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ABSTRACT 

We study the QCD production mechanisms for lepton and quark pairs of high 

mass M that carry a large fraction z of the projectile momentum. We show that 

the dominant contribution comes from peripheral processes in which low 2 specta- 

tor quarks interact with the target, with the hardness scale of the collision being 

given by Q2 = M2(1 - x). In the high M2 limit with fixed M2(1 - 2) we iden- 

tify new leading-order perturbative contributions from the hadron wavefunction 

which involve more than one constituent. These ‘intrinsic’ contributions cannot 

be expressed in terms of the usual single-parton structure functions, implying a 

breakdown of QCD factorization. In a numerical study of a simple gauge theory 

model, we show that such contributions can dominate the standard single-parton 

factorizable terms. These results appear to explain several anomalies seen in the 

data: the excess production and the anomalous nuclear-number dependence of open 

and bound charm at large z; the ‘cumulative’ effects (Z > 1) observed in hadron 

production from nuclei; and the large target polarization asymmetry observed for 

hadron production at high 5. The intrinsic multi-parton processes provide new 

mechanisms for the hadro-production of the J/~/I d irectly in a color-singlet state 

and also for the production of heavy flavor systems in lepto-production at high 

momentum. 
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1. Introduction 

The data1’2’3 on high momentum J/G production in hadron-nucleus collisions 

exhibit a surprising result. When the nuclear number (A) dependence of the J/$ 

production cross section is parametrized as A”, the effective power cr decreases with 

the fractional momentum LC of the J/G. Data at different energies show that indeed 

Q = o(x), i.e. the nuclear suppression obeys Feynman scaling.* In particular, the 

power Q is not a function of x2, the fraction of momentum taken from the nucleus 

and given to the J/ti. Th is result violates the perturbative QCD factorization 

prediction for hard processes, and thus its explanation must lie in higher twist 

effects. 

A phenomenological interpretation of the J/G A-dependence was given in Ref. 

5. It was suggested that at large x cz production is dominated by an intrinsic com- 

ponent p a component whose probability in the infinite momentum wavefunction 

of the hadron scales as an inverse power of M:, and that the cz is ‘freed’ from its 

virtual state by interactions of the light quarks in the projectile hadron with the 

target nucleus. Because the interaction of the light quark components with nucle- 

ons is expected to be strong, one should then expect that nuclear cross sections 

will be surface dominated, i.e. cy 21 2/3. This nuclear suppression is unrelated to 

the shadowing of parton distributions seen in deep inelastic scattering. At first 

sight this proposal seems to contradict the usual understanding7 that it requires 

a hard scattering to ‘free’ a heavy quark pair from its virtual state and allow it to 

be produced. It is the main purpose of this paper to reconcile the picture of Ref. 

5 with calculations of hard processes in QCD, and to exhibit how this works in 

detail for heavy quark production in an Abelian model with scalar quarks. 

In deriving the QCD predictions for large x massive pairs we must distinguish 
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between the three limits 

M + 00, x + 1 with M2(1 - x) + 00, (1.1) 

M + 00, x t 1 with M2(1 - x) fixed, (1.2) 

M -+ 00, x + 1 with M2(1 - x) + 0. P-3) 

In the first limit (1.1) th e usual perturbative QCD scattering formalism applies, 

including the factorization theorem for hard subprocesses.’ The effective scale of 

the interaction, M2(1 - xc>, is still asymptotically large. Intrinsic higher twist dia- 

grams, in which the pair is coupled to more than one constituent of the projectile, 

are damped by powers of M2(1 - x). In the last limit (1.3), the standard spectator 

counting rules for the power behavior of structure functions in the x + 1 limit 
9,lO become valid. 

