribution functions. 

The starting point is the coordinate space wavefunctions for positronium, which 

can be found in most textbooks on elementary quantum mechanics: 
18 

(A4 

mar 
$24r3 0: (a: f iy)exp(-- 

4 ) (A.3) 

mar 
+2pom 0; 2 =P(-q) (A4 

(up to a normalization constant). Upon taking the Fourier transform of the den- 

sities )t,b(rJ12 one arrives at the form factors 

(A-5) 
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which are necessary for the computation of the photon distributions. One finds 

f’ls(q3 = (om>4 
I? + (cd212 

F2&3 = b-42)4 
I? t (am/2)2]2 ’ 

7( am/2)2 6(cym/2)4 
2 - ? + b-GV2 + [p + (am/2)2]2 

F2pd43 = b-d6 
[P t (am/2)2]3 ' 

%I? 
' - ? t (crm/2)2 

fiPO(43 = k4v 

[P t (am/2)2]3 ’ { 
69: 

’ - p t (am/2)2 I . 

Upon insertion of these form factors into Eqs. (8),(9),one obtains 

n(+)-2} 

x(?$*~(x) = -2 (1 -/- 9z2 + 12zz)ln - 1222 - 3 - 2 1 

n- 1 i-22 

(A.6) 

(A-7) 

(A-8) 

(A.9) 

(A.lO) 

(A.ll) 

(A.12) 

xG~,(x) = -2cu --{(lt3z?)ln(~)-3+& 

-6++41z)ln(+) -4-t&+ Lljz212]}, 

(A.13) 

where z1 = (%)” and z2 = (e)“. Th e resulting intrinsic photon distributions are 

displayed in Fig.1. 
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As one might have expected, zGint(z) is mostly negative.#17 This reflects the 

screening of part of the electric field in the bound state. Also, from the momentum 

sum rule (28), one knows that s dx xGin’(x) < 0. Among the examples in Fig.1 

one has even xGin’(x) < 0 with the exception of the 2pO (n = 2,1= 1, I, = 0) state, 

which has a peak around 2 = e x 0.3 (Fig. lb). The physical origin of this peak 

becomes clear if one looks at the electron distributions in the various states. With 

(3) 

f(x) = 2m J d2h IThvt(kL, h> I2 (A.14) 

where 

kL=2m x-i 
( > 

one finds 

f1&)=$-& 1 1 1 
-3 i2 + - 

(A.15) 

(A.16) 

f2&) = &{;[i2+&]-3-&[i2+;]-4+&[;pi&]-5} (A.17) 

1 1 [ 1 
-4 

f2pfl(X> = 2560no s2+ 16 

i-2 1 1 1 
-5 

f2po(x) = - 320~~~ i2 + 16 

(AM) 

(A.19) 

with 2 = ; (x - ;>. These electron (or positron) distributions are depicted in Fig. 

3. Note that only the 2p, I, = 0 state has a node in the electron distribution. 

#17 Of course, if one includes the extrinsic or self-energy 
(10) the result is always positive (Fig.2). 

component of the virtual photon cloud 
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In this state one will find the electron most of the time with momentum fraction 

&- x *y (and the positron at ?,t M ry) where A? x 0.25 is the separation 

between the two humps in jiPo (Fig. 3). When e- and e+ trade positions they 

have to exchange a virtual photon carrying the momentum difference; i.e. gr = 

A; x 0.25 and one expects to find photons with this momentum strongly enhanced 

- in agreement with Fig. 1. 

Our next point is the verification of the momentum sum rule (28). Integrating 

Eqs. (A.lO)-(A.13)one finds 

ccl 
J 

a2 4vr 
dxxGi;,2(x) = -3 = ?- 

0 

00 
J 

a2 4& 
dxxGff(x) = -12 = 32m 

0 

03 J dxxG&(x) = -g 2 = - 10 9 -- 4 32m v2 

0 

Co 
J 

cY2 dx~G~~(x) = -E = ; $2, 
0 

(A.20) 

(A.21) 

