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1. Introduction 

Processes involving particles containing heavy quarks, like the b quark, are at 

present of great interest from both the theoretical and the experimental point of 
PI view. Experimentally, there are prospects for detailed study of such processes . 

And theoretically, Isgur and Wise”’ have recently shown that the analysis of these 

processes greatly simplifies in the formal limit of Mb + co. This occurs because 

in this limit the heavy quark and the heavy hadron containing it become cannon- 

balls: once set into motion, their velocity is difficult to change. Only perturbative 

processes such as hard gluon emission or an electroweak interaction can effectively 

modify the velocity. Therefore the velocity becomes a good quantum number as far 

as nonperturbative aspects of QCD are concernedL3]. The physics of a semileptonic 

process in such a scenario is quite simple: the heavy quark acts as a static source 

of colour, quite analogous to the way the charged nucleus, heavy compared to the 

electron mass, acts as a source of static electric field in atomic physics. If, by the 

action of an electroweak current, the heavy quark turns into another heavy quark 

of a different flavour without change of velocity, it will not make a difference for the 

light degrees of freedom because the strong interactions are blind to flavour labels: 

the new heavy quark simply replaces its predecessor. Also, the spin of the heavy 

quark decouples from the dynamics: the hyperfine, magnetic interaction scales as 

M-‘. The hyperfine splitting thus vanishes in this limit, and the pseudoscalar B 

and the vector B' mesons become degenerate in mass. Thus in the Mb, M, t 00 

limit, the heavy-quark velocities become good quantum numbers, and there is a 

new spin-flavour symmetry as well. 

The original applications of the Isgur-Wise method were for “elastic” form 

factors, such as occur in exclusive decays like B -+ Dlfi. The emphasis in this 

paper, however, is to apply these techniques to inclusive decay processes. The goal 

is to find sum rules for the structure functions that describe the inclusive decay 

properties, in particular the rates differential only in the dilepton mass and the 

total ma.ss of the final hadronic sta.te. 
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It turns out that baryon semileptonic decays to charm are the simplest to dis- 

cuss. This occurs because the dynamics of the spectator diquark system, which 

is spinless in this case, is especially simple. Since in the infinite-mass limit the 

dynamics of the heavy-quark system becomes trivial (that of free fields), and de- 

couples from the spectator-system dynamics, there are no complications of spin 

which enter the picture. As discussed in more detail in Section 2, for any final 

state, no matter how complicated, the spin correlations between Ab and A, are ex- 

pected to be the same as for the underlying quarks b and c; the spectator system is 

uncorrelated with these spin degrees of freedom. Since the structure of each matrix 

element is simple and known, this is also true for the inclusive sum. Therefore, the 

basic structure of the differential inclusive width is 

dI’ dro 
dg2=zp 

w(e, 7J.d) (14 

where dI’o/dq2 is the parton-level differential width, IV is the mass of the final 

hadron system, q the mass of the final-state dilepton, and 

Iv2 = (MC + e)2 

The structure of Eqn. (1.1) strongly suggests a sum rule, which indeed exists 

oa 

J 
dc W(E, WV’) = 1 

0 

and which establishes the validity of the spectator picture of semileptonic decays: 

the total inclusive sum is the same as the total inclusive sum at the quark level. 

We derive this sum rule in the next section using old-fashioned current algebra 

techniques14’. However, before doing this we discuss the underlying physical ideas, 

which are analogous to the old quantum-mechanics problem of the fate of an atom 

when its nucleus is suddenly accelerated and moves off with some velocity. Our 

sum rule just expresses unitarity: the probabilities of finding the atom in ground 

plus excited states have to sum to unity. 
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Important in any sum rule is the estimate of when it converges. In this case 

we start with Ab, say, at rest, and end with A, (and the c-quark residing therein) 

moving off with velocity V, which may or may not be relativistic. The spectator 

diquark system must respond. If the velocity v is very low, the probability of 

excitation of the diquark system will be very small and the elastic channel will 

dominate. For large V, the fastest emitted particle will have on average its velocity 

v (better, its Lorentz y) comparable to that of the c quark. In practice, such as 

B + D, D* + X + I+ V, the maximum value of 7 = V.V’ allowed kinematically is 

about 1.6, so that excitations of half a Gev or so can be expected, along with a 

corresponding depletion of the elastic contribution. 

For charmless semileptonic decays, there are significant modifications to this 

picture. First of all the b quark imparts its spin to the light quark, so there 

are more complications of spin in the inclusive sums. In particular for the baryon 

decays there are now two structure functions and for meson decays six. In addition, 

we only find sum rules in the “deep inelastic” limit, when the energy release (in 

the parent rest frame) W.V is large compared to the natural QCD mass scale of 

a few hundred Mev. (Of course, we must still limit our consideration to these 

variables small compared to the heavy-quark masses, at least formally.) At the 

parton level what is happening is that the b quark decays into a low mass quark 

of large momentum Ic. The scale of the invariants is then 

W2 = (k + ps,ow12 = 2k.pslow 

W.v = (k + pslow).v x k.v 

with pslow7 the four-momentum of the spectator system, expected to be not large 

in the rest frame of the parent. We also see that the scaling variable z 

W2 xA=-= 2kmow 
2w.v 2k.v = (E - p&ow 

has the interpretation of the value of the light cone variable (E - pll)slow of the 

spectator system as measured relative to the direction of the outgoing fast quark 
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of momentum k. We shall find a parton model interpretation for what the sum 

rules express. First of all, in the scaling limit, the differential width takes the form 

dr dro 
= - yq(W2, W.v) 

dq2 dW2 dq2 

where for free fields 

p1(W2, W.v) = S(W2) 

The sum rule is 

J 
dW2 v1(W2, W.v) = 1 

which reveals the structure function in the scaling limit as just the probability of 

the spectator system to have a given value of x: 

2(W.v)Aw(W2, w.v) + fi(x) 

Again there is a question of convergence of the sum rule, which is easily an- 

swered, given the scaling picture: all the dependence on W2 and W.v comes through 

the combination 2, and the sum rule converges for x of order unity. This is quite 

consistent with the expectation that large values of (E - pll)slow are rare. 