It is quite interesting to consider the behavior of the QCD processes in the 

intermediate case of the limit (1.2), in which M2(1 - x) is held fixed. It turns 

out that subprocesses involving spectator constituents, which would give power- 

suppressed higher twist contributions in the limit (l.l), contribute at leading order 

in the limit (1.2). H ence the distinction between ‘extrinsic’ processes, where the 

pair is created by a single gluon, and ‘intrinsic’ processes, where the pair is created 

by several gluons, essentially disappears. An immediate consequence of the fact 

that several partons are involved in the leading subprocesses is that the QCD 

factorization theorem breaks down: Scattering cross sections can no longer be 

expressed in terms of single parton distributions of the colliding hadrons. We 

believe that these observations can provide a framework for understanding several 
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puzzling phenomena observed at large x, and in particular for explaining the A- 

dependence of J/lc( production. 

We find that one can indeed free a virtual cz pair, or a lepton pair, at large 

x by a relatively soft interaction with a light quark component of the projectile. 

The hardness of the interaction has scale M2(1 - x), where M is the pair mass, 

and the ‘freeing’ probability is proportional to 1/M2(1 - x). Thus, at sufficiently 

large Z, the cross section for freeing the pair will become large enough so that 

an x-dependent departure from an A’ dependence can be expected in the nuclear 

cross section. If the reaction freeing the pair occurs for an extrinsic, leading-twist 

component of the projectile, a component of the infinite momentum wavefunction 

scaling logarithmically with M 2, then the resulting cross section in the limit (1.1) 

is just the normal factorized expression for qq annihilation in perturbative QCD. 

If the freeing occurs for an intrinsic component it corresponds to a higher twist 

effect in the usual hard scattering formalism. 

In Section 2 we begin by studying muon pair production in electron-electron 

collisions in QED. We show that at large Z, 

M2 da 1 
dM2dx cx M2(1 - x) (1.4) 

and that the factor 1/M2(1 - x) can be interpreted as the probability of the muon 

pair being freed from the electron. The freeing becomes easier at large x because 

the coherence of the incoming electron-muon-pair Fock state is easily broken by 

deflecting the electron, which carries a small fraction of the incident momentum, as 

the system passes the target electron, We also observe that the usually dominant 

yy fusion mechanism is relatively ineffective at large x because the interaction 

of the target with the muon pair dipole moment is much weaker than with the 
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companion electron. The cross section from yy fusion scales as l/M2 rather than 

as 1/M2(1 - x). We th en discuss how these QED calculations generalize to the 

situation of large mass lepton and quark pair production in hadron scattering in 

the limit (l.l), where the usual hard scattering formalism can be applied. 

In Section 3 we study the modifications to the standard QCD formalism in 

the limit (1.2), where M2(1 - x) is held fixed. The crucial observation is that 

the high x, high mass pair is created from a Fock state of the projectile whose 

overall transverse cross section is small, of order (1 - x)/m:, where rnh is a typical 

hadronic scale, rnh N l/fm. The lifetime r of such Fock states is short, 

r - (1 - x)p/mi - p/M2, (1.5) 

where p is the momentum of the projectile. As this is similar to the lifetime of the 

high mass pair itself, the virtual pair can be created with no extra power suppres- 

sion in the asymptotically large variables. In fact, the pair creation probability is 

determined by the fixed product M2 (1 - x). M oreover, the proximity in transverse 

space of all Fock state constituents allow them to interact during the lifetime of 

the virtual pair. Hence leading-twist subprocesses do not dominate 11 in the limit 

(1.2), and QCD factorization breaks down. In Subsections 3.2 - 3.3 we verify our 

conclusions by explicit calculations in an abelian model with scalar quarks. In 

this model, the intrinsic (non-factorizable, multi-parton) contributions to the pair 

production cross section and structure function turn out to dominate the extrinsic 

contributions for moderate values of M2(1 - x). 

Section 4 contains a discussion of the implications of our results for a number of 

observed phenomena at high x, as well as suggestions for future experimental and 
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theoretical work. Some useful formulas relating hadronic gluon source amplitudes 

to the gluon structure function are given in the Appendix. 

