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ABSTRACT 

We compute coupling constants for the emission of untwisted states within the 

class of even dimensional, bosonic orbifolds. In order to apply the operator formal- 

ism we first have to construct the untwisted and twisted sector cocycle operators 

which complete the zero mode part of vertex operators. Their existence is guaran- 

teed by a consistency condition on the axionic background whose general solution 

will be determined. These results enable us to study various discrete background 

symmetries (duality, shifts of axionic components) which reshuffle the vertices. We 

then recognize that the process of the emission of strings from whichever twisted 

sector provides a modular invariant. 

2 



1 Introduction 

String theories are up to now the best candidates of a unified fundamental 
theory of all matter fields and all interactions including gravity. Among them 
the phenomenologically most appealing one is the heterotic string [l]. The 
main obstacle for predicting low energy physics from this ten-dimensional 
string model is the huge number of possible four-dimensional vacua. We 
mention the well known examples of non-linear sigma models on Calabi-Yau 
manifolds [a], covariant lattice models [3]-[5], vacua obtained by the fermionic 
construction [6, 71, and orbifold models [8]-[12]. Each of these string vacua 
corresponds to an internal two-dimensional conformal field theory (2D CFT) 
[13, 141 with p ar t icular values of the holomorphic and antiholomorphic con- 
formal anomaly and some additional properties like e.g. modular invariance. 

In this paper we will concentrate on the quite promising class of symmetric 
2~ orbifolds which have a clear geometrical interpretation. Moreover, since 
the underlying CFTs mainly consist of free fields, their analytical treatment 
is considerably simplified. These 2D CFTs happen to be exactly solvable, 
even if they are,irrational, that is to say, if they possess an infinite number 
of primary fields w.r.t. the (anti-) chiral algebra of the theory. 

Although quite a lot is known about the spectrum of orbifoldized heterotic 
models, the calculation of orbifold correlation functions [15]-[18] is somewhat 
involved and not yet understood, if the most general background consisting 
of an axionic coupling and Wilson lines embedded into the gauge degrees of 
freedom is admitted. Such M-point functions are required for any thorough 
investigation of the phenomenological implications of this class of models. 
Also a complete discussion of discrete symmetries in the moduli background 
space hinges on a detailed knowledge of the basic three-point interactions 
[19, 201. 

To contribute to a full understanding of these correlation functions we 
will treat in this paper the simpler case of bosonic strings compactified on a 
symmetric 2~ orbifold whose target space is d-dimensional (d even). It is 
remarkable that the axionic background B need not commute with the twist 
action 0. However, as has already been stated in [12], the commutator must 
take a particular form which is dictated by the automorphic action of the 
twist 0 on the Narain momentum lattice (see [21]). 

Explicit calculations of orbifold correlation functions were first carried out 
in [15, 171 for d 5 2; h owever only metrical moduli were taken into account. 
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As regards pure twist field correlations, their classical part is provided by 
instanton configurations, whereas their quantum part is obtained via the 
stress-energy tensor method. The case of non-vanishing axionic coupling B 
was subsequently solved in [22] for d = 2. 

Now one observes that for a consistent action description, which is oblig- 
atory for a path integral treatment of orbifold correlations, B even has to 
commute with the twist 0. This condition is trivially satisfied when d = 2 
but it imposes too severe a restriction for d > 2. What comes to our res- 
cue is the operator formalism, which allows us to establish these correlation 
functions even if [B, O] # 0. Apart from a short comment in appendix A we 
will however not bother about those twists which possess fixed directions. 

On-shell scattering amplitudes of strings in the tree level approximation 
are derived from correlation functions or rather vacuum expectation values 
of products of particular local operators on the complex plane. If these 
vertex operators belong to the untwisted sector, they can be expressed in 
terms of exponentials of free bosons and have to mutually commute (for this 
reason they provide representations of Kac-Moody algebras for particularly 
chosen toroidal. target spaces). One must implement this property either 
by introducing extra cocycle operators or via a proper quantization of the 
available bosonic zero modes. The latter route was advocated in [23, 241. 

Our plan is as follows: In section 2 we shortly review some important 
properties of the bosonic Narain model. Particular zero mode exponentials 
yield the cocycle operators which are needed for the string emission vertices. 
If they were not used we would not have the correct relative phases between 
different three-point functions. We begin section 3 by listing the basic geo- 
metrical concepts of a bosonic orbifold CFT. The condition which singles out 
a consistent axionic background is solved in general. Next, we turn to the op- 
erator quantization of the first twisted sector following essentially the earlier 
approach of [23,24]. Finally twist invariant vertex operators are constructed. 
In section 4 we calculate the twisted sector string coupling constant for the 
emission of an untwisted from a twisted string by factorizing the product 
of two vertices in the twisting vacuum. This result completes the deriva- 
tion of all three-point functions which consist of two fields from (oppositely) 
twisted sectors and a single vertex operator. Section 5 opens with a short 
account of the moduli space of 2~ orbifolds. The generators of background 
transformations are seen to redefine the zero modes of orbifold constructions 
associated to the new background moduli. This property enables us to prove 
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that the correlation function for string emission from the first twisted sector 
stays invariant both under the duality and the axionic shift operations. 

We discuss our results in section 6. Furthermore we have included several 
appendices. First we explicitly show how to solve the constraint on the ax- 
ionic background for various toy models. In appendix B we calculate twisted 
sector two-point functions of the left- and right-moving parts of the bosonic 
coordinate fields. We then argue why the string coupling constant is not 
affected by a duality transformation (appendix C). A detailed treatment of 
string emission from higher twisted sectors is the subject of appendix D: We 
derive the three-point function for these processes and verify their invariance 
w.r.t. a duality transformation. 

2 The bosonic Narain model 

2.1 The spectrum 

The simplest method to compactify the 26-dimensional closed bosonic string 
theory consists in curling up d of its spatial coordinates X@(r,,) on a (flat) 
torus Td = Rd/27rAd which is specified by a d-dimensional lattice Ad. This 
construction implies the boundary conditions 

XP(7,0+2a)=XP(7,c4+23rwP; WE&, K.&d . (2.1) 

Let us introduce a basis { ei ; i = 1, . . . , d} of Ad. The components of the ei 
w.r.t. the coordinate metric are ePi and may be considered as the elements 
of a basis matrix e. Any winding vector w E Ad can now be expanded as 
w = ein” (n” E Z). 

After analytic continuation of the world-sheet time r -+ -ir followed by 
a conformal mapping we arrive at the complex world sheet coordinates 

z = e7+ia, 2 = e--“y P-2) 

Hence (2.1) now reads 

.Xp(e2?riz, e-2*i.T) = Xp(z, 2) + 27rwP. P-3) 

The following mode expansions for the right- and left-moving parts of the 
compactified coordinates satisfy these boundary conditions: 
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Xi(z) = xf4 - i 
( 1 

&PR p lnz+iCz-n5 (2.4) 
n#O 

XL(Z) = x2 -i 
( > &PL 

P 
lnZ+iC~-“Ci . 

n P-5) 
n#O 

The string’s center of mass position at IzI = 1 coincides with 

xp 3 x; + xcL L 9 (2.6) 

provided that the right- and leftmoving momentum PR and PL are equal. 
On the other hand (2.3) imposes 

(Pi& - (PL)~ = 2G,vw" , P-7) 

whence the identification of (2.6) with the string’s center of mass must be 
given up, if the string- possesses nontrivial homotopy (i.e. w # 0). The 
symmetric nonsingular d x d matrix G will shortly be identified with the 
target space metric. 

As has been,pointed out by Narain [21], the primary fields 

Vp(z,Z) = cp : exp{iPRXR(z) + iPLXL(Z)} : 
= cp E(Pj&PL;Z,Z) (2.8) 

of the corresponding CFT are labeled by the elements of a 2d-dimensional 
lattice AN (Narain lattice) 

P z (PR; PL) E AN. W-0 

The colons in (2.8) d enote normal ordering and cp is known as a cocycle 
operator, which guarantees appropriate commutation relations of the Vp. 
We will get to know its properties in the next subsectionl. 

Modular invariance (on a worldsheet torus) restricts AN to be even and 
selfdual w.r.t. a lorentzian scalar product 

(P, Q> := (PR, QR) - (PL, QL) := $;QR - ;P:;QL (2.10) 

‘Actually, it was explained in [23] and [24], that one can avoid the introduction of 
cocycle operators by a proper quantization of the zero modes involved. We will rely on 
this approach, when discussing the twisted sector representation of Vp(z, 2). 
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of signature (d,d). 
We mention (cf. [25]), that such lattices with the general signature (r,s) 

exist if and only if (r - s)/8 E Z. M oreover, for given r, s # 0 they are 
unique up to SO(r, s) Lorentz-transformations. 

The conformal dimensions 

h = LPT 1 PR 
4 RG 7 

/-& = lPTIPL 
4 LG 

(2.11) 

of the primary fields (2.8) are read off from the operator product with the 
stress energy T(z) = aXTGaX, i’(z) = (3XTGaX, respectively. Adopting a 
coordinate basis, where G is proportional to 1, these weights become invari- 
ant under SO(d), x SO(d) t L ransformations. As we will recognize in section 
2.2, this symmetry is respected by all correlation functions if the cocycle op- 
erators are properly redefined. Therefore the toroidal compactification (2.1) 
leads to a family of CFTs, which are in one-to-one correspondence with the 
points of the coset manifold 

SW, 4 
Md = SO(d), x SO(d)L ’ 

(2.12) 

Thus d2 independent parameters suffice to describe the distinct bosonic 
Narain models. Strictly speaking this is not yet the whole story, since there 
also exist discrete background symmetries (e.g. target space duality) by which 
Md has to be divided out, too. These possibilities will be explored in section 
5. 

In [26] Narain, Sarmadi and Witten arrive at a simple interpretation for 
the coordinates of Md in terms of the components of the torus metric g 
and of an antisymmetric tensor field b. Indeed g and b are characterized 
by id(d f 1) independent p arameters, and these numbers add up to d2 as 
required. Both g and b are assumed not to depend on the coordinate fields 
Xp, whence they are referred to as constant background fields. 

The starting point of the analysis given in [26] is the free bosonic action2 

‘In this paper we will focus on the compact part of the target space. The inclusion of 
uncompactified bosonic fields is obvious. Here and in the following we frequently choose 
G = $1 which corresponds to having cy’ = 2 for the Regge slope parameter. 



I : 

S = ; / dTda a,XT(7, a)(G + B)&X(q a). (2.13) 

This expression is formulated w.r.t. a Minkowskian world sheet metric, where 
& = $(& f 8,). We th en relate the target space background tensors G and 
B to their counterparts g and b in the lattice frame: 

g := eTGe = gT (2.14) 

b := eTBe = -bT . (2.15) 

The right- and left-moving momenta PR and PL, which enter (2.11) are 
parametrized by 

PR = p+(G-B)w 
PL = p-(G+B)w 

(2.16) 

where w E Ad, and p E AZ denotes the momentum vector canonically con- 
jugate to the zero mode z = XR + XL (Ai is the lattice dual to Ad). We 
also assign the dual basis {e*“; i = 1, . . . , d} to Ai, whose coordinate compo- 
nents eL ’ form the elements of the dual basis matriz e*, which by definition 
is subject to 

eTe*=l . (2.17) 

Any p E As now decomposes as p = e*’ m; (m; E Z). Then a basis for the 
(d, d)-dimensional Narain lattice AN reads: 

Icj = (e*“(g - b)kj ; -e*“(g + b)kj) . 