Only one form factor appears to survive in the scaling limit (for baryon decays); 

this appears to be analogous to the vanishing of the longitudinal/transverse ratio 

in conventional deep inelastic phenomena, although there is considerable room for 

more study of this point. 

Similar results hold for meson semileptonic decays. The analysis, though, is 

somewhat more involved because the spin of the meson is no longer carried by the 

b quark, and there are spin correlations that need be taken into account: these are 

naturally incorporated with the help of the trace formalism introduced in Section 

5. 
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The semileptonic decay of the B meson to charm is again the simplest to 

discuss in the framework of the Isgur-Wise method, since the final state contains 

a c quark which we consider also heavy. The differential inclusive width looks like 

Eqn. (l.l), and there is a sum rule for w which ensures the validity of the spectator 

picture of the semileptonic decays also in this case. 

For charmless decays, the spectator picture is, as before, only achieved in the 

limit when W.v is large compared to A. Here, the scalar form factors are six in 

number: two of them are reminiscent of the two baryonic form factors and have 

a similar parton-model interpretation; the rest are shown not to contribute to the 

total sum. 

Since the b quark is heavy, we expect corrections calculable in perturbative 

QCD. As mentioned before, the velocity of the b quark is a good quantum number 

as far as nonperturbative low-energy aspects of QCD are concerned and only hard 

gluon emissions of momentum k2 N Mf can effectively modify it: the QCD per- 

turbative expansion in as(k2) can be thus viewed as an expansion in the number of 

velocity changes of the b quark. Because QCD is asymptotically free, as(k2) << 1, 

it makes sense to use the perturbative expansion to compute the corrections. The 

issue of how these perturbative QCD corrections would affect the sum rules is 

beyond the scope of the present a.nalysis. 

In what follows we first consider the simple baryon decays, and then the meson 

decays. In Section 2 we lay out the kinematics and formalism for Ab decays into 

charmed and then to charmless final states. In Section 3 we discuss the sum rules 

for Ab semileptonic decay into charmed final states, while Section 4 is devoted to 

sum rules for charmless semileptonic Ab decays. Sections 5 to 7 repeat all this for B- 

meson decays. Section 5 contains the kinematics and formalism for both charmed 

and uncharmed final states, Sections 6 and 7 the sum rules for semileptonic decays 

into charmed and uncharmed final states respectively. Section 8 is devoted to 

concluding comments. 



2. The Formalism for Baryon Decays 

The Isgur-Wise results take an especially simple form for the semileptonic 

decays of the Ab. The “elastic” process has the following amplitude[51[61: 

&I J,i lb) = /E+‘)rr(l - r5)+) ~el(v.v’) (2.1) 

where M, v, P and M’, v’, p’ are masses, four-velocities, and momenta of Ab and 

A,, respectively; Fer(v.v’) is the universal form factor of Isgur and Wise, which 

does not depend on the masses of the heavy quarks, and for which F,l( 1) = 1. One 

sees that the spin structure is identical to what exists in the free quark limit. This 

occurs essentially because the spectator light quark system is a spinless diquark; 

hence all spin correlations remain within the heavy-quark system. It is evident 

that the same feature holds for genera.1 final states: 

(2.2) 

The simplicity of this result leads to simplicity for the inclusive properties of these 

decays as well. Let us construct the differential decay width for 

fib + (A, + x), + (I+ fi& (2.3) 

where q and W are the four-momenta of the dilepton system and the hadron 

system, respectively. We find 

dr 
dW2dq2 

= F f$ 1 F(v, v’; X) I2 S(W2 - (Px + p’)2) 

where 

(2.4) 

dro -= G$I &, I2 d31 d3v 

dQ2 2 J (24324-J (27r)32vo 
S(q2 - (l+ @)S [(P - q - Px)2 - hP] 
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x 21rM’ Tr (1+ $1 1+ $ 
2 YPP -75x 2 -)-id1 - 75) [Tr h'(l - 75) Jr"(1 - 75)l 1 P-5) 

In the “free-field” limit of no form factors and no excitations of inelastic final states 

we would simply have 

dl-’ 
dW2dq2 

+ 3 S(W2 - A!v2) (2.6) 

implying that dI’o/dq2 is essentially just the spectator-model differential width. 

In the infinite-mass limit there is additional simplification. We expect for finite 

v and v’ that the excitation energy of hadrons remains finite, i.e. 

w2 = (M’ + E)2 P-7) 

with E bounded. Then 

dl? dI’o - = - c 1 F(v,v’;X) I2 6(6 - v’.Px) 
dq2dc dq2 x P-8) 

with this time dJTo/dq2 really just the spectator-model expression in the limit. This 

occurs because the dependence on the final state X in Eqn. (2.5) only appears in 

the delta-function and in o’ = w&?x x 5. Px can be safely dropped relative to 

the other momenta P and q which tend to infinity. 

We therefore are led to define the invariant structure function 

W(E,V.V’) E c 1 F( 0, v’; X) I2 S(E - v’.Px) 
X 

P-9) 

It is clear that were there a sum rule for it 

cxl Co 

J 
de L+,v.v’) = 1 = I F,,(v.v’) I2 + 

J 
de We,&, v.v’) (2.10) 

0 0 

the spectator picture of semileptonic decays would emerge. This is the subject of 

the next section; it indeed turns out to be true once the contribution of the channel 
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&, + (D + y)W + (I + fi)p is also included. We may note here that this class of 

final states is separately described by a structure function of spectator form, as in 

Eqns. (2.8) and (2.9) . 

However, the main thrust of this paper has to do with charmless final states. 

In this case the matrix elements are not quite as simple. Their form in the infinite 

mass limit is as follows: 

lx1 Jo IAb) = (2.11) 

The information on the final state is in the spinor variable +, because the final 

light quark system now has spin l/2. 