2. Fermion Pair Production at Leading Twist 

In this Section we wish to study the production of a lepton or quark pair 

of large mass M and high fractional momentum x in the scattering of a single 

incoming lepton or quark at high energy. We first consider the pure QED process 

e+e- + p+p- + e+e-, and then discuss how our result is reconciled with the 

standard QCD formalism for hard hadron collisions in the limit (1.1). 

2.1 MUON PAIR PRODUCTION IN ELECTRON-ELECTRON COLLISIONS 

We shall study the process e(p) e(P) --+ p+p- + e(p’) e(P’), where e(p) refers 

to an incident (massless) electron of momentum p. We use the notation pp = 

(P-, p+,pi), where P’ = (PO f p3)/fi. W e will be particularly interested in the 

region p’+/p+ = 1-a: < 1, where pp = (O,p+,cJ and p”‘ = (~;~/2p’+,p’+,p’;). 

We suppose the pair production takes place in a high energy scattering of the initial 

electron off a target electron of momentum P. 

It is instructive to compare the yy fusion graph illustrated in Fig. 1 with those 

illustrated in Fig. 2, where the muon pair is only indirectly connected to the target 

electron, P. The production cross-section is given as the discontinuity, in s = (p + 

W2, of the forward elastic electron-electron scattering amplitude. In what follows 

we shall use the definitions of the target source terms and structure functions given 

in the Appendix, where now A,, refers to the abelian electromagnetic field and G 

refers to the photon distribution in an electron. 
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The production mechanism illustrated in Fig. 1 is the traditional yy fusion 

mechanism, and one may immediately write 

I 
da 

gy$= J 
dxldx2 S(x122s - M2) Srr(M2) G(a, M2) G(aM2) (24 

0 

where M is the mass of the muon pair, Zirr is the cross section for yy + psp- 

and G(x, M2) is the order o contribution of the photon distribution in an electron. 

The longitudinal momentum fractions of p and P carried by El and k2 are denoted 

by x1 and x2, respectively. Our interest here is in large x muon pair production, 

with x the fraction of the longitudinal momentum of p carried by the pair. Thus 

x = x1 and 

M2x da 
dM2dx 

= Srr(M2) xG(x, M2) x2G(x2, M2) (2.2) 

where 5x2s = M 2. Since x2G(x2,M2) - constant as x2 -+ 0, the cross section 

given in Eq. (2.2) b h e aves as l/M2 at high energy and at large x. The l/M2 

behavior has a simple physical interpretation. In the target rest frame and for 

large p+ the projectile electron can have a p+p- component in its wavefunction. 

The probability of this muon pair component is only logarithmically dependent on 

the muon pair mass. The p+ and p- in the pair have a transverse separation of 

order l/M and hence form a compact, electrically neutral system. When passing 

the target, the amplitude for ‘freeing’ the muon pair from the incoming electron is 

proportional to the dipole moment of the pair, that is, proportional to l/M. Thus 

the cross section for freeing the pair is of order 1/M2, as given in Eq. (2.2). 

Now consider the contributions illustrated in Fig. 2, in which the target photon 

interacts directly with the incoming electron. The contribution of the first of the 



graphs shown in Fig. 2 is, in terms of the photon source amplitude SPV defined in 

the Appendix, 

e6 d2& de- 4 

u=2s J sde) (2$2 
2 g,~trQP~av 

w3 
2TbKP - k + !I21 1rr-t W ) [Cp _ k)212 (2.3) 

where 

Im II(k2) = & (l-q)1’2 (l+q) 0(k2-4mi) (2.4) 

and 

trQPypV = trh * P-?-Y - (p - k)y”y. (p - k + e)+/. (p - k)+} . (2.5) 

We have used current conservation to replace (gagk2 - k, kg)II(k2) by k2g,pII(k2). 