Using the lorentzian scalar product (2.10) we find 

(2.18) 

(PI, Pz) = P&2 + PkJl * (2.19) 

It follows, that the (d,d)-d imensional lattice introduced via (2.16) is even 
and selfdual, as required for AN. 

Since the target space is a torus, (2.8) has to stay invariant, if the coor- 
dinates X(z,Z) are.shifted by 27rv (v E Ad): 

XR - XR + 2rvR , 

XL - XL +27WL ; 2)R-f 2)L = 2, 
(2.20) 

. 
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Because this requirement amounts to 

P&R + P;VL = pTv + wTBv + wTG(vR - vL) E II, (2.21) 

for any pair (w,p) E Ad x AZ we are able to determine 2)~ and VL separately. 
The simplest solution reads 

1 
vR/L = #” F ;Bv) . (2.22) 

It clearly becomes left-right asymmetric should the axionic background B 
not vanish. 

Furthermore it is obvious that the whole spectrum and, as we will ar- 
gue in the next subsection, all correlation functions remain invariant under 
nonsingular linear coordinate transformations 

e H Fe, e* I-+ F*e* (F* := (FT)-‘) (2.23) 

G w F*GF-‘, B H F*BF-1 . 

Apparently, with this freedom one may always turn to 2G = 1. 

(2.24) 

2.2 Correlation functions and cocycle operators 
The primary fields of the bosonic Narain model for a generic background 
are 8,X, &X and Vp with P E AN. The fundamental operator product 
expansion (OPE) involves two free bosonic (coordinate) fields: 

Xc”(~l, 21) X”( 22,Z2) = -(&)pVln \*r2j2 + : Xp(zr, Zr)XV(z2,Z2) : . 

(2.25) 
It is computed by relying on a Fock space interpretation of the mode expan- 
sions (2.4) and (2.5). Th us one promotes all Laurent coefficients to operators 
(marked by a hat) with commutation relations 

PL 

Likewise the zero modes are quantized, too: 

. (2.26) 
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[?R, pz] = [i?L, p:] = i - 1 . (2.27) 

(The definition [7,ST];j := [ri,bj] f o a commutator matrix between two vec- 
tors of operators y, 6 permits us to drop all indices.) 

The ground state IO) in the momentum space representation by definition 
neither carries momentum nor winding and is annihilated by all positive 
frequency mode operators: 

&[o) = &lo) = 0 
(2.28) 

x IO) = a; IO) =o, n>O . 
According to (2.16) P ̂R and & can be expressed in terms of the canonical 
momentum and winding operators 

h 
PR := fi+(G-B)ti A 
PL := I;-(G+B)C . 

(2.29) 

It is worth analysing the zero mode structure in greater depth, especially 
since we could not yet decompose ?R and 2~ into geometrical zero modes. 
We simply overlooked that there is one more besides 5. Now, we infer from 
(2.27) that there exists a linear transformation 

which leaves the commutator matrices invariant. We abbreviated 

(G-B) 
-(G + B) 

and introduced the operator 4 which is necessarily subject to 

[cj,tibT] = i. 1 . 

We infer that I<’ = (KT)-’ and consequently one finds 

(2.30) 

(2.31) 

(2.32) 

(2.33) 
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in agreement with (2.6) and the left-right asymmetric shifts (2.22) of XR, 
XL. The (normal ordered) zero mode part of E(PR, PL; z, Z) is then given by 

(2.34) 

As far as the cocycle operator part cp(P) of Vp is concerned, we as- 
sume it to be bimultiplicative in the Narain momentum P of the vertex and 
the Narain momentum operator @. Then the field algebra will close under 
operator product expansions ( OPES):~ 

VP, (21, 21) VP&2,52) = 

= Cp,(-PI) Cp,+p,(@) E(PlR, PIL; ZI,%) E(P2R, p2L; 22722) 

= p~J&l - P;rLP,L 
212 212 “PkPl) vPI+Pz(z2,z2) + . . . . 

(2.35) 
While performing the rearrangements we relied on the conservation law of 
Narain momentum which is a consequence of (2.34); hence only a single 
conformal block can appear on the right hand side of (2.35). 

Since the above vertex operators carry integer spins s; = h; - h;, they are 
bosonic fields of the 2D CFT and so they have to commute. Therefore under 
a transposition Pr * P2, (21, 51) f-) (z2,&) the left hand side of (2.35) is 
not affected. This gives rise to the cocycle consistency relation 

cp,(-Pr) = ein(Pr~Pz) cp, (-P2) . (2.36) 

a particular (simple) solution of which is given by 

q(e) = einpTzt. (2.37) 

It takes its values from {-1,l). H owever it is not difficult to completely 
analyze the condition which arises for the quotient of any pair of consistent 
cocycle operators from (2.36). Exploiting some of the freedom in solving 
(2.36), permits us to obtain suitably normalized two-point functions. 

In order to evaluate a general M-point function we start with the simple 
gaussian correlator 

M PT P R- P,;PjL 
(ft E(PkR,pkL; zlc, zk)) = n ZijR ’ zij ’ * 

i<j o,c pk 
(2.38) 

kc1 

3We abbreviate (ZIS usual) Zij := .~i - Zj, Eij = Ei - Zj. 
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for radially ordered products of normal ordered exponentials of free fields. 
Taking the cocycle operators into account then yields 

( kll Vp,(Zk,&)) = jFjcpj(-p;) $“R $=’ 6 N 
0,x pk 

- (2.39) 
k=l 

(Notice that the scaling exponents again refer to the choice of 2G = 1.) 
Further correlation functions can be derived from this by repeatedly ap- 

plying partial derivatives w.r.t. the punctures zk. For the two-point function 
one gets 

(Vp(z1, z$Lp(z2,22)) = cp(P) z;2pi z;2’” . (2.40) 

Following the usual conventions we would prefer cp (P) = 1. Consequently 
we modify (2.37), replacing it by 

cp (@) = e+(PTc-wTfi), (2.41) 

which is yet another solution of (2.36). Clearly, a redefinition of Vp by a 
local c-number phase factor 4(P) cannot spoil the commutation properties 
with other vertex operators at all. Such a vertex “renormalization” affects 
however the expansion coefficients in (2.35). If we absorb 4(P) into the 
original cocycle operator, then the bimultiplicative property of the latter will 
be ruined in general. We might for instance repalce (2.37) by 

cp(i’) = @PTzi, e-i;PTw , (2.42) 

as suggested in [24]. I n addition, the same author already showed how to 
incorporate (2.42) into the naive zero mode exponential (2.34) with the help 
of the Baker-Campbell-Hausdorff formula (BCH formula for short). This 
will effectively cause an operator shift of i, namely ? H 2 + ~l_i). Notice that 
(2.42) again guarantees a properly normalized two-point function. 

As announced in section 2.1, we infer from (2.39) and (2.41), that all 
interactions of the bosonic Narain model are indeed invariant w.r.t. a change 
of the coordinate system, if an invariant cocycle operator is employed at the 
same time (as in (2.41)). 
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Moreover we recognize that this M-point correlation function is form 
invariant under SO(d), x SO(d)L transformations 9 = (tiR,ti~). Whereas 
the scaling exponents are manifestly invariant the cocycle operator phases 
will always contain products in their exponent which mix the left- and right- 
mover’s momenta. To have an example, we display explicitly the dependence 
of (2.37) on its Narain momentum arguments: 

'p(Q) = exP[g(&~ - QL)~(PR + PL + B(PR - pL))] 
. (2.43) 

The presence of left-right mixing products forces us to resort to the new 
cocycle operator 

cp(P; l9) := c+lp(rl@) (2.44) 

when a left-right asymmetric rotation 29 takes place (cf. also section 2 in 
P21)* 

3 Twisted Narain models 

3.1 Twisting the Narain lattice 

Toroidal compactification of the string target space is by far the simplest way 
to obtain lower dimensional string vacua. But starting from the heterotic 
string theory [l], one faces the clear disadvantage of having a N = 4 space- 
time supersymmetry in the four-dimensional effective action. A construction 
by which this obstacle can be circumvented is described in [8]. Instead of 
dividing lRd by a group Ad of discrete translations one extends Ad to a finite 
subgroup Sd of the Euclidean group of lRd, known as the space group. Its 
elements are of the form g = (0, w) where 0 is taken from a suitable finite 
subgroup of SO(d) and w E Ad. g acts on the coordinates Xp of Rd by4 

gX:=OX+27rw . (3.1) 

4The representation of the twist w.r.t the coordinate system will be denoted by 0 
throughout. Its integer-valued representations Q, M w.r.t. to the lattice bases e, e’ are 
introduced below. 

13 
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Modding out by Sd we obtain a (toroidal) or&fold 

n,:=2r(!c) =$ (P:= f$ . P-2) 

If P does not act freely on Td, this quotient space is no longer a manifold, 
since it will then contain conical singularities located at the fixed points of 
O’s action on Td. 

Thus gX and X are identified for all g E Sd. In the case of a closed string 
with target space &, the coordinate fields always comply with a boundary 
condition 

X(qfY+27r) = gX(7,o). (3.3) 
One encounters three different types of closed strings on orbifolds: 

(i) Strings which are already closed before Rd is compactified 

(ii) Winding strings which are not yet closed in lRd but on Td 

(iii) Twisted strings which close only on &. 

The first two cases amount to the untwisted sector whereas the last case 
yields the twisted sectors of the CFT which are further distinguished by the 
point group entry 0. 

One might wonder, if it suffices to exclusively consider primaries of the 
untwisted sector of the orbifold, which result from the vertices (2.8) of the 
Narain model by a projection onto twist-invariant fields. From a careful 
analysis of the partition function one learns however, that the twisted sectors 
should be included [8, la], if ( worldsheet) modular invariance is to survive 
the orbifold construction. 

Throughout this paper only symmetric orbifolds with point group P = 2, 
are to be considered, that is to say, the twist treats XR(Z), XL(Z) in exactly 
the same way. We mostly assume that det(O - 1) # 0. The situation where 
fixed tori appear together with a general axionic background B is closely 
connected to those heterotic orbifolds whose twist is embedded via a shift 
in the gauge group’s lattice and which possess a non-trivial Wilson line 
background. Their analysis is deferred to [27]. 