We may again try to construct a structure function for inclusive processes 

analogous to that in Eqn.(2.9). H owever this time it transforms as a Dirac matrix: 

qw,.) = c ~(X,v)lj(X,v)(27r)3 S4(Px - W) (2.12) 
X 

where W = P - q. We have included for later convenience the energy-momentum 

conserving delta function. (But note that there is one factor 27r missing). Upon 

summation over all final states X, this matrix must be expressible only in terms of 

W and v. There is additional simplification coming from the presence of the V-A 

(1 - 75) factors. The relevant general structure depends upon only two invariant 

form factors, whose arguments we can take to be W2 and IKv. 

Q = 41 v + $2 v.W $+ noncontributing terms (2.13) 

Note that for a free massless particle in the final state we would have 

@f Tee =ljv q W2) qwo) (2.14) 

But in any case, in general the differential decay width may be written as (the 
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details are in the appendix; in particular see Eqn. (A.5)) 

(2.15) 

and 

o;2x = G$I -%b I2 

J 

3 d3u 
2 (2iy210 (27i932vrJ 

S(q2 - (I + v)2) s [w2 - (P - q)“] 

xi 1+ $ Tr Y’Y& - y5)(- 2 hu(l-75) 1 [Tr WP-75) Jr"(l -rs>l (274 

(2.16) 

In analogy to the previous case, we may neglect W2 in the delta-function, thereby 

allowing explicit evaluation of the remaining expression. After appropriate aver- 

aging, the lepton trace must reduce to a multiple of (qpqv - cfvq2) allowing the 

remaining trace to be readily evaluated. The net result has the form 

RX = R(P,q)(2 q.v qA + qV) (2.17) 

Knowing the free-field expression, Eqn. (2.15) , allows us to infer the “spectator” 

width dl?o/dq2: 

dro ~ = 2w& = 20 [2 q.v q.w + q%.w] 
dQ2 

(2.18) 

Consequently 

Tr (2 q.v d+ q2 $)(I - 75)Q 
4 [2 q.v q.w + q%.W] 

(2.19) 

This form will be useful in the interpretation of the sum rules found in Section 4. 

Before continuing, however, we mention that it is in principle possible to sep- 

arate the two form factors $1 and 42 with help of lepton angular correlation mea- 

surements. Explicitly, in the center of mass frame of 1 v where the i axis points 
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along (-I?), the d’ erection of the charged lepton defines the polar angle 8. The 

rate is proportional to 

q2x $1 [ ( 
I+2 
M sin28 + W.v + 77 I I+ I (v” - $cose ) 2 2). + 4 ( W) (~.sin20+1)] 

(2.20) 

The above equation neglects the charged lepton mass. For I- li (I+ v) the quantity 

rj = 1(-l). Th e f orm factors 41 and $2 are thus separated. 

3. Sum Rules for Semileptonic Baryon Decay into Charm 

In the preceding section we have already conjectured the existence of a sum 

rule for the inclusive structure function w defined in Eqn.(2.10). It is now time 

to derive it161. To do this we revert to ancient techniques of current algebra. We 

consider currents of the form 

J = Xb Jt = bi=‘c (W 

where I’ is any Dirac matrix and I’ = ToI’tTo. The indices on the V-A currents are 

dropped for notational convenience. The equal-time commutators are then given 
by the expression 

[Jt(o, Z), J(o)] = (bFyorb - cryoh) s3(q 

-J3(0) S3(Z) 
(3.2) 

where possible QCD corrections (present only for the commutator of space compo- 

nents) are here ignored. We take matrix elements of these commutation relations 

between Ab states of equal, arbitrary but finite velocity v. Upon expansion into 

intermediate states and Fourier transformation into momentum space, standard 
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manipulation leads to the following expression 

c 1 (nl J(0) /Ab) I2 (2~)~6~($-2% -%I---~ lb4 Jt(o) lb) I2 (27d3~3(~-z7n+4 
n n 

= (Ad J3P) Ab) = j$qV)r70rU(V) (3.3) 

In addition to A,X, the first term also picks up a contribution from the inclusive 

DY channel; in the limit of Isgur and Wise its amplitude has the following structure 

(D(V’)YI J(o) Ifib( = /$&&(V, V’; Y)i%h(V) (3.4) 

where $y(v, v’; Y) is a spinor (analog to F(v, v’; X) of Eqn. (2.2) ), and 2, is the 

wave-function of the D meson, as defined in Eqn. (5.2) of Section 5. 

The first term in Eqn. (3.3) will clearly involve the quantity w of interest. This 

can be accomplished by introducing an extra delta-function of energy conservation, 

which is then integrated over qo at fixed {. 

c 1 @I J(o) lAb) I2 ’ 
n 

I\b) I2 (274364(p - (p’ + px) - q) + 

1 (DYI J(0) IAb) I2 (2743’54(p - (P’ + h) - q) = 
* 



7 +0 FDzD* Jd3g$ 1 7JyDp(v~)ru(v) I2 h4p - PI - py - q) = 
-CO 7 

00 

= 
J 

+ogc I ( F v, “1; X) l2 S[(P - px - q)2 - ~‘~1 i+)i+(i+ ~)rqv) + 
--oo X 

00 

J 
dqog c c I $yB(v’)ru(v) I2 S[(P - Py - q)2 - hf2] (3.5) 

-CO Y D=D,D* 

The contributions from the D as well as from the the three polarization states of 

the D* are denoted by CD=D,D.. 

Identifying P - q = W = p’ + Px, and expanding out the argument of the 

delta-function to leading order in M-’ gives 

(p - px - q)2 - M’2 E w2 - 2W.Px - Ad’2 2 2M’(E - v’.Px) w-9 

and similarly for Py. Thus 

c 1 (nl J(0) Ifib) I2 (2r)363($-&-g g -$ J dqo w(6,v.v’) U(v)r(l+ #)ru(v) 
n -CCl 

The invariant function w now includes the contribution from both the A,X and 

the DY channels; w reads 

W(E,V.V’) = c 1 F( v, v’; x) I2 S(E - v’.Px) + c $yA+(v')ti,y& - v’.fi> (3.8) 
X Y 

It is appropriate now to make explicit the relation between the variable qo and the 

invariant variables of intrinsic interest. It is useful to introduce here the variables 
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IV.v and W2, which will evidently become of central importance when dealing with 

the charmless final states. We have 

w.v = P.v - q.v = M - y(qlJ - fY) 

w2 = -M2+2MIVJ+q2 = -M2+2MIV.v+y-2[(M-IV.z9+~542- 1 <I2 (3.9) 

This elimination of ~0 gives a parabola in W.V - IV2 space. We simplify by choosing 

{such that 

ti.v’= (p’-q).v’=o (3.10) 

and obtain 

I IQ I2 (3.11) 

This parabola is shown in Fig. 2. 