In a covariant gauge calculation we may replace SP,tr,O’P” by S--tr$‘++. Includ- 

ing all four graphs shown, or implied, in Fig. 2 and writing d*k = (dk+/2k+)dk2d2il 

we find for the pair production cross section 

a3 dx Tr ++ 
u = - SPS J d2& s-- dM2 

(2743 M2 x(1 -x) 
d2zl Im II(M2) - 

Den P-6) 

where x = k+/p+ and k2 = M2 . In the x + 1 limit we get 

Tr ++ 
x -16~+~(1- x) i* i* - f* 

2 

Den ICI + M2(1 - x) - (& - &)2 + M2( 1 - x) 1 . (2.7) 

The leading contribution in the zl integration of (2.6) comes from the region 

kt cx M2(1 - x). Similarly, to pick up the leading logarithm in M2(1 - x) from 
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the c~ integral, the relevant region is Pt << M2(1 - x). In this region 

Tr ++ 
Den- 

16~+~(1 - x) 2z*CL.4; 
[M2(1 - x) + k;12 “- M2(Lx)+kt ’ 1 

2 

P-8) 

Averaging over the angle between il and ?l gives 

16p+2ez 
= -[,i.@(l -x)‘+ I$]2 

2kiM2(1 - x) 
’ - [M2(1 -x)+ ki12 . (2.9) 

Substituting Eq. (2.9) in (2.6) one finds 

M2 du E ImII(M2) 
Q3 

dM2dx = 3 M2(1 - x) x2G(x2, M2(l - 4) (2.10) 

with 22 = M2/ s as in Eq. (2.2). 

Note that in contrast to Eq. (2.2), th e cross section in (2.10) behaves as 

1/M2(1 -x) and thus th’ is contribution dominates yy fusion by a power of l/( 1 -x) 

when 1 - x is small. This fact can also be readily understood on physical grounds. 

Recall that we have interpreted the l/M2 b e avior of the right hand side of Eq. h 

(2.2) as the square of the dipole moment of the p+p- pair when it occurs as a 

virtual fluctuation in the wavefunction of a fast electron. Now suppose that a fast 

electron, p, passes a stationary target, P. The fast electron may consist of a single 

bare electron, or it may consist of a bare electron and a virtual photon, or it may 

consist of a bare electron and a virtual p+p- pair. If these three components react 

differently as the system passes the target, the coherence between the components 

is lost, and either photon or muon pair production may occur. The muon pair has 

a small dipole moment, and so it interacts very weakly with the target electron. 

However, if the muon pair carries almost all of the momentum of the incoming 
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state its companion electron, with p’ = (p - Ic) in Fig. 2, has a small longitudinal 

momentum and thus is rather easy to deflect. A significant deflection will break the 

coherence of the system and free the p-pair. The angular deflection is proportional 

to A(p - Ic)l/(p - Ic)+ = el/(p - Ic)+, which is proportional to l/(1 - 2). Thus 

we can understand the additional l/(1 - z) f ac t or as expressing the relative ease 

with which the coherence of the incoming state is broken when one deflects the 

companion electron to the muon pair. This is in agreement with the claim made in 

Ref. 5. This fact is perhaps surprising since normally one expects that it requires 

a hard scattering to free a heavy particle.7 Here we see that the J: + 1 region 

is special, and that a heavy particle, or a heavy particle pair, can be freed by a 

relatively soft interaction in the restricted, 2 + 1 region of phase space. 

2.2 PAIR PRODUCTION IN HADRON COLLISIONS 

Now let us come back to QCD and consider both lepton and heavy quark pair 

production in hadron collisions. For lepton pair production at large 2 in a quark- 

hadron collision, the factorized formula (2.10) remains valid after a replacement of 

one of the o’s in Eq. (2.10) by (r,/2N, while the remaining cr2 stays as atED. But 

the discussion leading up to Eq. (2.10) and the dominance of the diagram in Fig. 

2 do not seem to fit in with the usual hard scattering QCD formalism in which 

lepton pair production is viewed as quark-anti-quark annihilation into a virtual 

photon. In order to make contact with the normal QCD Drell-Yan mechanism we 

must consider hadron-hadron scattering. In Fig. 3 we show the diagram analogous 

to the first diagram of Fig. 2. 