For 0 to be an isometry of Td, it must act as an automorphism of Ad: 

14 
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@ ~ u e ”i =  ecL,Qj i  ; Q  E  S L ( d , ZZ)  

It is w o r thwh i le  to  in t roduce  comp lex  coo rd ina tes  

. ( 3 .4  

x’“: =  

xp  : 
- $ (X2p-’ +  iX 2 @ ) 

=  & ( X 2 P - ’ _  iX 2 P )  ; P  E  {b. ,d/2~ (3.5)  , 

a fte r  hav ing  b lock -d iagona l i zed  th e  twist 0 :5  

O b viously th e  p l a n a r  r o ta tio n  ang les  ( p P  :=  2 n k , a r e  q u a n tize d : Nk, E  
( 1 , -  * * 9  N  -  1 ) . 

T h e  c losed str ing cond i t ion  ( 3 .3 )  wi th g  =  ( 0 , f) th e n  r e a d s  (abbrev ia te  
w  =  e x p ( 2 G /N)) 

. ( 3 .7 )  

( W e  k e p t th e  symbo l  f fo r  th e  comp lex  t ranslat ion vector  as  well . )  It fo l lows 
th a t th e  so lu t ion X p  o f th e  f ree w a v e  e q u a tio n  & & X ”(Z,Z) =  0  a n d  its 
comp lex  c o n j u g a te  X P  possess  L a u r e n t expans ions  

Xp (z , 5 )  =  x’; +  i g  4 -k  P  Z - ~ M d  +  X + r ;, 2  - ( n + b )  7  P -8)  ? I= -03  n  -  k, n  +  k, 1  

w h e r e  xf d e n o tes  a  comp lex  fixe d  p o i n t u n d e r  0  o n  th e  torus.  W ith in  th e  
rea l  coo rd ina te  system X L ’~  m u s t satisfy 

5Not ice,  that this coord ina te  t ransformat ion d o e s  not  dest roy the convent ion  2 G  =  1, 
s ince e a c h  e lement  of O ( d )  can  b e  b lock-d iagona l ized by  a  basis  c h a n g e  R  E  SO(d) .  

1 5  
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(1 - @)xj = 27r j E 2wAd . (3.10) 

To be more precise, the fixed point actually serves as a representative of a 
coset, since on Td we do not distinguish between x~f and xj + 27rw (w E Ad): 

xjE &I$]; [f:=f+(l--o)Ad - (3.11) 

In order to obtain twist invariant vertex operators one simply has to take 
the average of the exponentials (2.8) over an entire O-orbit (cf. section 3.2). 
Such a sum can only be meaningful, if 0 extends to an automorphism of AN: 

OP F (OPR; @PL) E AN (3.12) 

This severely restricts the background couplings G and B [12]. The action 
of 0 on the basis vectors (2.18) of AN must take the form 

@ki = ,@&jji + ijQj; 

@i; = kjfij; + &jQj, 
(3.13) 

, 

where M, M, Q and Q are integer-valued quadratic matrices. In the case 
of a left-right symmetric twist Q  has to vanish, since the Icj are left-right 
asymmetric, whereas the k” are symmetric. 

Furthermore we recognize, that left-right symmetric orbifolds can always 
be looked upon as twisted toroidal compactifications, the twist action being 
given by 

(G-‘OG)e = e& (3.14) 

Oe* = e*M. (3.15) 

Using the explicit expressions (2.18) one easily derives the restrictions 

Mg=gQ where A4 = (Q-l)T (3.16) 

i@=bQ-Mb (3.17) 

on the background .couplings g and b. (3.16) follows of course directly from 
(3.14). 

In order to solve the condition on b it is advisable to recast it slightly: 

16 



QTbQ-b = R0f(dxd;Z) (3.18) 

Here the integer, antisymmetric matrix R = QTfi plays the role of an inho- 
mogeneous term in a system of linear equations for the (l) a priori indepen- 
dent components of the antisymmetric matrix b. 

We list a number of properties of the solution set. Clearly, every integer 
axionic tensor b solves (3.18). If R vanishes then the solutions form a contin- 
uous linear vector space S. For a given R # 0 we either find no solution or 
there is an affine solution space of the form bR + S in which bR may stand for 
any special solution. Since the system of equations for the components bij 
contains exclusively integer coefficients we can always find a solution b with 
only rational components, should there exist any solution at all. 

To further elucidate the latter statement we even construct such a solution 
explicitly. From (3.18) it follows (with the help of QN = 1) that 

R+QTRQ+.. . + (QT)N-lRQN-l = 0 (3.19) 

which is a necessary condition for the solution space to be non-empty. It 
suggests to probe for a solution relying on the ansatz 

N-2 

bR = C Aj(QT)jRQj 
j=O 

. (3.20) 

Indeed by choosing 

,.=j+l 1 - - 3 N 
(3.21) 

we can fulfill (3.18). N ow, we recognize that (3.19) already is a sufficient 
condition for having a solution bR. As is evident from (3.21), there always 
exist rational representatives bR whose components are multiples of N-l. 

However, we have so far been unable to devise general criteria which 
guarantee the existence of integer representatives bR such that 

b = bR + b. ; bo E S (3.22) 

comes about. In the coordinate basis this is then reflected by the analogous 
decomposition 
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B=A+Bo (3.23) 

where A = e*bRe*T and B. = e*boe*T commutes with the twist 0. The 
discussion will be continued in appendix A where we study several examples 
in order to find out which cases permit this particular splitting at all. In the 
forthcoming sections we confine our interest to those orbifolds which indeed 
happen to have an integer background representative bR. 

A complementary way to handle (3.18) opens, if we choose a (complex) 
basis matrix 6 which diagonalizes Q. Then 

QS = 6D (3.24) 

in which the diagonal matrix D contains the eigenvalues D,, = wtr of 0. 
Denoting then the S-basis counterparts of b and R by p and e, respectively, 
we obtain the relation 

&s(wts-tr - 1) = ers . (3.25) 

Obviously ers = 0 whenever t, = t,. Th is constraint is just the condition 
(3.19) given above. In addition, we notice that the associated component prs 
describes a modulus (i.e. a continuous degree of freedom in the background 
space). 

3.2 The Hilbert space of states 

String theories or rather the associated CFTs can be quantized in two differ- 
ent ways: Canonically or by path integrals. The latter approach prerequisites 
an action to define the functional integration measure, which in our context 
is given by (2.13). Th e c assical 1 equations of motion are obtained by vary- 
ing this action w.r.t. the fields Xj‘ and demanding this variation to vanish. 
Proceeding in this way one encounters surface integrals, which must vanish 
separately for all possible boundary conditions of the fields. 

Using g = (0,O) th e variation of (2.13) gives rise to the surface term 

/“.dT &X’(,,O) [OTB@ - B] SX(q0) , (3.26) 
70 

which vanishes for arbitrary variations SX if and only if [O, B] = 0. Fur- 
thermore the action (2.13) is twist invariant only if this condition is obeyed. 
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This purely classical constraint on B, which has to be satisfied in the path 
integral approach, is much more restrictive than (3.17). Hence, to have the 
most general B at our disposal, the operator approach has to be selected. It 
treats the set of conformal fields as an algebra which closes under operator 
product expansions [13]. Th ere is no more any necessity to refer to an action. 

As has been stated in section 3.1, the string Fock space encompasses 
different sectors, which are interrelated by the modular group and through 
interactions. We will now revisit the canonical quantization in these sectors, 
since it is a prerequisite for the construction of cocycle operators. 

3.2.1 The untwisted sector 

The primary fields VF(z, Z) of th e untwisted sector are expressed in terms 
of the vertices (2.8) f o ex p onential type6 such that they do not change under 
z H e2?Tiz, 2 H e-2?+ z whatever boundary condition (3.3) is applied. In 
section 2.2 we have already seen that lattice translations leave (2.8) invariant. 
Furthermore, the superposition 

vp(z, 2) = -& k$ c@kp(+) E(okPR, okPL; z~ z, (3.27) 

,. ,. 
is a O-singlet (i.e., it is invariant under X,/L I-+ @XR/L, PR/L H OPR,L) 
provided that the cocycle operator satisfies 

c@p(o@ = cp(@ . (3.28) 

Given this property the operator algebra generated by (3.27) closes as well: 

x “P,(-@%) v~pI+pz(z2,zz)t... 

(3.29) 
Hence the Narain model fusion rule [VP,] x [VP,] = [VP,+~,] is generalized 
to 

‘The partial derivatives of Xp and ,?fi w.r.t. the world sheet punctures z, Z cannot be 
extended to twist invariant operators, since 1 + 0 + . . . + CYv-’ = 0. 
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[vg] x [V$y = 5 [VgYp1+p2] . (3.30) 
m=l 

Correspondingly the selection rule is weaker than the one of the previous 
section. 

The cocycle operator (2.41) violates the requirement (3.28)) since 0 trans- 
forms 1; into ?;’ := Ofi + [B, O] & and 2i, into 6’ := OG as follows from (2.29). 
Yet given (3.23) we can construct an improved cocycle operator in conformity 
with (3.28): 

cp(i’) = exp [$r{~‘(fi - A$) - (p - Aw)~G}] , (3.31) 

Likewise (2.42) which was proposed in [24] satisfies (3.28) as soon as the 
“minimal” substitution p H p - Aw has taken effect. In both cases we 
profited from the assumption that eTAe be an integer matrix. Otherwise, 
we are forced to extend these cocycle operators such that they continue to 
solve (2.36) (cf. [27]). 

3.2.2 Twisted sectors 

For the time being we will concentrate on the first twisted sector; higher 
twisted sectors will be dealt with later. 

In analogy to the spin field in the Ramond-Neveu-Schwarz model the 
non-trivial boundary conditions (3.7) are imposed by the bosonic twist fields 
a;(~, Z) in an orbifold CFT. They are associated to the conjugacy classes 
P, VI) of th e s P ace group, i.e. they prescribe elements from this class as a 
global monodromy of the coordinates X(z, 2). Their quantum properties are 
determined by the basic expansions 

41-b) +P axyzl,%> qz2,z2> = 212 7f (z2,22) +... 

axqz,, 21) $(z2,.4 = z;2kp 7;‘qzz, 22) + . . . 

dP(Zl, 21) Of(ZZ,Z2) = r;2kp +;+yzz, 4 + . . . 
(3.32) 

-- 
dX’“(Zl, 21) af(zz,z2) = 2--WJ -+CL 

7j (z2,52) + -** , 

where four excited twist fields rTl*, r;+‘, “;‘” and ?T” appear on the right 
hand side. Similar to (2.26) the L aurent expansion coefficients in (3.8) and 

-_ 
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(3.9) satisfy canonical commutation relations: 

(3.33) 

By definition, the twisted sector ground states ]a;) := af+(O, O)]O) are anni- 
hilated by all positive frequency mode operators:’ 

(3.34) 

These states are eigenstates of the unitary operators exp(ipT$). Note that 
one cannot properly characterize ]a;) as an eigenstate of i itself, because 
any meaningful operator depending on 2 must be stable under 2 H 2 + 27rX 
(A E Ad). This condition will in the sequel be referred to as coset stability. 