The important part of the sum will occur for W2 2 M’2. In particular the 

qualitative estimates made in Section 1 imply, for A some reasonable multiple of 

AQCD and v.v’ = y large 

~2 = (M’ + 6)2 = (p’ + C k;)2 E Ml2 + 2~’ C ki N Ml2 + 2M’yA 

i i 

Consequently, 

6 2 (v.v’ - 1)A (3.12) 

where the subtraction expresses the vanishing of E as v.v’ -+ 1. This in turn implies 

that the shaded region in Fig. 2 is the important one for the sum. Therefore the 

change in W.v as one crosses the important region of the sum becomes negligible, 

because 

6(W.v) = M’G(v’.v) = &ou” M $$ M y2z 
v.v’ 

(3.13) 

which is O(l), in contrast to W.v which is O(M’). This in turn implies that the 

change in v.v’ across the important region is O(M’-‘) in the Isgur-Wise limit. We 
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find the simple result 

dW2 = 2M’dc = 2WodWo = -2Wodqo M -2E’dqo (3.14) 

or 
M’ 

dqo = -E’dc (3.15) 

So everything in the first term of the commutator except the spinor product has 

essentially the necessary form for the desired sum rule. Since the spinor product 

has the same structure as for free fields, and the sum rule is true for free fields, we 

can already anticipate that things will work out satisfactorily. But for free fields 

the second term in the commutator does contribute. 

The second term has to do with z-graph contributions, as illustrated in Fig. 3. 

They are also described by a structure function Lz, although the physical significance 

of Lz, is more obscure, because it is not a cross-section for anything. We may write, 

with M’ti’ = ( 

c I (nl J+(o) lb) I2 (w3s3(P’ -F/l + 3 = 
n 

Tdqo J$F 1 (A,A,R,Xl J+(O) IAb) I2 (27r)364(P + q - (2P + P’ + px)) = 

-CO 

~d~~~~ 1 F(v, if; X) I2 S(s - if.&) 1 v(v’)I?u(v) I2 = 
-CO 

Mm 
4E J 

- - 
=- dqo c;l(c, v.6’) u(v)I’( J/ - l)ru(v) (3.16) 

-0Cl 

(Other intermediate states with the same quantum numbers, such as AbAbDX, 

AbBDX, AbBA,X, BB&X, BBDX, have been omitted, but it can be shown 

that they contribute additively to ~2, as in (3.7)). 
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Important here is the fact that the spinor structure is just that of free fields, 

while the remainder again is fixed by invariance considerations. We should also 

emphasize that, unlike the free-field case, the matrix element can be connected due 

to gluon exchanges; nothing in what follows is sensitive to that feature. 

We also mention that we are neglecting the “vacuum polarization” contribu- 

tions (Fig. S),(which 1 a so may be connected) because they appear to produce 

self-cancelling contributions. However, there may be more to learn from a careful 

study of these contributions. 

The z-graph contributions can again be expected to contribute for W2 ;2 Mi2, 

near the free field locale. And again qualitative arguments as given in Section 

1 easily show that the reflection of the shaded region around the horizontal axis 

is where the z-graph sum should saturate. With this inference, we are ready to 

combine the two pieces, obtaining 

M 
4M’E J 

dqo ~(6, v.v’)u(v)r[yo J7 M + (P - $) - r’.(pt - $) + M’]h(v) 

M 
+- 

4M’E J 
dqo LZ(E,~.i?)ii(v)~[y~ + r’.(F - $) - M’]I’u(v) 

= $p(v)Fyoru(v) (3.17) 

Here we carefully display the spinor-product factors, insensitive to the value of 

e and observe there are, for general C, two independent kinematical structures. 

Therefore the coefficient of each satisfies a sum rule, leading to 

E’ 

-(J 2M’ 
dqo +, v.v’) + 

J 
dqo L;)(~,v.if) = 1 

> 

E’ 

-(J 2M’ 
dqo w(E,v.v’) - 

J 
dqo L;)(z,v.ti’) = 0 

> 
(3.18) 

16 



and, finally, using Eqn. (3.15) , 

a 

J 
de W(E, v.v’) = 1 

0 

co 

J 
dz W(z, v.v’) = 1 

0 

(3.19) 

This is the desired result. 

4. Sum Rules for the Baryonic Charmless Semileptonic Decays 

The problem of deriving sum rules for the main case of interest, the decays of 

At, into noncharmed, ordinary hadrons, is both similar and different from what was 

encountered in the previous section. The similarity lies in the use of equal-time 

commutation relations in a way completely analogous to what was done there. 

The main difference can be seen in Fig. 2, considered in the limit of small M’. 

Under those circumstances, the simplifications encountered in the previous case 

no longer occur. The important regions of parameter space for the sum no longer 

occur for fixed v.v’. And for small v.v’ (which in Fig. 2 corresponds to small values 

of W2), there is not the clean separation of z-graph contributions from the direct 

contributions of interest. 

These obstacles seem possible to be overcome only by a limitation of goals, 

namely looking for sum rules for the situation when the invariant parameter W.v is 

large compared to the natural scale A (with A some reasonable multiple of AQCD), 

but of course small compared to the heavy-quark mass M. This is a short-distance, 

parton-model limit, and we shall find many similarities with the corresponding 

situation in the classical case of deep-inelastic scattering. 