Now since the lepton pair should carry most of the hadron momentum, this 

must also be true of the quark line p in Fig. 3, from which the pair is radiated. As 
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we shall show in the next section, this implies that the quark line p has a virtuality 

of order mi/(l - z), where mh is a typical hadronic scale. The factorization of 

the lepton pair creation subprocess is possible only if the hardness M2 of the 

pair is bigger than the virtuality of the quark line p. Thus we must require that 

mi/(l - s) << M2, so that effectively we are dealing with the limit (1.1). We shall 

return to the situation that pertains in limit (1.2) in Section 3. 

Let us then consider the contribution of the diagram in Fig. 3 to lepton pair 

production in the limit (1.1). If we substitute Eq. (2.10) inside the graph shown 

in Fig. 3 we encounter a singular integral. To see what happens, call y = k+/p+ 

and z = k+/pl. In Fig. 3 we must integrate y between x and 1. However, the 

l/P - s) factor is replaced by l/(1 - y) and the dy integration is singular. Since 

ki cx M2(1-y) we ma.y interpret the dy/(l -y) integral as dk:/ki; the divergence 

we are faced with is thus nothing other than the usual logarithmic kl integral over 

the virtuality of the line p - k. This is the signal that we should factorize the 

leading order in os contribution of Fig. 3 as 

M2 da 
dM2dx 

= q(x,M2(1 - x))Z&M2)q(x2,M2(1 -x)) (2.11) 

with 3rrq the qij + p+p- cross section, S,&M2) N 1/M2. Thus we recover, in the 

limit (l.l), th e usual Drell-Yan expression for lepton pair production in QCD, but 

with the structure functions evaluated at the relatively soft scale M2(1 - x). 

Let us now apply the same procedure to heavy quark pair production in hadron 

collisions, at large x-values in the limit (1.1). Traditional QCD hard scattering 

arguments tell us that the heavy quark pair, CZ, can be produced in two ways: 

(i) gg + CZ, and (ii) qq + CZ. The discussion which we have given for QED in 

the last section suggests that the qij mechanism should dominate by a full power 
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of l/(1 - x). Th is is indeed the case, since the ratio of gluon to quark structure 

functions satisfies 

%M2(1 - 4) oc 1 _ x 
dx, M2P - 4) 

(2.12) 

when 1 -x is small. Thus we see that large x heavy quark production is dominated 

by the q?j + CZ subprocess and obeys Eq. (2.11) but with Zqq now referring to the 

qij + cz cross section. Our physical interpretation given for muon pair production 

in electron-electron scattering also applies to heavy quark production in QCD. As 

a fast incoming hadron passes the target, the virtual cz pair is mostly freed not by 

a direct interaction between the c or i? and the target, but rather by the interaction 

of a light quark in the projectile, which frees the CZ pair by breaking the coherence 

of the cz in the hadron’s wavefunction. 

This interpretation may seem rather curious given that the cZ pair is in an 

octet state and interacts strongly with the target hadron, in contrast to the weak 

dipole interaction of the pLsp- pair we discussed in QED. Indeed the cz pair does 

interact strongly with the target hadron. However, the interaction with the total 

charge of the c~ pair does not differ from the interaction with the gluon which 

produced it; hence the coherence of the g and c? components in the wavefunction 

of the hadron is not broken. The color dipole of the ci? does distinguish the pair 

from a gluon and so this (weak) dipole interaction can free the cz exactly as for 

the p”+p- in electrodynamics. 
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3. Factorization-Breaking in a New QCD Limit 