The zero mode structure of this sector is somewhat intricate compared 
to the untwisted sector, owing to the vector 

(3.35) 

of second class constraints, as is pointed out in [23]. In this case the quan- 
tization is provided by the Diruc method. Given two arbitrary operators 
A, Z? their Dirac commutator is expressed as follows in terms of ordinary 
(canonical) commutators: 

[AJ], := [d,B]- [d,ZT] (3.36) 

It is then evident that Dirac commutators containing (components of) the 
constraint vector c’must vanish. We also learn that these commutators will 
not be affected by an arbitrary linear (though invertible) redefinition of the 
constraints. In the sequel we will simply suppress the index D. 

The zero mode commutators for the twisted sector can now be straight- 
forwardly derived from (3.35)’ (compare with [23]): 

7According to (3.32), 2P acting with the (fractional) oscillators &fI,, &‘kt -1, (Yk,--l and 
SP 
a-k, on laf) results in the excited states ~f+“(O,O)10), T;+~(O, O)lO), ?j+“(O, 0)lO) and 
?,‘” (0,O) IO), respectively. 

sStrictly speaking the position-like operators i and @ cannot serve as generators of a 
continvozls symmetry group, since the target space of our theory is compact. 
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[?,l;T] = 0 
[gjT] = i-1 
[?,fjT] = -27ri & . 

(3.37) 

Therefore, the former generator ?; of spatial translations gets effectively re- 
placed by 

i := -&l - oT)cj , (3.38) 

since [?, +‘I = i . 1 holds. 
To be well defined, the spatial translation operator eisT’ has to be single 

valued under s H s + 2nw (20 E Ad). In other words, exp(2&wTi) must act 
as the identity operator. 

For a while we concentrate on those axionic backgrounds Bs = e*bse*T 
which commute with the twist 0. It will be demonstrated in the next section 
(cf. (4.12)), that due to the algebra (3.37) th e introduction of a genuine cocy- 
cle operator for a string emission vertex can be avoided. The generalization 
to axionic backgrounds of the type (3.23) will be provided afterwards. 

The transformation from the dynamical variables (2, 4) to (2~) ?L) does 
of course not depend on the sector being a twisted or an untwisted one (see 
(2.33)): 

. (3.39) 

The twisted sector zero mode part of E(&, PL; z, Z) thereby turns out to be 

1 
ei(p%+wTq^) = eTipT&LJ e-27riwTi-& eipTe 

7 (3.40) 

which is both twist invariant in the sense of (3.28) and stable on a coset [f. 
Its local c-number phase factor is due to a (naive) application of the BCH- 
formula. The ground states Iof) are nontrivially affected by this operator: 

eiWTQ Iof) = e-2riwT&i luff) = Iof++,) (3.41) 

Hence the absorption of an untwisted string by a twisted one causes the 
fixed point zf = 27r(l - O)-‘f (th e center of mass of the twisted string) to 
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shift by 27r(l- O)- ‘w where w is the winding vector of the absorbed closed 
untwisted string. The zero mode exponentials (3.40) form a representation 
of a Weyl-Heisenberg group in the orbifold’s first twisted sector. 

Vertex operators for the emission of untwisted states from twisted ones 
are again constructed according to (3.27). However, as we have just estab- 
lished, an extra cocycle operator is superfluous. Obviously for their twisted 
sector representation the mode expansions (3.8) and (3.9) have to be in- 
serted. Furthermore the string coupling constant g’ for this process differs 
from that of the untwisted sector and might even acquire a dependence on 
the Narain momentum (cf. [17] and section 4). Altogether the emission of 
an (unexcited) untwisted string from a twisted one is described by 

. 
(3.42) 

The new factors ~-3% ( z -i’z) ensure that I$&‘” remains a conformal field 
with dimensi0n.h = ;Pi (E = :Pz) under the respective Virasoro algebras. 
Finally, the requirement of twist invariance boils down to 

d(W = g’(P) , (3.43) 

which is also urgently needed for the closure of the algebra (3.29) in the 
twisted sector representation. 

4 The twisted sector string coupling 

The type of non-trivial correlation functions which is by far the simplest to 
treat involves only two twist fields and an arbitrary number of exponential 
vertices. Their evaluation does not require an explicit construction of the 
twist field vertex operator, since the emission of an untwisted state does not 
impinge on the original twisted vacuum sector. In the operator approach one 
merely sandwiches the untwisted sector vertex operators between twisted 
incoming and outgoing states. 

We assign the space group conjugacy classes (0, [fi]), (O-l, [-fr]) to 
a;, ql* On the other hand the global monodromy about the worldsheet 
location of V&” is given by (1, Owi) (w; = PR; - PLY) where 
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CJ,:={O”v;O<s<N-1) (4.1) 

is the orbit of the lattice vector v under the twist action. The space group 
selection rule [15, 171 th en d emands that the product of all classes which are 
associated to the fields involved contains the unit element (1,O). 

In order to determine the twisted sector string coupling g’(P) we study 

ZP,,Pz(G:;Y,9 := (aIf,IVp,(2,s)l/p,(y,ji)la~) (4.2) 

where9 

Vp(2, z) = g’(P),-%+: E(PR, PL; z, z) . (4.3) 
The conformal and the anti-conformal dimension of the twist fields ak, aIf, 
are given by 

1 42 
h,=h,= ,gkL(l-kl); kL=(k,modl)E($,...,I-$}. (4.4) 

P--1 

The space group selection rule for this amplitude reduces to 

PI = [fi] + w + w2 - [fl] , (4.5) 

because of C&, = 0,. 
Using (3.40) to account for the zero mode part of (4.3), it is straightfor- 

ward to obtain 

&p2(2, g; y, y) = g’(pl) g’(P2) ,~~m+1+P,Ti%~~uz 

Ip2 Ip2 
z-2 1L g--” 2L 

.e-P,T,(~R(~)X,T(y))tpZR - P,T,(XR(z),i',Tb))t~2R 

‘We have refrained here from using the lenghty physical twist invariant vertices (3.42). 
The final result (4.18) is not affected by this shortcut. 
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We introduced the complex Narain momenta 

and (. . .)t denotes a twisted sector correlation (a&,[. . . Ioo+PJ which is re- 
stricted to the oscillator modes. 

The various two-point functions are evaluated in appendix B. Taking 
advantage of it we find 

Q(Pl,qq2,Y,Y) := ii. l- 
n=l [ W-n (y]“- [l --Wn (g]p~“nRL . 

for the contribution of oscillator modes to (4.2). 
As argued in section 2.2 the correlation function has to satisfy the com- 

mutation property 

ZP,,P2(“l%Y,$ = ~Pz,P1(Y,!%w9 * (4.9) 

With the help of the sums 

N 

c O”=O, 
n=l 

&w= l_No, 
n=l 

(4.10) 

one shows that 

Q(PI, z, ii; P2, y, g) = C(P1, P2) Q(P2, Y, C PI, z, 2) (4.11) 

where 

C(Pl,P2) := fi &P10kP2) = ewP~&3”rPypJ2) 
. (4.12) 

k=l 

The analogous factor in the context of a chirul CFT has first appeared in [28, 
291. C(Pl, P2) exactly cancels the phase stemming from the commutation of 

-_ 
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the zero mode parts which proves (4.9); as announced in section 3.2.2 there 
is indeed no obligation to invent a cocycle operator from scratch. 

To allow for an arbitrary axionic background B = Bs + A we rearrange 

pR/L = (p + Aw) f (G T- (8~ + A))w =: p’ f (G +- B)w (p’ E A;). (4.13) 

The zero mode part of an exponential type vertex operator now becomes 

ei{PTi.+wTP^) = e ;&I’-Aw)~ &~~~iw~cQ,,i(p’-Aw)~& (4.14) 

Remarkably, the twist invariance and the stability on cosets [f of the vertex 
operator V@ are not spoiled lo The phase produced upon commutation of . 
two of these zero mode operators is the inverse of 

C(Pl,P2) = e 2ai{(~:--avrz)~~url-(p;-Awl)~~w2} (4.15) 

which generalizes (4.12). H aving dropped the primes on p the four-point 
function (4.6) turns into 

ZP,,P~(GGY,P)= g'(P1)g'(P2) e 
~T{(PI-Aw)~&w + (~z---Clwz)~&wzl 

x e274(~2--~2)T&f2 + (PI-Aw)~&(w~+~z)) (4.16) 

x &PfR y-+P;R ,-3P& 
Y --ip& Q(P,, z, z; P2, y, y) 

Applying crossing symmetry and taking the factorization limit x + y, z + jj 
allows one to solve for g’, because once the OPE (2.35) has been inserted into 
(4.2) then it must agree with (4.16). L e us first simplify somewhat the non- t 
singular part of the N-fold product in (4.8): 

N-l 
n [1 _ w-n] Pi%QnfiR 

n=l 

N-l N-l 
--$L(PZ,O”PI) n 11 _ Wn~p&~“qR+P,T,~‘~lL . 

n=O n=l 

loThis “minimal” substitution need not be applied if [A, 01 = 0. For more details about 
this shift of an axionic modulus see section 5.3. 
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A short calculation then yields 

g’(pl + p2) cp2(-p1) ,-34~~~2+~34 ,+P~-Aw)~w~ . (4.17) 

Because of (3.31) the ph ase factors cancel throughout. This enables us readily 
to extract 9’: 

(4.18) 

where 

N-l 
S( k,) = N2 nEl (2 sin F)-’ cos(2nnkp) 

= exPPW) - Wd - W - hL)I 
(4.19) 

hp = IW2, hp = IP;12 . 
That the two different expressions offered for the twist-dependent quantity 
S(lc,) are equal may be directly demonstrated, if one uses the well-known 
series representation of +(z) = $ In I’(z) t o e g th er with a suitable regulariza- 
tion. Amazingly, an alternative proof is contributed by conformal field theory 
itself: The second form of the coupling strength 6(lc,) emerges also from an 
untwisted channel factorization of the four-twist field correlation function 

Kfi 0; q, OL > ( see also [15], [17] h w ere the case B = 0 is treated). Fur- 
thermore, we recognize that (3.43) is obviously fulfilled. 

Thus we have” 

(bIjl IVp(l, l)laA) = fig’(P) eiT(p-AW)Tih(2f2+w) 

x bO,(j,-f2-w)mod(l-@)A . 
(4.20) 

“g’(P) is nothing else but the finite ratio of the divergent normal ordering factors which 
arise upon placing exp(iPLXL + ~PRXR)~~~ into the twisted (untwisted) sector (cf. [17]). 
In fact, -ln6(k,) = (Z[(l)X[(l))t + (Xl(l)Zi(l))t 

- ($(1)x;(l)) - (X[(l)$(l)) = (L W R). 
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Alternatively, one may resort to the OPE 

aI&, 21) 4(22,22) = 
-i~(p-A~)~&(2j~-w) 

h-2/L, -L2h, 
x 212 212 vjyzz, 22) + . . . ) 

(4.21) 
where a factor l/N has been included in order to undo the N-fold degeneracy 
created by the orbit map P --t OP. Furthermore the space group selection 
rule w E [fz] - [fr] was incorporated. 