We begin as in the previous section with the expression for the equal time 

commutator of currents, with the c-quark replaced, for simplicity here, with an 
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s-quark*. The procedure is then completely analogous to the previous case, until 

we reach Eqn. (3.3) , at which point we write down, for the direct term 

c 1 (nl J(o) lb) I2 (27~)~b~(P’- p’ - 0 = 
n 

Jd@ F 1 (xl J(o) lb) I2 (274364(p - px - q) = 

M =- 
2E J 

dqo u(v)F!D(W, vph(v) 

where again W = P - q = Px, and Q is defined in Eqn. (2.12) 

(4.1) 

The kinematic analysis for the z-graph term again follows similar lines, so that 

the expression for the sum rules becomes, in hopefully self-evident notation, 

M 
7 
2E J 

dqo u(v)Fqw, v)ru(v) + & J dqo +@b(W, v)ru(v) = 

= ~ii(v)ryoru(v) P-2) 

with w = P - q = -Px; therefore I&‘0 5 0. It is useful to check that for free fields, 

the sum rule works. Recalling the free-field limit for @, Eqn. (2.14) , we have 

J 
dqo a( W, v) = 

J 
dWo (l/V + M’)S( W2 - Mi2) 

=; 
[ 

I 
70 - J;; 1 P-3) 

J 
dqo g(w,v) 1 

which gives us the correct sum of Eqn. (4.2) . To consider the general case, we 

first of all apply the reasoning given in the introduction, Section 1, that argues 

* Were we to choose the case of interest 21~~ (1 - ys)b we would have to consider the action of 
the currents on the spectator diquark. This point, which appears superficially not to create 
any real problems, is currently under study. 
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that the important values of W2 and W.v in this case are for 

W2 2 2AW.v (4.4) 

Also, in the limit of large W2 and W.v we see that again W.v may be taken as 

essentially constant while summing over W2. From 

21lGI (1+fz) (1-g (4.5) 

we see that the variation in W.v is indeed small as z varies, say, from zero to one. 

This approximation is further supported by the expectation that in this limit 

we may have scaling behavior of the structure functions 9;. This follows from 

general dimensional arguments as well as the more detailed reasoning presented in 

Section 1. When I’ = ~~(1 - 75) we write 

@ =~vI+ $ W.vv:! + noncontributing terms w-3 

with 

~AIV.V~; = f;(X) (4.7) 

and the scaling variable 

W2 
’ = 2AW.v (4.8) 

We are now ready to insert these expressions into the sum rule Eqn (4.2). We need 
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to change integration variables from qo to W2; the connection is 

Go = -dWo = - 
dW2 

2 I w, I 

We then have 

(4.9) 

J 27;: (G(v)r [(all + WV $Y2)- (v&+ W.V ~43~)]r~(~) = 

= u(v)F~oru(v) (4.10) 

The extraction of the sum rules is analogous to the previous case in Section 3. As 

the yP are linearly independent, it follows that 

1 
2 J [ dW2 h + h) + y2($92 + $52) - y2 gp2 - $32) = 1 o 1 

;I%- dW2 
J 

v’ and I$ are arbitrary vectors. The only way the previous identities can hold in 

any generic frame is by demanding that 

1 
5 J dW2(Y1 t @l) = 1, 

1 
5 J dW2(y2 + @2) = o, 

Combining these equations one finds 

1+ 

1 
z dW J 2lW 

pgT-JwaIl - @l) = 0 

(4.12) 

l-J* 
and similar combinations involving 91, $1 and 992, &. If we assume that vi and 

$i tend to zero fast enough as W2 gets large, in the regime where 1 I$’ 12>> A2 we 
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find 

(4.14) 

This is the main result of this section. 

Let us now show that ‘p2 vanishes in the limit, and that ‘pr is positive definite. 

This follows from the structure of Q as defined in Eqn. (2.12) . For any np timelike 

with no 2 0, 

Tr($ 0 qp 2 0 (4.15) 

Indeed, Tr( $ Q 9) = C,($L)+ yo $ $~(27r)~b~(Px - W), with $L = 9 $J; 

the eigenvalues of yo @ are I no I f I ii 1, both positive, thus leading to (4.15). 

Taking np = Wp,vp (4.15) leads to, respectively, 

w2plt(v.w)2~2 > 0 

91-k92 L 0 (4.16) 

- Since (v. W)2 >> W2 the first equation implies that ~2 ;S 0, which combined with 

the vanishing sum rule for ~2 tells us that ~2 = 0. The second one then allows to 

conclude that yr is positive. The only assumption is that fr(x) = 2AW.vyr is a 

smooth function of order unity. 

These are the expected results from the parton-model point of view. The main 

result is for yr. In the convergence region, & N da. Therefore, in scaling 

language, the sum rule is 
co 

J dxfl(x) = 1 (4.17) 

0 

and can be anticipated to converge for x of order unity. 
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The inclusive differential decay rate for the semileptonic Ab decay into un- 

charmed final states now reads 

dr N dro 
dq2 dW2 = dq2 Yl(W2, v.W) (4.18) 

and the spectator form for dI’/dq2 is apparent. 

It is worth mentioning that in the scaling limit , W.v > A, the form factor y1 

is expected to be negligible for small W 2, W2 2 A2, because only a few exclusive 

channels are available. This is also the case for all form factors of Section 7, which 

describe semileptonic B decay into uncharmed final states. 

5. The Formalism for the Meson Decays 

The original Isgur-Wise development was applied to relate “elastic” form fac- 

tors of decays such as B --+ D IV and B + D* IV. Here the analysis becomes 

slightly more cumbersome because, unlike for the baryons, the spin of the meson 

is no longer carried by the heavy quark and spin correlations enter the game. The 

new flavour-spin symmetry that arises when b and c quarks are heavy can be imple- 

mented in a 4x4 Dirac matrix formalism I71 which proves very convenient in coping 

with the inclusive decays. The amplitude reads as follows 

(DXI Jp IB) = /g Tr (~&&+,v’;X)) (54 

where M, E (M’, E’) are the mass and the energy of the B (D) meson and the 

trace is on the Dirac matrices, 

2, = A+(v’) for O- D 

2, =75 $A+@) for l- D* 
P-2) 

and similarly for B. (For antiparticles write A- instead of A+). E’, is the polariza- 

tion vector of the D*, for which v’.e = 0 and e2 = -1. The non-trivial dynamics 
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of the light spectators is contained in the matrix p(v, v’; X), which only depends 

on the heavy meson kinematics through their velocities. JP is the Dirac matrix of 

the current, while A*(v) = (If $)/2 and D = y0Z7ty0. 