3.1 SCALING BEHAVIOR AT LARGE x 

Let us consider, for a moment, the physics of the x + 1 end-point behavior of 

structure functions. For the following discussion we may assume M to be fixed, or 

we may take the limit (1.3), in which M 4 00 but M2(1 - x) --f 0. The essential 

behavior of hadronic structure functions in QCD is then controlled by power laws 

(1 -q, where n is determined by the number of constituents in the hadron.’ The 

conceptual picture for this behavior is quite simple. Kinematically, a Fock state 

where one constituent carries most of the momentum must be far off-shell, and thus 

it has a brief life-time. In time-ordered perturbation theory, the energy deficiency 

of a Fock state is given by 

when the total momentum p of the hadron is large (or, more generally, for arbitrary 

light-cone momentum p+). Here M is the hadron rest mass and the sum is over 

all partons. Recalling that C xi = 1 due to momentum conservation, the limit 

x + 1 for one parton forces all the other xi’s to vanish, leading to a large energy 

difference (3.1). H ence, by the uncertainty principle, the life-time of the state is 

proportional to 1 -x. Thus for x + 1 the behavior of the Fock state amplitude can 

be calculated as a perturbation on the long-lived, non-perturbative wavefunction. 

A typical Feynman diagram that allows the transfer of almost all the momen- 

tum in a proton wavefunction to one parton is shown in Fig. 4. Notice that all the 

constituents in the valence Fock state have to be involved, as each carries a finite 

momentum fraction in the non-perturbative wavefunction. Moreover, the entire 
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momentum transfer must take place within a time-scale comparable to the Fock 

state life-time N (1 - x)p/mi, where rnh N 300 MeV is a hadronic mass scale. But 

this is only possible provided that the transverse separations of all constituents 

vanish in the limit x + 1. The dependence of the mean transverse distance scale 

rl on 1 - x can be seen by noting that since the virtuality of the intermediate 

states in the proton structure function of Fig. 4 are of order mi/(l - 5); this 

is also the effective upper limit of the square of the transverse momenta kfL of 

the valence quarks in the proton. Hence only wavefunction components having 

rt M O(( 1 - x)/m:) contribute as x + 1. 

The origin of the spectator counting rules9 for the power-law dependence of 

structure functions at x + 1 is thus clear. Each of the internal propagators in Fig. 

4 has a virtuality of O(mi/(l - x)). S’ im e pl p ower counting, completely analogous 

to that done for exclusive form factors!’ then gives a behavior for the structure 

function F(x) of the form 

F(x) cx (1 - x)+l (3.2) 

where n9 is the number of partons whose momenta vanish in the x -t 1 limit. I2 The 

constant of proportionality in Eq. (3.2) can be obtained from the distribution 

amplitude, i.e. from the wavefunction evaluated at zero transverse distance between 

all constituents. 

The above picture of multiply-connected transversely-compact Fock states giv- 

ing rise to the leading x + 1 behavior of structure functions may be compared with 

the situation for typical single parton hard QCD processes at fixed x < 1, such 

as massive pair production. Figure 5a shows a leading-twist contribution to the 

production of a fermion pair of high mass M in a peripheral interaction of a meson 
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with a target. We take the center of mass energy to be much larger than M, and 

the momentum exchange e to the target to be small (and mainly transverse). The 

(proper) lifetime of the intermediate state indicated by the vertical line in Fig. 5a 

is short, of order l/M, whereafter it decays by emitting the pair. A representa- 

tive multi-parton contribution to the same process is shown in Fig. 5b.13 For 

this diagram to influence the hard process, the time-scale of the interaction with 

the spectator constituent must be similarly short. Hence the transverse separa- 

tion of the valence quarks in the meson can be at most l/M. The probability for 

this is proportional to the transverse area, 1/M2, which explains the power-law 

suppression of such higher-twist contributions to hard processes. 

However, in the combined z + 1, large M limit (1.2), where M2( 1 - x) is held 

fixed, the power-counting for multi-parton processes works differently. As argued 

above, the transverse separation of the two quarks behaves as dG/rnh - l/M. 