5 Discrete symmetries relate geometrically 
different orbifold CFTs 

5.1 The background moduli 

Every model belonging to the class of bosonic orbifold compactifications we 
have dealt with in this investigation is entirely specified by the background 
matrix (g+ b). N ee dl ess to say that several conditions still have to be met in 
order to arrive at a well-defined modding-out procedure of the underlying 
torus construction: The twist-0 is subject to (3.16) and (3.17). Temporarily 
assuming the integer matrix M (which enters the second condition) vanishes, 
we are left with a pair of homogeneous systems of linear equations for the 
elements of g and b. The solution spaces for both cases therefore become R- 
linear vector spaces whose coordinates are denoted as metrical and axionic 
moduli, respectively. However, generically we are given an arbitrary integer 
matrix fi in the crystallographic conditions (3.13). 

The validity of the main results obtained in section 3.2 and section 4 
hinges on there being available an integer representative bR for I@ # 0 (oth- 
erwise the cocycle (3.31) for the untwisted sector would fail to work and its 
twisted sector counterpart (4.14) would cease to act in a well-defined way on 
states characterized by a conjugacy class). 

As it will be outlined in appendix A, there exist however (simple) orb- 
ifold constructions which do not admit an integer-valued bR. Our previous 
treatment obviously does not carry over to these models. They share several 
features with heterotic string compactifications which have been equipped 
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with Wilson lines A; in such a way that N A; are Es x Es root lattice vectors. 
To explore these constructions, a deeper understanding of twists leaving fixed 
subtori is necessary. This topic will therefore be presented separately [27]. 

After having elucidated the (1 ocal) structure of the orbifold background 
space we raise the question whether there exist global symmetries in our space 
of consistent models. For reasons to become clear in the sequel we have to 
restrict ourselves to the continuous space of background moduli (both for the 
metrical and the axionic degrees of freedom), i.e. we neglect the cases G # 0 
even if there should exist an integer solution bR of (3.17). 

By definition, a background symmetry is a map which associates to any 
reference orbifold a second one (whose moduli are found in terms of (invert- 
ible) functions of the reference moduli) such that correlation functions of 
both models agree. Admittedly, simple redefinitions of the vertex operators 
which occur in a generic correlation function allow it to display a multitude 
of values (even if they were to preserve the norm of each vertex operator). 
Therefore we still have to complement the mapping in the space of back- 
ground moduli by an induced transformation which relates the Hilbert space 
of the reference model to that of the partner model. This will enable us mean- 
ingfully to compare their correlation functions. It follows immediately from 
the characteristic scaling behaviour of two-point functions that the spectra 
of the stress-energy tensors T(z), T(-) z wi a 11 g ree for models which are linked 
by a background symmetry. 

In our case we are going to demonstrate that both the involutive duality 

map 

1 G&g= - 
9fb 

(5-l) 
and the collection of (discrete) axionic shifts 

g’=g ; b’=b+a (for which u;j E 22, QTuQ = u , uT = -u) (5.2) 

lead to background symmetries after they have been suitably extended to 
the Hilbert spaces of the respective orbifold constructions. 

Alternatively, the duality map (5.!) can also be expressed via 

6=G, B=-B, iG=-$&e* . 
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On the other hand, the original lattice will not be modified, if an axionic shift 
is applied. The stress-energy spectra of the primary fields of the untwisted 
sector then are recognized to remain invariant under (5.1), (5.2) (use (2.11) 
together with (2.16) ). 

As far as string theory is concerned, this property was first addressed 
in [31], [32] h w ere the string propagation on the compact r-dimensional 
torus was discussed. In the absence of an axionic background the duality 
transformation amounts here simply to the exchange of the torus lattice A, 
with Af. The case r = 1 (compactification on a circle of radius R) is most 
easily surveyed: & = d/R where fi corresponds to the fundamental Planck 
length scale. 

5.2 Invariance of the string emission process under 
duality 

The extension of a background symmetry to orbifold constructions was pro- 
posed in [33] for th e orbicircle: Although the spectra of the conformal weights 
h, h of the twisted sector do not depend on the moduli, a background symme- 
try might act nontrivially there provided that these spectra are degenerate. 
This situation occurs within the class of .??N orbifold constructions. What- 
ever conjugacy class (0, f + (1 - @)A,) of the first twisted sector is singled 
out, the associated ground states af + display the same conformal weight (4.4) 
which is solely governed by the eigenvalues of the underlying order N twist. 
The generalization of the twisted sector duality transformation encountered 
in [33] turns out to be 

-+ = aj + c exp (2CfT&) a&-,)-l, 7 (5.4) 
1 kc3* 

which is a discrete Fourier-transformation. The finite sum ranges over an ar- 

bitrary set of representatives of the quotient space p = &; nonethe- .- 

less it is well-defined. Hence, the dual partner state 8j of the ground state af 
from the reference model consists of a linear superposition of ordinary ground 
states aj (f” E Ad) ,belonging to the partner model. The normalization fac- 
tor Ni = det(1 - 0) is just the multiplicity of the twisted sector ground 
states. This relationship has been discovered in [22] by demanding that the 

30 



four-twist field correlation function be duality invariant12. The extension 
to higher twisted sectors (which permits us to examine duality invariance 
of the three-point Yukawa couplings) together with quite a comprehensive 
reference list of articles about background symmetries may also be found in 

PI - 
However, to show the duality invariance of the string emission process 

with incoming and outgoing twisted sector ground states we also have to 
consistently derive how duality affects the vertex operators V~(Z,Z). A 
discussion of what happens in the untwisted sector is already contained in 
section 2 of [22]. It was found that duality requires the asymmetric replace- 
ments 

XR HXR = &(G-B)h 

XL HXL = -XL 
(5.5) 

to be performed inside every functional of the left- and rightmoving coordi- 
nates XL(Z), X&Z). Th e e fi Id s on the right-hand side of each arrow belong 
to the dual orbifold model. 

These prescriptions are consistent with (5.1). Consequently (cf. (3.39)) 
the zero-mode operators ?, 4 will be mapped to 

; = dd 
;=(G-B)P . 

Furthermore we deduce from the mode expansions (2.4), (2.5) that 

where we profited from the auxiliary formula 

(G-B)-&(G+B)=(G+Q+?) - 

(5.6) 

(5.7) 

(5.8) 
Of course the mode expansion of a coordinate field can no longer depend on 
the zero modes j, 2; as soon as we switch to a twisted sector representation. 

12Although this result has been derived in an analysis of twedimensional target spaces, 
it applies as well to d-dimensional orbifolds (d even), because the proof given for the 
invariance under a duality map nowhere refers to a particular value for d. 
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The fact that they have become superfluous is already encoded in the second 
class constraints (3.35). Therefore the relations (5.7) are perfectly valid as 
long as they lead to new constraints for the operators I;, & of the dual orbifold 
model! Having inserted the dual partner fields from (5.6), (5.7) into the 
previous vector of constraints Z we end up with another set of prescriptions 
(after suitable c-number resealings): 

Once more j?, & are recognized to be redundant. However, the Dirac quanti- 
zation of the second pair i, 2i, of zero modes again turns out to be non-trivial 
because of the presence of 2 This time we infer from (3.36) that 

(5.10) 

On the algebraic level there arise of course some marked differences in com- 
parison to the previous set of commutators (3.37). But we are entirely inter- 
ested in the group multiplication laws of the operators exp(i$?) (p E AZ) 
and exp(iwTi) (w E A ) d w ic are decisive for the precise evaluation of corre- h’ h 
lation functions involving string emission processes. From this point of view 
the dual model displays the same group composition laws as the model we 
have begun with. Indeed, we need not worry about the difference of (27ri). 1 
between the values of [;,GT] in (3.37) and (5.10). It is immaterial, since it 
gives rise to only trivial factors exp(27ripTw) = 1 whenever the BCH formula 
is applied to permute the above operators of the Weyl-Heisenberg group. 

Perhaps we should point out that constraints closely related to (5.9) were 
also proposed in [23]. Iv1 oreover, this second set was tailored exactly to repro- 
duce (3.37). F rom our approach the physical interpretation (which remained 
obscure in [23]) is th en obvious: The alternative set (5.9) gives the constraints 
valid for the dual model. Above we have also seen that even in the case where 
the zero mode commutator algebras differ the induced group multiplication 
laws continue to coincide for groups of finite order. This point has evidently 
not received due attention in [23]. 

Finally we establish that the eigenstates of 1; in the twisted sector take 
the form of the (dual) superpositions (5.4). Explicitly, we have 
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with (5.11) 

which follows by using the constraint set (5.9) in conjunction with the trans- 
lation operator property (3.41) of i. 

We then proceed to construct the dual vertex operator v$” associated to 
(3.42). To this end we substitute the dual quantities (5.5) for the original 
left- and rightmoving parts of X~(Z,Z). Since the twist 0 commutes with 
the background tensor (G + B) we are able to return to the ordinary fields 
XR(Z), XL(Z), if we simultaneously pass to the dual Narain momentum 

j3 = (G + B)w 
?3=+-&p 

(5.12) 

In order that the dual vertex operator will again describe the emission of 
strings carrying the (dual) N arain momentum P we have to make sure that 
our construction yields Vi in the dual orbifold model apart from some 
additional c-number phase factor. The form of the string coupling (4.18) 
guarantees that 

g’(OkP) = s’(@kP) (5.13) 

holds even for nonvanishing axionic background as long as OB = BO can be 
relied upon. All the details concerning the proof of this equality are to be 
found in appendix C. 

When deriving the partner vertex dual to (3.42) one also has to watch 
whether the appropriate normal ordering comes about. As far as the (frac- 
tionally moded) annihilation and creation operators &+, &n+k, and their 
conjugates are concerned the substitution (5.5) will not lead to a different 
ordering. But this issue becomes important, if one inspects the zero mode 
contents (3.40) of th e vertex operator. In fact, we have 
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exp( iw’:) exp( ipTL) = exp( iFTS ) exp( i@fj) 
= exp(iGG) exp(ijY?) exp(-22xi@&fi) 

(5.14) 
where we finally returned to a normally ordered expression. In a last step 
one has to rewrite the local phase factor which appears in (3.40) in terms of 
the dual quantities fi, 6. Then we gain 

@lv = @I exp( i.lr$zu) , (5.15) 

as soon as the surplus phases have been combined by employing the basic 
identity 

1 1 
1-o+ l-@T= 1 (5.16) 

Hence @Y’ fulfil s a 11 conditions to serve as a vertex in the operator for- 
mulation of CFT. Next, we need to clarify, if the three-point function (4.20) 
is invariant under a duality transformation induced by (5.1). This is tanta- 
mount to claiming that the identity 

holds among the zero mode contributions to the string emission process; the 
suffix attached to each matrix element allows to keep track of the respective 
background values. 

To establish (5.17) we first consider the pair of structurally simpler iden- 
tities 

.- 

(5.18) 
. 

Using the by now familiar rules eipT’lgf) = exp(27rip’&f)lgf) and eivTilaf) 
= IO,‘,,) together with (5.4) t i is easy to verify the crucial relations collected 
in (5.18). W e mention that one can directly arrive at the second identity, if 
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one suitably trades all twisted sector ground states in the first one for the 
eigenstates given in (5.11), and if subsequently the notions of background 
and dual background are interchanged (and vice versa). 