(A.22) 

where V, = 2E, = - 9 has been used. For the (rotational invariant) s-states 

Eqs.(A.20) and (A.21) d irectly agree with the sum rule (28). Though the p states 

do not satisfy the momentum sum rule (28) individually (A.22) ,(A.23) the average 

over polarization states does, as can be verified upon using & + $ + & = 3. This 

should not come as a surprise, since we had to assume rotational invariance in the 

derivation of Eq. (28)) which is in general guaranteed only after averaging over all 
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I, components. Physically the deviation between Eqs.(A.22) and (A.23) implies 

that photons carry more momentum in 2p f 1 positronium than they do in 2pO 

positronium, although the potential energy is the same for these states. This result 

has a nice quasi-classical interpretation: consider a positronium state moving fast 

along the z-direction. As indicated in Fig.4 the 1, = 0 state is mostly aligned 

parallel to the z-axis whereas the I, = *l-states extended more in the xy-plane. 

Thus, for the I, = &l-states, an observer at rest will measure an electromagnetic 

field which is reminiscent of an electromagnetic wave whereas the 1, = 0 state 

gives only rise to a longitudinal field, which is furthermore suppressed compared 

to the transverse field because of the different Lorentz transformation properties 

(37)-(40). Th us one expects more photons (in the sense of equivalent quanta 
12,13 

) 

to be present in the case of the 1, = Al-states - which is consistent with Eqs. 

(A.3) (A.4)? 

In the rest of the appendix the focus will be more on the small x region of 

the photon distributions. It can be easily read off from Eqs.(A.lO)-(A.13), that 

intrinsic photon distributions scale like 

(A.24) 

A comparison with Eq.( 7) h s ows that this scaling behaviour is - up to a sign - 

the same for an unbound e+e--pair. Hence the soft component of the total photon 

distribution is screened in a bound, neutral system - which is exactly what one 

would expect classically. As has been shown in section 2, the limit (12) 

lili x [G?t(x) - G%“(x)] = $ [(ln ri)A - (In rT)B] (A.25) 

#18 Please notice that (zq’) < 0, i.e. “more photons”, which means ~~~~~~~~~~ > (z~*‘)~~~~, 

implies I (+‘),,,, I < I (~~‘>,,,, I. 
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(where A and B are arbitrary positronium states) has a simple physical meaning: 

increasing the transverse extension of a state, the transverse electric field in the 

rest frame will extend over a larger volume, hence more soft photons will be present 

in the infinite momentum frame. A first estimate about the r.h.s. of Eq.(A.25) can 

be obtained by approximating 

(A.26) 

The transverse radii can be easily extracted from the form factors (A.6)-(A.9), 

using 

( > r; A= 
d 

-4 -FA(& 
d9i 

which yields 

2 ( > rl 1s = & 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

Using Eq. (A.26) and inserting these transverse radii into Eq. (A.25) one can 

#19 easily verify the pattern obtained in Fig.4 for x + 0. Again one observes a 

significant difference for the various pstates caused by their different orientation. 

#19 Of course one can also use the exact results for (lnr:), which are (up to an overall additive 
constant) respectively 2, f + In 4, 4 + In 4, 4 + In 4 , to verify the x + 0 sum rule (A.25). 
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APPENDIX B 

COMPARISON WITH RESULTS FROM MATRIX DIAGONALIZATION 

In this Appendix the results from section 2 will be extended to rather small 

values of the transverse cutoff (Al = O(Mo)). I n p rinciple this will allow a com- 

parison with numerical work on the positronium system8. However, in practice, 

this is not completely straightforward since these works are usually performed for 

rather large values of the coupling constant (cy x 0.3). First of all this means that 

our results have to be extended into a regime, where the approximations used (e.g. 

one-photon approximations, neglecting the binding in the energy denominator) 

become questionable. Secondly, it will be difficult to match the different cutoff 

procedures. 

Fortunately, as far as the approximations are concerned, the simplifications 

used in Ref. 8 are rather similar to the ones applied here. Thus, even if the 

approximations are too crude for such large couplings, this will not disturb a direct 

comparison between this work and Ref. 8 . The second objection - the difficulties 

in matching cutoffs - will be more problematic. 