Hence in this limit the diagram of Fig. 5b is not in fact suppressed compared to 

that of Fig. 5a, since the quarks are close enough for them to interact within the 

time-scale of the hard process. Actually, since the non-perturbative wavefunction 

is damped as x + 1, the diagram 5a does not contribute significantly in the 

combined limit (1.2). Thus the leading QCD contribution in this limit arises from 

multi-parton diagrams such as Fig. 5b, which gives an ‘extrinsic’ leading order 

QCD contribution to massive pair production at high x. 

It is important to note that in the combined limit (1.2) there are also other 

types of multi-parton diagrams, in addition to the extrinsic ones, which contribute 

at leading order in PQCD. One such contribution, which involves both constituents 

of the non-perturbative meson wavefunction, is shown in Fig. 5c. This is the QCD 

manifestation of ‘Intrinsic Heavy Flavor’, previously suggested6 (on phenomeno- 
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logical grounds) to be significant for charm production at large x. As we shall see 

below, these intrinsic diagrams can numerically dominate the extrinsic contribu- 

tions in the limit (1.2), and lead to qualitatively new physical effects. 

Since both extrinsic and intrinsic processes require point-like configurations of 

the beam hadron as x + 1, one might expect an A1 behavior for nuclear cross 

sections. For example, in Fig. 5b the transverse separation of the valence quarks is 

of order ‘1 N dr/ x rnh at the time of exchange of the virtual gluon j. Neverthe- 

less, the transverse velocities of the ‘stopped’ lines pl and p2 are large because of 

their small longitudinal momenta. From the results of Section 2, or directly from 

the expression (3.1), it can be seen that the transverse momenta of those lines are 

given by the hardness scale of the interaction, pTl - pzI - ki - M2(1 -2). Hence 

their transverse velocities are ~1 N kl/(l - x)p, and in the lifetime r N xp/M2 

of the large-mass virtual pair they can reach transverse distances of order 

P-3) 

For low values of ki, i.e. of the fixed scale M2( l-x) of the interaction, the initially 

small virtual state can expand to typical hadronic size. Its scattering cross section 
14 is then large, 

Ax; cx 
1 

M2(1 - x)’ (3-4) 

It should be emphasized that even though the transverse size (3.4) of the virtual 

pair Fock state can be large, the overall production cross section of the massive 

pair at high x is still quite small, due to the low probability of finding the required 

Fock state in the projectile. However, when such Fock states scatter on nuclei, 

their large size will cause the reaction to be surface dominated, leading to an A” 
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nuclear number dependence with o < 1. Because the probability of the Fock state 

is linked to the projectile wavefunction, the suppression will show Feynman scaling, 

i.e. Q = a(x), as observed in the J/lc( production 
l-3 data. 

3.2 FOCK STATE PROBABILITIES 

Let us now study the significance of the intrinsic diagrams more quantita- 

tively. To keep the calculation as simple as possible, we shall consider bound 

states of scalar quarks and antiquarks in an abelian gauge theory. This avoids 

spin complications and also greatly decreases the number of diagrams that need 

to be considered. As may be readily verified for scalar QED in Coulomb gauge, 

instantaneous exchange dominates transverse photon exchange by a factor 1 - x 

in the large 5 limit. 

We first calculate the probability of Fock states which contain an extra qij pair 

with invariant mass M and momentum fraction x. We will be interested in the 

combined limit (1.2). W e will write the amplitude for the massive pair Fock state 

in the form 

1 

s(l - xJ2 J dY 
d(YP, rl = 0’) 7(1 - 7921124 

[y(l _ y)]2 /47(1 - +1u2 + u1r + u2(1 - 7) 

F P-5) 

0 

where the last factor F = F(p; ur, 142, p, 7; y) of the integrand depends on the con- 

tributing diagram. Here m. is the effective mass of the quarks while y, p and r refer 

to their fractional momenta as indicated in Fig. 6. The integral over the trans- 

verse momentum in the bound state has been done, giving (as explained above) 

the bound state wavefunction r#~ evaluated at a vanishing transverse separation 
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rL = 0(1/M) - 0 b e ween its constituents. The final state transverse momenta t 

pll, ~21 of the constituents are parameterized by 

Ui = m2/(m2 + p,“,) (i = 1,2). (3.6) 

All dependence on the pair mass M will appear through the dimensionless param- 

eter p = (1 - x)M2/m2, which is held fixed in the limit (1.2) under consideration. 