Now (5.17) is seen to be equivalent to (5.18) if one inserts the decompo- 
sitions 

l = c Idg+b(+l 
tc3 

1 = L314j+a(~tl 
(5.19) 

of the unit operator; the latter is of course confined to the zero mode state 
space of the twisted sector. 

Thus, we have observed that under a duality map the two ingredients 
of the cocycle operator, adapted to a twisted sector, are exchanged. They 
are generating elements of the Weyl-Heisenberg group. In addition, (5.18) 
informs us that duality acts as a similarity transformation which diagonalizes 
the cyclic permutation operator exp(iwTi). An alternative way of expressing 
(5.18) by means of commutative diagrams has been indicated in [22]. There 
we emphasized an additional property of the above zero mode exponentials 
which amount to phase-weighted cyclic permutations in the set of twist fields: 
they also act as generators of a symmetry group fZ which - at a prescribed 
background - leaves every correlation function invariant. From our analysis 
we learn that the cocycle operators belonging to V@” represent this group. 

Above, the duality transformation of the vertex operator gave also rise 
to an additional phase factor exp(ir$w) = exp(ir(h - h)) which takes its 
values from { 1, - 1). It is local in the sense that it only depends on the 
characteristic Narain momentum P of the vertex operator. Hence one might 
try to get rid of it by a local redefinition of V,!?“. This can be rapidly achieved 
for twists whose order N is odd. Let us introduce 

(5.20) .- 

as a new vertex operator. With the help of (4.10) we conclude that these 
vertices differ at most by a sign. Moreover using (5.16) reveals that 

(5.21) 
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provided that N = lmod 2, as announced before. The correlation function 
(4.20) for string emission is substituted by 

Kfl I@% l)bL) = d&l’(P) { exd--2~i(p - A4T&f2 + ji)i)” 
XS0,(f2+w-fl)mod(l-Q)Ad . 

(5.22) 
Thus we have managed to express this correlation function in terms of an 

N-th order root of unity (before we potentially could have ended up with a 
(2N)-th order root of unity). A counterexample where the sign factor appar- 
ent in (5.15) cannot be absorbed by a local redefinition of VP is delivered 
by the orbicircle model (having twist order two). Of course additional local 
phases (as in Up) have no impact on the question of duality invariance, 
since - being c-numbers - they are not affected by (5.5). 

Actually, a multiplication by a new sign distribution as given in (5.20) 
is completely compatible with the former decomposition of the zero mode 

exponential (3.40). A s f ar as the c-number factor 4 = exp(i$&w) in 
that formula is concerned, there still remains the freedom to change its sign 
for particular Narain lattice vectors P. Indeed, the Weyl-Heisenberg group 
commutation laws for exp(i$i), exp(iwTc) determine only its square 42 
whereas the role of (3.40) merely consists in assigning a particular value to 
exp(i$$+i&i). Since the parameters p, w live in (discrete) lattices there is 
virtually no possibility to pin down a further sign in front of 4. An exception 
from this indeterminacy occurs when d2 = 1 in which case the zero mode 
exponentials of (3.40) commute. Thus it is natural to choose the BCH-phase 
to be equal to 1. For N odd, the modification suggested in (5.20) will in fact 
satisfy this boundary condition. 

For a complete discussion of the string emission process it is mandatory 
to also take the higher twisted sectors into account. The counterparts of 
the three-point function (4.20) and of the dual twist field prescription (5.4) 
become more involved. The interested reader should consult appendix D 
where we treat this generalization. 
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5.3 Invariance of the string emission process under 
discrete axionic shifts 

An axionic background shift by a = eToe is triggered, if we adopt 

(5.23) 

as the new zero mode operators in the model characterized by U. Their 
substitution into (2.16) and (3.40) ’ d d m ee causes the initial antisymmetric 
tensor B to shift by an amount Q. Correspondingly the second class con- 
straints (3.35) now read 

-bl c = ( 
(l-O)?-27rG ho 

lj-cd 1 
(5.24) 

Still, the commutator matrix formed by this vector of constraints is identical 
to the one known from the reference model. This feature holds in the case 
of a duality map as well (cf. (5.9)). Using the prescription (3.36) for Dirac 
commutators we recover the previous results (3.37). Beyond this we come 
across two additional non-vanishing commutators: 

[tj,t’] = -27ria 
[cj,jF] = -io . (5.25) 

However, the group composition properties of exponentials containing the 
zero modes 2, 4 are not altered by the latter, because 

e iw;p^ e iwpj _ -e iWT,- e iw:cj 
(wP2 E Ad) (5.26) 

continues to hold (observe that u;j E Z ensures the triviality of the BCH 
phase exp(2wiwfaw2)). 

What are the consequences of (5.23) for the first twisted sector’s Hilbert 
space? Although we had to adjust c in order to realize the shift (5.2) the 
right- and leftmoving zero mode parts of the coordinate field X(z, Z) re- 
mained the same. We are forced to conclude that even 

‘XL(z) = X&z) ; Xi(z) = XL(Z) . (5.27) 

Therefore we do not have to care about the oscillator exponentials when we 
are going to determine the associated vertex operator (V$‘“)’ of the model 
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whose axionic background is B’ = B + (Y. Strings emitted by the new vertex 
operator still carry the Narain momentum P (in distinction to what happens 
in the case of a duality map (see 5.12)). Th is implies that the required axionic 
shift in (2.16) is to be achieved by an internal reordering: We simply choose 

P’ = p+cYw 
w’ = w 

(5.28) 

as the new momentum and winding vector. Whence there is no need here to 
bother about those c-number factors in VP which are functions of PR, PL. 

But we still have to cope with the transformation of the product (3.40) 
of zero mode exponentials under (5.23). A formal application of the BCH 
formula yields 

eiwT(p^-a2) = ei7r(aw)T&jw eimTfj ei(crw)Te . (5.29) 

Admittedly, the set of zero mode operators (2, <,fi, G} with the algebra out- 
lined above does not genuinely exist. Still, the exponentials which contain 
these modes are well-defined and the algebraic rules can be applied to them 
in a consistent manner. We concede that again a sign ambiguity is inherent 
in (5.29): Th e commutation laws of the Weyl-Heisenberg group permit us 
only to determine the square of the c-number phase unambiguously. 

Assembling all pieces we end up with 

(Vgly = VP (5.30) 

where the right hand side is to be understood as a vertex w.r.t. the new 
axionic background B’. It is important to have o commute with 0, since 
otherwise the new vertex fails to be twist invariant and thus cannot be a 
physical field for the partner orbifold. The above construction also assures 
us that the transformed vertex operators commute in the first twisted sector, 
because their zero mode parts again provide the phase factors compensating 
(4.12) or (4.15). 

The map which yields the partner twist fields in the new orbifold model 
has already been determined in [22] with th e aid of pure twist field correlation 
functions: 
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(a;) = u, ur+ 
+ (ccf)’ = Uf a:j . 

(5.31) 

Here the phase factors Uj provide a projective representation of the abelian 
group Ad on the unit circle in C: 

Yfl+h = Uj, Ujs exp( -2rifT (flJ2 E Ad) . (5.32) 

In addition, Uf is constrained by 

(Uj)” = exp( -2rifTY llo”f) (f E Ad) * (5.33) 

The right hand side of (5.32) must evidently be symmetric against exchanging 
fi and f2. This can be immediately shown provided that [cr, 01 = 0 and 
that the corresponing shift a in the lattice basis is integer. Thus we came 
across a further-argument why axionic shifts have to commute with the twist. 
Furthermore, for (5.31) t o b e well-defined we have to insist on Uo = 1!7~~-0p 
(A E Ad)* 

Now we are ready to probe the invariance of the three-point coupling 
(4.20) under a transformation induced by an axionic background shift (5.2). 
We expect to have 

((aTf,)‘I(v~)‘I(u~)‘)s+b’ = @If, IGY~~),+b (5.34) 

where b’ = b + a. As was the case for (5.17) a proof should be based on the 
auxiliary identities 

((uIfl)‘lei~TB’I(a~)‘)s+bf = (uTjl leiwTg^luL)g+b 
((uI,l)‘leipT~‘I(u~)‘)g+b’ = (aIf IeipT’lu~)s+b 

(5.35) 

involving matrix elements of the zero mode exponentials. Together with 
suitable unit operator insertions (5.34) will ensue. 

Given a solution of (5.32-5.33) th e second relation is rapidly seen to hold 
since i’ = ? and both eiP’ and U have diagonal matrix representations when 
acting on the set of ordinary twist fields. As regards the first relation it is 
recognized to be the addition theorem of (5.33) in disguise, if we are willing 
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to adopt U, as the BCH phase in the decomposition (5.29). This choice 
differs at most by a sign from the one we had previously in mind. Likewise 
there might occur now w-dependent signs in (5.30). 

At least for defining automorphisms 0 whose order is an odd number we 
are able to solve (5.32-5.33) explicitly: 

N-l 

{ 

2 

Uj = exp(27rifT Ilo”f) I (5.36) 

(For a proof one must rely on 9 E lN and also exploit the fact that 

& is an integer matrix (see (4.10).) S ince the case of twists of even order 

is more involved we have to postpone a complete discussion to a subsequent 
study [34]. 

We conclude this section with a glimpse of how an axionic shift (5.2) is 
realized in the (higher) s-th twisted sector. Again we restrict ourselves to 
odd order N. Similarly to the way the duality operation is extended to these 
sectors (cf. appendix D) one first considers 0” to be the defining twist which 
promotes the ingredients a$!, of the physical twist field Cy’ to physical 

fields themselves. Then B H B + cy induces a phase transformation (0:“‘)’ = 

Vu:“’ where Uy) this time solves (5.32-5.33) with 0 replaced by 0”. We 
concentrate here on odd N because then the order N(s) of 0” will necessarily 
be again an odd number. Whence we just have to adapt (5.36): 

N( s)-1 

exp(2rifT (5.37) 

If 0 is reinstalled as the defining twist, care must be taken that (5.37) still 
leads to a sensible transformation law of the (by now only) physical fields 
Cy). From the key property Uy' = Ug/ we deduce that (Cy))’ remains a 
physical field. Thus we have obtained 

(q.4)’ = ($4 $4 (5.38) 

We are now ready to establish the invariance of a string emission from the 
s-th twisted sector under (5.2). Taking into account some minor changes in 
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the quantization of the zero modes which are inherited from the s-th twisted 
sector analogue of (5.24) an d using the algebraic rules available for the phases 
U:“’ we indeed find 

((cl;:‘)‘l(v~)‘l(C~‘)‘jg+b’ = (&fppp:“))g+b . 
2 

(5.39) 

6 Discussion 

We have obtained the twisted sector string coupling constant g’(P) for the 
emission of an untwisted string from a twisted one in bosonic 2~ orbifold 
theories. Furthermore, we applied the Dirac quantization of the bosonic zero 
modes to calculate the complete coefficients for the OPE of twist fields with 
anti-twist fields, containing all relative phase factors. Seemingly twist in- 
variant and coset stable cocycle operators (both in the untwisted and twisted 
sector of the theory), can only be constructed, if the constraint (3.17) holds 
which is due to O’s automorphic action on AN. In this paper we have not 
covered those models whose axionic background is fractional w.r.t. the lattice 
basis and fails to commute with 0 (see below). 