The form of p is especially simple in the case of “elastic” semileptonic transi- 

tions of B to D or D*. It can depend upon initial and final velocities in the allowed 

invariant combinations $, ,z?, (fi fi’), but th ese can be eliminated with the use 

of the Dirac projection operators A+(v), A+(v’) residing on L? and Do. Its form is, 

therefore, restricted to be proportional to the Dirac unit matrix 

p(v.v’) = p,l(v.v’) I (5.3) 

p,.(v.v’) being the universal function of Isgur and Wise for the meson decays, which 

also satifies p,l( 1) = 1. 

The inclusive B decay has also a simple form, after summing over the contri- 

butions of the D and the three polarizations of the D* 

B+(D or D' +X), +(l+v), (54 

To see this use the following identity (see (A.2)) 

c 2-k (B,,(l - ys)Bp(v, v’; -9 7-r (P(v, 4 X)&,(1 - Y5P) = 
D.D’ 

= 2Tr (-//Al - 75P+bh4 - rs)A+(v)~A+(v’)pA+(v)) (5.5) 

The structure of p is dictated by the strong interactions which are parity conserving. 

After appropriate averaging over the final states X, as in (3.8), one has 

A+(v) c pA+(v’)p S(E - &=x) A+(v) = A+(v)(A(c, v.v')+B(c, v.v') &A+(v) 
X > 
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= A+(v)(A t v.v’B) = A+(v)+, v.v’) 

where w can be written as 

w(c,v.v') = i C 7% (A+(v)pA+(d)p) 6(6 - d.Px) 

X 

w-3 

(5.7) 

The structure of the differential decay rate is the same as for the Ab decay 

dr dro -=- 
dq2 de dq2 4% VJ’) (54 

There is also a sum rule for W(E, v.v’), and the “free” spectator decay rate emerges 

again for the inclusive process. The next section is devoted to this subject. 

The last case to consider is semileptonic B” decay with charmless final states. 

The symmetry of Isgur and Wise is not as useful in reducing the number of invariant 

form factors as in the previous examples: their number is six (only four actually 

contribute to the decay rate). Nevertheless, we shall still keep the trace formalism 

introduced at the begining of this section since it provides an easy way to compare 

the results to those for the Ab and the “free” spectator model. We thus write for 

the hadronic matrix element, as before, 

(Xl Jp I&) = /g TT- (J$Y(v; X>> 

The structure function for the inclusive process 

wpv(v, W> = c (2~)~ S4(f’x - W) (81 Jj IX) (Xl Jv I&) 
X 

can be written as (see (A.6)) 

(5.10) 

wv = 5 Tr(yXy,(l -Y5)~+(v)%(l-~ys)) Tr (~qqV,w,) 
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M 
+z Tr 

( 
yxYv(l -75)&(1 -75) Tr 

) ( 
7x +,cv, W) 

> 
(5.11) 

with 

@(v,w) = ;c(2~)~ S4(Px - W) ~+;X)A+(v)y(v;x) 
X 

x~&,w)= :X(2x)3 S4(Px - W) y(v;X)A+(v)ysr~A+(v)y(v;X) - 

(5.12) 

X 

The general structure of @ and 9, is as follows 

Q(v, W) = 41 V’ + (v.W) $$2 + noncontributing terms 

Q&J7 w = [(V.qh(% - va $) + ((v.W) $?f!Q+ ~$3) (Wa - (&/f+a)] y5 

+$4 eagOpyuWSvP + noncontributing terms . (5.13) 

The number of form factors is still six, and no reduction has occurred.Each form 

factor is a real function of W2 and v.W. 

The differential decay rate may be written as 

dr 
dq2 dW2 

= RX Tr yx TQ(v, W)) + R’“Tr (yATb,(v, W)) (5.14) 

with 

nAa = G;I Lb I2 J d31 d3v 

2 (27r)3210 (27r)32vo 
S(q2 - (I + V)2) s [w2 - (P - q)2] 

Xk [Tr ?TP(~ - ~5)$%(1 - 75)] [Tr ,h”(l - 75) Jy”(l - y5)] (27r) (5.15) 

and 

RX = fPva (5.16) 

(CIA is the same as defined in Section 2, Eqn.(2.16) ). The projector (qpqV - q2gpV) 
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coming from the lepton pair integration allows again to write 

(5.17) 

Finally, 

dr 
dW2dq2 = 

Tr ((2 q.v B-t- q2 ~41 - YS)@ + (2 $ qff + q2 ?)(I - 75)%) 
4 [a q.v q.w + q%.W] 

(5.18) 

The term \lTa is not present in the baryon structure function. We will see, however, 

that it will not contribute to dI’/dq2 after integrating over W2 in the kinematic 

region where v.W > A. 

6. Sum Rules for Sendeptonic Meson Decay into Charm 

The derivation of a sum rule for the inclusive structure function w of the B 

meson charmed decay [‘I (as defined in Eqn. (5.8) ) can now be carried through. 