We will now turn our attention to the computation of the photon distribu- 

tions where relations similar to the ones used in section 2 and the Appendix A 

will be used. However, the cutoff Al will be kept finite throughout and terms of 

o((ff)2) or w(e)“,7 which arise from the integrals, will no longer be dis- 

.interactions(7), where carded. Finite cutoff effects are most important in the self- 

one finds 
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A: 
2a 

xG~;~(x) = Ir 
J 

dki ki 

0 [ki + (2mx)212 ’ 0(a2) 
7 (W 

z[log(+) -&] 
where X = (&)” and z = (g)“. Alth ough a cutoff in the interaction piece is of 

minor importance (as long as Al > ma) the impact of Al < 00 in Gint on the 1s 

photon distribution will be demonstrated here 

Before one can compare these analytic results for finite 111 with the results 

from matrix diagonalization the cutoff conditions have to be matched. Here, a 

sharp cutoff on kiy is imposed whereas Ref.8 uses the regularizing conditions 

m2 + kie- 
<4m2+A2 

xe-(l - xe-) - 

and 

m2 + J&t 
x,+ (1 - x,t ) 

5 4m2 + A2. 

P.3) 

(B-4) 

For weak coupling, where x,- x x,t x 3, these conditions correspond to #20 

(B-5) 

Following Ref.8 we use A2 = m2, hence At = $ (Fig.5). A comparison with 

#20 At least if one neglects klef before the emission of the photon (see below) - which is 
justified, provided A > Ma. 
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Ref.8 shows that Eq.(B.5) y’ Id t re s oo many photons and also a steeper slope (Fig. 

5). This arises from the difference in the cutoff conditions for finite o and can be 

understood as follows. First of all, after emitting a photon of typically x = 0.1 

to 0.2 an electron that had initially x,- = 0.5 will now carry only x,- = 0.3 to 

0.4. Hence Eqs.(B.3),(B.4) no longer corresponds to Eq.(B.5) but rather k: 5 

(1 - (2~~)~) (m2 + $) - m2T2’ 

Secondly, for finite cy, the initial e* (before emitting the photon) has in general 

already a nonzero value of kl (( ki) = q). Ref.8 has a cutoff condition on X71,+ 

whereas the cutoff condition in this work is applied on klr. The difference between 

these two conditions can be estimated using 

(kL*)ete-r = (ki7)ete-7 + (“L*>e+e- ’ 

where the momenta of the initial electron and the photon were assumed to be 

uncorelated and the nonrelativistic virial theorem (30) has been applied. Hence 

one should use Ai7 z Ate* - $$. This effect results in a general suppression 

of photons for all x. Combining both effects one obtains the improved relation to 

transform the cutoff in Ref.8 into a transverse photon momentum cutoff 

At7 = (1 - (2~4~) (m2+s)-m2(l+g). P-7) 

When inserted into Eqs.(B.l) and (B.2) the agreement with the matrix diagonal- 

ization result improves considerably (Fig.5). 

#21 This explains in particular the difference of the slopes in Fig.5. 
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Figure Caption 

Fig.1 a.) Intrinsic photon distribution for the Is, 2s and the 2p states (A.lO)- 

(A.13). The logarith mic growth for x + 0 is cancelled by the extrinsic con- 

tribution. 

b.) same as a.) but using a different scale on the ordinate. 

Fig.2 Total photon distribution (10) for the four lightest positronium states (cy = 

&, Al = m). Th e result is compared to the extrinsic distribution (7) for 

the same parameters. 

Fig.3 Electron distribution functions, Eqs.(A.lG)- (A.19), for the n = 1,2 positro- 

nium states (only valence component). 

Fig.4 Schematic representation of the spatial orientation of the I, = fl and I, = 0 

states and the resulting electric field. The extensions of the orbitals reflect 

actual longitudinal and transverse proportions (A.30),(A.31). 

Fig.5 Finite cutoff results for the (total) photon distribution in the ground state of 

positronium, using o = 0.3. Compared are (i) the calculations with Ai = $ 

(B.5) with (ii) th e improved cutoff Eq.(B.7) . The squares are numerical 

results from Ref.8 . 
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