With complete expressions for the vertex operators at our disposal we 
then have answered in the affirmative the question of background modular 
invariance for the twisted sector string emission. This property continues to 
hold in higher twisted sectors (there, physical twist fields are in general no 
longer related to a single fixed point, whence somewhat involved expressions 
were encountered). It was necessary to adapt the constraints which deter- 
mine the composition laws of zero mode exponentials in the twisted sector 
each time a modular transformation of the background took place. However, 
the transformed sets of cocycle operators were found merely to give new rep- 
resentations of the same Weyl-Heisenberg group. 

There are some open problems which remain to be solved: 

l What happens, if a twist 0 leaves some directions in Td fixed? This 
case becomes especially interesting in the presence of a fractionally 
valued axionic background b, which couples the twisted to the fixed 
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coordinates. It clearly resembles those heterotic orbifolds whose space 
group is embedded via shifts into the gauge degrees of freedom. In these 
models 0 does not rotate the sixteen (chiral) gauge coordinates; more- 
over non-trivial Wilson lines will communicate a shift of the spatial 
coordinates to the gauge group part [27]. 

l We left out the calculation of Yukawa couplings (aft ~~a~~). They are 
not directly accessible in the operator approach, since it only applies 
to correlation functions with at most two twist fields. Perhaps a Fock 
space description of the twist fields, as it is derived in [30], permits one 
to evaluate at least the quantum correlation part. However this method 
is quite complicated. 
The path integral formalism seems to be the more promising tool to 
evaluate Yukawa couplings (see [15], [17], [22], [35]). At the moment, a 
thorough treatment of these couplings for any background compatible 
with an automorphic twist action on AN is still missing. We will take 
up this problem in a forthcoming publication [34]. 
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A The condition on the axionic background 
B imposed by the twist 

Here we solve the constraint 

R=QTbQ-b (A-1) 

(see (3.18)) for a number of examples and check whether there even exists a 
solution of type (3.22). 

Example 1: Consider a four-dimensional torus T4 := lR4/(2~n,u~,,x~,,~J~) 

(As+) denotes the lattice generated by the simple roots of su(3)). Then a 
rotation by $ in the first and by F in the second lattice factor is taken to 
mod out T4 thus providing a 2s orbifold. For the basis 

e=(T $7) (A-2) 

of A+) we have 

It is convenient to expand b with respect to the standard basis {p;jI i,j = 
1 ,“‘, 4; i < j} of the set A4 of real antisymmetric 4 x 4 matrices: 

Fij)ap := S;,Sj, - S;pSja 
= PlP12 + P2p13 + . . . + &p34 ; p; E R (A-4) . 

Now we find that the homogeneous solution space S of (A.l) is spanned by 
21 = /‘12, 22 = p34, 23 = /‘13 - p24 and 24 = pl4 + p23 + p24. The following 
conditions arise from the fact that R is integer (whatever particular choice 
has been made for R): 

P3 = ,& mod 1 
p2 = ,&-&mod1 . W) 
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Obviously (3.22) can always be cast into the form 

bo = plzl + p6z2 + (/34 - p5)23 + /?424 
bR = (P2 - P4 + P5) P13 + (P3 - P4) p14 

(A-6) 
- 

Of course this answer is not unique, since one may add to b. (and subtract 

from bR) integer linear combinations 5 k;Z; at will. 
i=l 

Example 2: We turn to the case of the six-dimensional 2’7 orbifold where 
a Coxeter twist acts on the Cartan basis of the su(7) lattice underlying 
Ts := R6/(2aA,,(,)) via 

Q= 

0 0 0 0 0 -1 
10 0 0 0 -1 
0 10 0 0 -1 
0 0 1 0 0 -1 
0 0 0 10 -1 
0 0 0 0 1 -1 I* (A-7) 

The homogenous solution space S is spanned by (with pij as in (A.4)) 

'1 = p12 + p23 + p34 t p45 t p56 

'2 = p13 + p24 + p35 t p46 - pl6 (A4 

z3 = p14 t p25 t p36 - pl5 - p26 . 

The requirement (A. 1) for b = C pijp;j (pij E R; 1 2 i, j 5 6) then amounts i<j 
to 

Pl2 = p23 = @34 = p45 = P5smod 1 
P13 = p24 = /935 = p46 = +rsmod 1 
P14 = p25 = p36 = +l5 = -&mod 1 . 

Thus all admissible solutions can be written as 

bo - ,&2& t ,&3z2 t ,k& mod 1 . (A.lO) 

(A-9) 
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Counterexample 3: We demonstrate that det(O- 1) # 0 is necessary in 
order that b takes the form (3.22). W e inspect the case of a four-dimensional 
2, orbifold with 

(A.ll) 

where the blocks Q # 1, 0 and 1 are 2 x 2 matrices. Thus 0 fixes a two- 
dimensional torus. With the parametrization 

b= ($: 9 ~44; @:=-PI, PC=-Pz (A.12) 

we obtain 

( 
(0’ - f)P3 R(b) = p(lO- 0) 0 1 * (A.13) 

However R(b) determines ps unambiguously (i.e., p3 = 0 for R = 0). Clearly, 
the decomposition b = bo + bR as in (3.22) can no longer be maintained: 
bo vanishes on the &block while bR ceases to be integer under particular 
circumstances. Take for instance ,& = p2 = 0, ,L13 = (8’ - 1)-r and note 
that R(b) becomes integer. A short calculation reveals that 

P3 =--&g+) 
(A.14) 

det(Q - 1) = 2 - trQ = 2(1 - Rew) 

where E = 
0 1 

( ) -1 0 
and the phases w, i;, stand for the eigenvalues of Q. 

Hence except for w = exp( *$F) (2 s orbifold as the twisted two-dimensional 
subspace) one is confronted with det(Q - 1) E {2,3,4}. Due to this fact 
the blocks ,& are not always integer if the above subspace is a 2, orbifold 
(k E +43,2)). 

Counterexample 4: Actually there are also orbifold constructions urith- 
ovt fixed directions which do not possess integer representatives bR of the 
axionic background. We modify (A.ll), starting from 
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( A .1 5 )  

T h u s  0  acts v ia 0 , -1  o n  th e  latt ices o f two-d imens iona l  orb i fo ld  subspaces.  
In  sl ight c o n trast to  ( A .1 4 )  th e  o ff-d i a g o n a l  b lock o f b  m a y  th is tim e  b e  c h o s e n  
as  

P 3  =  * ( O # - 1 )  ( A .1 6 )  

W e  a r e  l ed  to  conc lude  th a t if th e  first subspace  shou ld  b e  a  Z4 -  o r  a  2s  
orb i fo ld  th e n  a n  in tegra l  r e p r e s e n ta tive  b R  is n o t avai lab le .  

B  T w o - p o in t fu n c tio n s  fo r  th e  tw iste d  

secto r  
In  th is  a p p e n d i x  w e  calculate al l  twisted sector  two-poin t  fu n c tio n s 1 3  o f th e  
osci l lator p a r ts .o f th e  boson ic  fie lds  X L ,, a n d  ,% ? iIL . O n e  easi ly  o b ta ins  

Ins tead  o f H(w)  w e  first t reat 

A fte r  th e  subst i tut ion w  =  zN, o n e  o b ta ins  ( w e  set sP  :=  Nlc,) 

H(w(z) )  =  -N  / d  E N  “;I. P 4  

In  o r d e r  to  so lve th is  in tegra l  w e  m a k e  a  shor t  excurs ion  to  th e  d e c o m p o s i tio n  
o f p a r tia l  fractions.’ Cons ide r  

130f  course,  f rom the point  of v iew of CFT, these a re  four-point  funct ions wh ich  inc lude 
two twist f ields. 
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R(x) = 
a0 + alx + . . . + a,xm f(x) 

b. + blx -j-... + bkxk =: 37; 
k > m. (B-4) 

We may of course normalize bk = 1 whence the linear factor representation 
of the denominator takes the form 

d(x) = fi(x - A) 
n=l 

(B-5) 

with pn E @. If the pn are mutually different, R(x) decomposes into partial 
fractions as follows: 

Therefore 

J R(X) dx = $ $f$ln(x - ,&) + const. . 
n 

P-7) 

In case of H(z) the zeros of the denominator d(x) are given by ,& = wn 
(w = exp(2ri/N)), and we obtain 

H(w(z)) = - 5 wnsp ln(z - wn) + const. . P.8) 
9l=l 

The integration constant is fixed by the condition H(0) = 0. Finally we 
arrive at 

(~:(x)x;l(Y))t = -Y c nIlw+nsp In [l - wSn (!)‘I , (B.9) 

and analogously 

(X;(x)X;l(y))t = -PU 5 W-ns 1 1 - 
n=l 

p n[ W-~(E)“] 

(ii?;(Z)q(g))t = -lY c ~~,w+nsPln [I -wWn (i)” 

(B.lO) 

‘I (B.ll) 
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(XL(Z)Xi(y))t = -6p” 5 wsnsr In [ 1 - wn (5> “1 . 
n=l 

(B.12) 

C Duality invariance of the string coupling 
constant 

As announced in section 5.2 we argue here why the string coupling constant 
g’ sticks to its original value, if a string carrying the dual Narain momentum 
is emitted. 

Observe first that for (4.18) to be applicable we must select a coordinate 
system in which G = +ld, and 0 E SO(d) h as acquired a 2 x 2-block diagonal 

form. Whereas h,(l 5 TV 5 -$) 1 c early keeps its original value under the 
duality map the right-moving quantities h, usually assume different values, 
as (5.12) mixes the components of the right-moving Narain vector PR. This is 
to be blamed on the presence of a non-trivial axionic background B. Thanks 
to the condition 

OB=BO W) 
(which was supposed to hold from the beginning of section 5) we may show 
that even the right mover’s contribution to g’(P) is an invariant under (5.12). 
To verify this assertion we look more closely at a 2 x 2 block 

&I = B2p-1,2v-1 B2,4,2v J-j B (1<IL,v<;) F.2) 
2p, 2u-1 2h 2u 

of B. With the notation familiar from (3.6) we then deduce 

o,c,, = C,“O, (C-3) 
(neither p nor u are summed over here). Adopting a complex basis for the 
two-dimensional real subspaces which were singled out above we immediately 
learn that Cp,, has to vanish except for the cases 0, = 0, or 0, = 0:. In 
other words, the nonvanshing blocks of B relate only those two-dimensional 
subspaces of the target for which S(k,) = S(1 - k,) possesses the same value. 
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It is therefore adequate to rewrite the twisted string coupling (4.18) as 
follows: 

g’(p) = n S(I)-f{p~(‘)PR(‘)+p~(~)p~(~)} . 
F4 

1EK 

Here, 27rK comprises all planar rotation angles ‘pp associated to 0 which 
happen to lie in the interval (O,r]. Furthermore, the index I attached to 
the right- and leftmoving momenta PR, PL requests to retain only their 
orthogonal projection onto Tl which is the momentum subspace where 0 
exclusively consists of the building blocks 0, with k, E {I, 1 - I}. 