It follows closely the derivation of Section 3 for the baryons and we refer to that 

section for the details. An analogous expression to (3.3) is obtained in this case 

C I (nI J(O) IB) I2 (2r)3S3(F-& -3-C I (nl J’(0) IB) I2 (zT)~S~(P’-P;~+~~ 
n n 

= (BI 53(O) IB) = &Tr (ryorA+(v)) (64 

The current matrix element is given by the trace formula (5.1). The by now familiar 

manipulations give, for the direct graph 

C I (4 J(O) IB) I2 (2r)“S3(P - j’n - 4 = 
n 

I (0x1 J(0) IB) I2 (274364(P - (p’ + Px) - q) = 
l 
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00 

J J &lo d3p’$$ c c Tr(Z%l?p)Tr(p~~‘D)64(P - p’ - PX - q) = 

-CO X D=D,D* 

00 

J 
dqo - ~~‘Tr(rA+(v’)I?A+(v)) x Tr(A+(v)pA+(v’)p) s[(P - px - q)2 - Ml21 

” 

00 

d!c - 
2E J 

dqo W(C, v.v’) Tr(rA+(v’)rA+(u)) (64 
-00 

For the z-graph one finds 

C I (nl J+(o) IB) 1’ (~K)~S~(F - p’ + $) = 
n 

JmdqoJ$x c ( 1 BBDXI J(0) IB) I2 (27~)~S~(P-(2P+p’+P~)+q) 

-CO x D=D,D* 

Af O” =- 
2E J dqo W(Z, v.i?') T@A-(ti’)I’A+(u)) 

-03 

(States like A,Y which also h ave the same quantum numbers can contribute as 

intermediate states, and should in principle be taken into account. It is not difficult 

to realize that upon summing over Y and the polarizations of the A, they give a 

contribution which adds up to w(t,v.v’)). C ombining the two pieces, the direct 

and the z-graph contributions, yields 

M 
4M’E J dqo W(E, v.v’)Tr (rA+[Q  [r’+70J~-7-(P-3]) 

M -- 
4M’E J 

dqo L;)(~,v.ti’)Tr I?A ( )I’ M’ - yo 
(+d J------ 

Ml2 + (F - g2 - r’.(@ - $.l 
I> 
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which leads to 

E’ 

-(I 2M’ Go f-+,v.v’) + 
J 

dqo Lqqo?) = I 
> 

40 W(E,W’) - 
J 

dqo ij(z,v.v’) = 0 (6.5) 

and finally, 
co 

J dc ~(6, WV’) = 1 

0 

00 
J ds G(s, WV’) = 1 

0 

(6.6) 

This is again the desired result. 

Splitting up the sum rule into elastic and inelastic contributions, it reads 

oa 

1 = $1 + WI’) 1 P&V’) 12 + 
J 

de w;,,/(E, w’) (6.7) 
0 

Note the presence of the kinematic factor i(l + v.v’) multiplying the elastic 

contribution, not present for the baryons. 
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‘7. Sum Rules for the Charmless 
Semileptonic Decays of the Heavy Mesons 

This section is devoted to the derivation of the sum rules for the decay of the 

B” meson into noncharmed hadrons. The analysis is once again verbatim to that 

of Section 4 for the baryons, the only technical complication being the appearance 

of a larger number of form factors. Let us in this section specialize to V-A currents 

(see Eqns. (3.1) and (3.2)), i.e. 

where IP = yP(l - 75). The starting point is a.gain an expression which follows 

from the equal-time commutator of these currents: 

c @I J/!(O) In> (4 JO) P) (W3S3(p’ - p’, - + 
n 

c (BI J@) In) (121 J;(O) IB) (24”6”(3 - 6, + j’) = 
n 

= PI vYorv IB) = g ~~(rvA+(4r,70) (74 

Inserting the hadronic matrix element given in Eqn.(5.9), yields (see (A.3), and 

(5.12) for the definition of @ and !P,) 

C (BI J;(O) In) (7x1 Jv(0) IB) (2~)~&~($ - p’ - $) = 
n 

Ju c &lo .F. n+pBr,) 5yrgv) (27~9~6~p3-P~ -Q)= 
-KJ x 2E 

I c 40 K 7ypA+(q,) n(r,A+(+) (27g3b4(P -Px -q)= 
--oo x 2E 



The analysis of the z-graph term can be done along similar lines; the expression 

for the sum rules becomes 

g J dqo [zyr,A+(grp(W, 4) + Tr(r,A-(v)yQA+(v)r,9r,(W, 4>3 

-- M J dqo [~~(rv~+(qQqV, v)) + TT(r,A-(v)y~A+(v)r,l~(~, 41 = 
2E 

= g zyr,A+(~)r,70) (74 

The different tensor structure of the various terms involved again implies the split- 

ting of the sum rule into two, with the following identifications 

J dqo ~r(r,A+(v)r,qw, g)- I dqo z+(r,A+(v)rp6(W, VI> = T+,A+(v)r,yo) 

The first one is the same expression as the baryonic sum rule of Section 4, and we 

are thus immediately led to conclude 

V-5) 

in the situation where v.W is large compared to A. Furthermore, since the in- 

equality Tr( fi@T) 2 0 still h o Id s, we recover in this limit 42 = 0 and ~$1 > 0, 

in accordance with the parton-model predictions. 
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The second sum rule of Eqn. (7.4) is a new feature of the charmless meson 

decays. Let us now show that the integral over dW2 of the new invariant form 

factors $1 also vanishes. For this purpose rewrite it as 

with 

Tap = v*W(gap - wp) $1 + (v.Wvp$J2 + wpti3) (j/j& _ vJ,$q + ~4~apspWvvP 

V-7) 
Eqn. (7.6) implies 

J V-8) 

As in Section 4, to derive the sum rules b? is held fixed, I @ I>> A; in the 
fi region W2 ,S 211~. W we have W0 + 1. 

t-3 

The coefficients of g,p, c(yp9P and of the spatial components zliWj and W;vj 

must vanish identically since they cannot cancel against anything. This yields 

Jw I( 5 (v.W)$Jr(v, W) - (v.W)&(v, Iv)) = 0 for I = 1,2,3 

JIW I( 
dW2 (W pw9 - W?lP)$4(v, W) - (W 

0 
pv17 - Wv7~4(v, Iv)) = 0 (7.9) 

From the first one, 

J ( 
dW2 (+I + 41) - $$I-$1) =o 

) 
The component r,~ = 0, p = i of the second one gives 

J ( 
dW2 v’ ($74 + 44) - g-7($4-6, =o > 

(7.10) 

(7.11) 

31 



Since v’ and L? are independent, we conclude in both cases that 

J dW2(lh + 41, = J dW2($, - &) = o 

The desired result follows 

/dW2dl = /dW2& =o I = 1,2,3,4 (7.12) 

Similarly, from the coefficients of WaWa, it follows 

J 
dW2 (w.w)y!~~ = 0 

The decay rate of Eqn. (5.18) in the kinematical region A < v.W < M reads 

dr dro =- 
dW2 dq2 dq2 $1 + $1 - 

> 
(7.13) 

The sum rules derived in this section ensure once again that upon integration 

over W2 the differential decay rate is that of the spectator model. 
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In all the 

the spectator 

8. Conclusions 

cases considered, we find a sum rule which expresses the content 

picture of semi-leptonic decays. The main result is essentially 

J 
,-JW2 dr = - dro 

dq2 dW2 dq2 

of 

as expressed more precisely in Eqns. (l.l), (4.18), (7.13). 

For the case of charmless final states, this result only holds in a “scaling” limit 

when W.v, the energy release to hadrons in the parent rest frame is large. 

Even in the Isgur-Wise limit, most of the uncharmed processes we have con- 

sidered involve in general more than one structure function g5(W2, W.w). The Ab 

and the B semileptonic decays into charmed final states have a unique structure 

function each. For Ab into uncharmed final states there are two structure func- 

tions, while for B into uncharmed final states there are six. Nevertheless, in all 

cases there is a “principal structure function” which carries the sum, anagolous to 

F2 for classical deep-inelastic processes. Thus the results seem to be essentially 

universal despite the differences in the technology. 

This is also the case with another complication, namely the presence of, say, 

charmed baryons in B-meson decay final states or charmed mesons in Ab decay 

final states. The formalism has been extended to handle this, yet the result retains 

its simple form. 

For charmed final states, the contribution of inelastic final states to the sum 

rule is moderate. At the no-recoil value of momentum transfer q2 = (MB - MD)~, 

where the “elastic” Isgur-Wise function is normalized to unity, the inelastic con- 

tributions vanish. At the maximum recoil, when q2 = 0, we may expect the elastic 

contribution to have decreased by about a factor two, so that inelastic final states 

B -+ D*alv, D**Zu, etc. must make up the difference. Some evidence that this is 

the case comes from observation of B + D**T, D*TT, etc. which, assuming fac- 

torization, provides some measure of the importance of these contributions when 

q2 = m2,. 
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However, the main thrust of this paper has been the consideration of the sum 

rules for final states containing no charm. In this case, we found the generic result 

for v.W >> A 
dr 

2 Tf!Y!! qh(w2,v.w) 
dq2 dW2 dq2 

with the sum rule for the principal structure function 

J 
dW2 $( W2, v.W) = 1 

The kinematics of the process, along with an estimate of the range of W2 required 

for convergence, strongly suggests a scaling behaviour for $ 

2Av.W4( W2, v.W) - f( 
W2 

2Av.W ) 

with 
co 

J 
dn: f(x) = 1 

0 

The variable z was interpreted as the value of (E-Q) of the spectator-quark system 

in the rest frame of the parent, with the z axis chosen along the direction of the 

dilepton recoil. An important issue is the determination not only of the area under 

the curve f(x) (th is is given by the sumrule), but also the shape. Were the shape 

under control, reasonable estimates of exclusive decays, e.g. the experimentally 

important ones B + rlv or plv, would be within reach using the idea of semilocal 

duality. However, such considerations lie outside the scope of this paper. 

Another important issue beyond the scope of this paper is the role of perturbative- 

QCD corrections. Unlike the previous problem, this one appears to be accessible 

theoretically. 

We also mention that there exist other applications of this sum rule approach. 

A notable one, now under consideration”‘, is the class of Penguin-induced decays 

which are controlled by the subprocesses b t sy and/or b + sl+Z-. 
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APPENDIX A 

This appendix is devoted to some expressions that have been used to deal with 

products of traces of Dirac matrices and to re-shuffle the matrices inside the traces. 

The following expression has been used as the basis for them all: 

T~(XA+(V))Z?(YA+(V)) = 

= +(XA+(v)YA+(v)) - ~T~(XA+(~)~R~SA+(~)YA+(~)~~~~A+(~)) (A.1) 

where X, Y are 4 x 4 matrices. 

i) Using (A.l), the definition of B in Eqn. (5.12), and 

c Byyy,B = 0 
B.B' 

it follows that 

c 5!3@X)Tr(Z?Y) = 2Tr(A+(v)XA+(v)Y) (A4 
B,B' 

ii) 

Tr(r,A+(v)cp) T+pA+(q-,)= f ~~(r"A+(~)r,~A+wP) 

-; Tr(r”A+(v)ygy”A+(v)r~~A+(v)ygy,A+(v)cp) (A-3) 

We also have 
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iii) 

(1 - 75) 4 = ;(l -75)7x Tr(?F 4) (A-4) 

In expressions like Tr(I’,A+(v)rPq4), th e surviving contribution is the part of $ 

proportional to (1 - 75)~~. Therefore 

(1 - Y~)A-(+Y~‘A+(~(~ + 75) = $1 - y5)(ya - 8 $)(I + y5) 

it follows from (A.3) and (A.5) that 

l-75- +a nf-fAr.$rr) zyyx- 2 v~+(+~5raA+(+~) (A-6) 
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FIGURE CAPTIONS 

1) The inlusive semileptonic decay of the Ab baryon into charm. 

2) Parabolas of fixed qo: each one is labeled by I I$’ 1’ and 7 (we consider 

a.@ = 0). The shaded region is the important physical one, where the 

sumrule converges. 

3) a) Direct graph. b) z-graph. c) Vacuum polarization. 

39 



6925Al 

Fig. 1 



M’ 

IWI 
-2 - 

\ 

5-91 
6925A3 

* 

W2 
\ \I ‘(Ml-A)’ -- 

Fig. 2 



b) 

c) 

Fig. 3 