According to the analysis given above for the 2 x 2 blocks of the axionic 
background, both transformations (5.12) are seen to decompose into 1x1 bi- 
jective maps on the various subspaces Tl. Now the invariance of g’(P) under 
P H P is seen immediately, since (1 + 2B)hg IT1 (1 5 I 5 ]K]) are 

simple rotations in Tl. 

D Duality of the process of string emission 
originating from a higher twisted sector 

Let us focus on the s-th twisted sector (1 5 s < N) which imposes global 
monodromy conditions of the form (OS, f) (f E Ad) on the coordinate field 
Xp(z, Z) (here, we apply the space group notation). In what follows we will 
always stick to the assumption (0,)” # 1 (1 5 ,Y 5 $) (see (3.6)). Put 
differently, 0” is not permitted to fix any plane inside the tar et space. 

As has been stressed in [8], [15] th (Sk e associated twist field C, will moreover 
provide the boundary conditions which result from (O”, f) by conjugation 
with arbitrary elements of sd. A short calculation yields the conjugacy class 

Pf I-1 
u (es,@f + (1 - @‘)A,) 
p=o 

. (D.1) 

The set Of comprises the orbit { (Wf) mod(1 - @“)Ad ; 0 5 x 5 N - 1) 
of the fixed point representative f. In distinction to the first twisted sector 
where ]Of] = 1 the translation group part relevant for a higher twisted sector 
generically consists of a union of cosets in FT. 
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We abbreviate by uy) that portion of Cy’ which takes care of the global 
monodromy subset whose translation vectors are restricted to the coset {f + 
(I -@)A,j}. Then th e normalized physical twist field Cy’ can be represented 
as 

As far as the quantum properties are concerned the Fock spaces obtained 
upon exciting the various ugjr are indistinguishable. Notice that the co- 
efficients in the superposition (D.2) h ave one and the same value which is 
dictated by normalization and twist invariance of Cy’. 

Now let us modify the vertex operator (3.42) such that it can properly 
act on the s-th twisted sector ground states IC:J’). The correct quantum 
monodromy will be assured if we replace the fractional shifts k, which deter- 
mine the mode expansions (3.8), (3.9) by (sk,)mod 1 throughout. We also 
recall the contents of the footnote attached to (4.20). It interprets the string 
coupling constant g’(P) in the twisted sector as the normal ordering factor 
of the quantum oscillator part of V$ which arises relative to the untwisted 
vacuum. Evidently, we must include the sector index s as an additional label 
of the coupling constant which then reads 

42 
g’(s; P) = n G((sk,)mod l)-kthfi+“@) 

p=l 
, ( D.3) 

since the two-point functions of the left- and rightmoving coordinate fields 
now have to be evaluated in the s-th twisted sector (cf. for instance (B.l)). 

Likewise the zero mode algebra (3.37) depends on the choice of a specific 
twisted sector. Here the second class constraint (3.35) has to be replaced by 
(l-0”)&2G M 0. Therefore the nontrivial commutator of the zero modes 
contained in X(z, Z) changes into 

[?,@‘I = -$ . P.4 

Consequently (3.40) will contain 0” instead of 0 in its exponentials. 
When determining the matrix elements of a single V$” sandwiched bet- 

ween ground states of the s-th twisted sector one may neglect the normal 
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ordered product of the exponentials which contain the oscillator operators; 
their effect on the full correlation function is already summarized in g’(s; P). 
Thus it remains to study the action of the zero mode exponentials on the 
twisted sector ground state ICY’). I n our (higher) sector we arrive at 

5 ei(okw)Trj ei(Okp)Ti. I-$)) 
k=l 

Despite the abundance of phase factors the right hand side in fact turns out 
to be a superposition of several ground states (D.2). To confirm this claim 
we first convince ourselves of the twist invariance of (D.5). Admittedly, the 
left hand side is invariant under O’s action by construction. However, it 
is instructive to verify this symmetry property explicitly also for the right 
hand side: Let us identify the phase-weighted states appearing in (D.5) with 
I@, k) in an obvious way. 0 will then map such a state to Ip + 1, k + 1) 
regardless of the accompanying phase factor. Due to I/or/, k) = IO, k) and 
IA iv + 1) = IA 1) we may restore the original summation ranges. 

This consideration proves to be quite useful to settle the above claim. 
We just found that the twist maps the finite set W of states Ip, k) bijectively 
onto itself. Now we single out a particular element and act with 0 repeatedly 
on it, until we are back to the original state. As discussed above the phase 
factors along this cycle are identical. Meanwhile, the translation group index 
of a(“) has traversed a complete orbit. Thereby we have extracted a phase 
weighted physical state (D.2) from (D.5). Removing these states Ip, k) from 
W the search for a twist invariant contribution can be once more started, 
because 0 continues to act bijectively on the remaining states. In a finite 
number of steps W will be exhausted. Of course, it may well occur that the 
same physical state appears several times (with a priori different phases as 
prefactors) in (D.5). 

Drastic simplifications come about if s is a prime number. From the 
elementary fact that there exists an integer i with the property si E 1 mod N 
we deduce that the orbit of every lattice vector f has (the shortest) length 1: 
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f-of = (l-q.g+f 
P-6) 

= (1 - @ “)(I + 0” + . . . + (@s)i-‘)f E (1 - @ “)/Id . 

(Notice that we are entitled to replace 0 by OS’.) The physical twist fields 
endow therefore the coordinates Xp with global monodromy shifts from a 
single coset (Cy’ = uy’). Moreover, the right hand side of (D.5) then boils 
down to a single term (ordinarily, such simplicity is only met in the first 
twisted sector), namely 

N 

c 
ei(Qkw)Tcj ei(Okp)% IICy’) = N exp(2&pT s lq$J P.7) 

k=l 

(The peculiar form of the phase factor is due to the identity (1 - 0) x 
(1 - q-1 - j: mod(1 - O).) Th e u It imate reason for the simplifications 
encountered for all prime order ZN orbifolds is that every higher twisted 
sector may (equivalently) be looked upon as a first twisted sector. 

Returning to the general case we must content ourselves with 

(IX!{, IV~IE~‘) = g’(s; P)dZexp(iapTi--&w) 
(g&h)’ 

(D.8) 

for the string emission correlation function. Fortunately, we got rid of the 
sum over zero mode exponentials still present in (D.5): Since the vertex 
operator V# is sandwiched between twist invariant physical fields each of 
its N terms which are generated by repeated action of the twist on - say - 
the first one yields the same matrix element. Therefore we gain an overall 
factor N as in (4.20). The two-fold sum in (D.8) guarantees that the three- 
point coupling is independent of whether representative vectors other than 
P, fi, f2 are taken to describe the emission vertex or the twist fields. 

We now enter the discussion of the duality invariance concerning the 
string emission from the s-th twisted sector. Above, we have already men- 
tioned the slight changes VP has to undergo if it is placed in a higher twisted 
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sector. Its dual partner field is then determined along the lines of section 
5.2. With the help of (5.5) - (5.7) and of (5.10), (5.16) where 0 is always 
replaced by 0” we conclude that the former rule (5.15) is still applicable. 

To generalize (5.4) we assume that the unphysical fields agir are subject 
to this transformation law after a substitution 0 H 0”. This makes sense 
because in an orbifold construction based on the defining twist 0” every 
(rgjr is a valid physical ground state of the first twisted sector. We therefore 
expect the following map under duality: 

. (D.9) 

Here N, stands for the number det(1 - OS) of fixed points of the toroidal 
twist 0”; (Ft)’ d enotes a complete system of orbit representatives for the 

quotient space Fz = (i-tjJAd*, and we have to identify f” = Ah (E Ad) 
while summing over h. The main virtue of (D.9) consists in the fact that the 
dual twist field is a superposition of physical twist fields although we have 
initially transformed the unphysical ingredients IY$~ according to (5.4). In 
[22], (D.9) was moreover successfully applied to verify the duality symmetry 
of Yukawa couplings of the form (ai a; CL($12’). 

In this paper we are exclusively concerned with clarifying the issue of du- 
ality invariance for the string emission process (this topic was not yet covered 
in [22]). For (D.8) to be duality invariant it is sufficient to demonstrate 

which generalizes (5.17) t o any higher twisted sector. Recall that we already 
have confirmed the validity of g’(s; P) = g’(s; P) thus ensuring duality in- 
variance within the twisted sector Fock space. In analogy to our previous 
approach (see (5.18), (5.19)) we can prove the above identity involving zero 
mode exponentials with the help of 



and the following insertions of restricted unit operators: 

(D.12) 

(Fl provides a complete system of orbit representatives for the quotient FS = 

(l-&J 
The necessity to sum over orbits of lattice vectors in (D.9) complicates 

the proofs of these auxiliary relations. In order to point out how to proceed 
let us look closer at the second identity in (D.12) (the other formulae are 
then to be treated in a similar fashion). Its right hand side turns into 

(D.13) 
when the dual twist fields are expanded according to (D.9). (E(f,h) is a 
shorthand form of exp[2rifT(1 - OS)-‘h] ; f = (G - B)-lh, t” = (G - B)-‘lc 
with f E Ad and h, k E AZ.) Th e 0 f 11 owing relations are crucial to finally 
simplify the five-fold sum in (D.13): 

E(f h) = E(d‘+, h) 

E(f, ;“h) = E(O-“f, h) 

, (D.14) 

. (D.15) 

Our first aim will be the extension of the summation over h, k to the complete 
set of coset representatives Fz. This step is not at all hampered by the phase 
factors E(f, Wh - Wk), since e.g. h I-+ Oh can be absorbed by a shift of C 

whose original range of summation can even be restored thanks to (D.147. 
Furthermore, recasting I(...) according to (D.15) and combining jgF with 

: 
Pf I-1 

C allows us to extend the sum over f to the complete set of representatives 
u=o 

Fs. We do not have to worry about the u-dependent limits of the remaining 
sum over (U - u), since we have again (D.14) at our disposal. Meanwhile we 
have arrived at 

- 
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The summation C can be immediately executed if 

justed via k H O’“k. We are permitted to set v = 0 

ICliJ))G+I(C!:s)I (D 16) t’ * 

the k-summation is ad- 

in (D.16), and to replace 
, 

C by a multiplicity factor 10~1; thereby the normalization factor 
T&T 

is can- 

cllled. From now on it is fairly easy to continue because C yields already 
fC3s 

Kronecker’s symbol &J(h-k+,d(r&S)~;. We end up with 

(D.17) 

which amounts to the decomposition of the unit operator (acting on the zero 
mode representation space of the s-th twisted sector) of the dual orbifold 
model. This concludes our check of the second identity in (D.12). 
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