The explicit factor (1 - x)~ in Eq. (3.5) arises from the scaling of the two energy 

denominators involving the stopped quarks. The total probability to find a Fock 

state with pair mass M and pair momentum fraction x in the bound state is ob- 

tained by squaring the perturbative amplitude 9 in (3.5) and integrating over the 

remaining variables, 

dP m4 1 ’ 
dxdM2 = J 

PI2 
4py47ry (1 - x) d7dpdu1du2 +;r(l - T)’ WY 

0 

There are two extrinsic diagrams that give leading order contributions, the one 

shown in Fig. 6a and an analogous diagram where the pair is radiated off the other 

constituent. The sum of the two extrinsic diagrams give for the factor F in (3.5) 

Fextrinsic = Y(1 + Y)(l - 2p)[U2(1 - T) - UlT] , P-8) 

where we have used the symmetry 

d(YPJ) = $((I - Y)PJo 

of the non-perturbative distribution amplitude. 
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If only extrinsic diagrams contribute, as would be the case for lepton pair pro- 

duction, we may now find the Fock state probability directly from Eqs. (3.8), (3.5) 

and (3.7). F or q uark pairs we have to add contributions from intrinsic diagrams, 

in which the pair is coupled to two or more gluons. An example of such a dia- 

gram, for our simple model, is shown in Fig. 6b. There are three other intrinsic 

diagrams, related by an opposite time ordering of the instantaneous exchanges and 

by a reverse ordering of the pair. The total intrinsic contribution to the factor F 

in Eq. (3.5) in the limit (1.2) is 

F intrinsic = (2P - Y)(l + Y - 2P) 

x {s(Y -34 [ rul 
(1 - 7)u2 

pnQy(1 - p) + y - p + P(l - 4U2YF - f-4 + Y - p 1 
+ O(P - Y> 1 TUl 

+ 
(1 - 7-)u2 

pm(1 - Y)P + P - Y 11 p(l--7)u2(1 -Y>P+P--Y . 

(3.10) 

Notice that in contrast to the extrinsic contribution (3.8), the dependence of the 

Fock state amplitude (3.5) on the nonperturbative wavefunction C$ does not factor- 

ize as a simple moment when F is given by (3.10), due to the more complicated 

dependence on y . 

Since the factor F in (3.5) d oes not depend on x for fixed ~1, the extrinsic and 

intrinsic diagrams of Fig. 6 give contributions to the perturbative wavefunction 

for pair production which have the same power behavior in 1 - 2 in the limit 

(1.2). When th e p arameter /J becomes large, i.e. M2 >> m2/(1 - CC), the extrinsic 

diagrams dominate due to the factor ,LL in the denominators of (3.10). On the other 

hand, for p = O(1) we see that Fintrinsic is larger than Fextrinsic near y = p. In 

this configuration the longitudinal momentum of each of the original constituents 

is close to that of a member of the pair. 
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A more quantitative estimate of the relative importance of the intrinsic dia- 

grams requires a model for the nonperturbative distribution 4(yp, 0’). This ampli- 

tude should vanish rapidly at the end-points y = 0 and 1, since a configuration 

with either fermion having vanishing momentum would be far off its energy shell. 

Here we shall use 

$(yp, 0’) = cmp Ml - Y)12- (3.11) 

where the normalization is given by the dimensionless constant c. We have nu- 

merically evaluated the Fock state probability (3.7), both in the case when the 

amplitude (3.5) is given by the sum of all ( * ) SIX ex rinsic and intrinsic diagrams, t 

and in the case when only the two extrinsic diagrams contribute. The former case 

would correspond to a quark pair structure function in QCD, while the latter rep- 

resents lepton pair production. These probabilities could in principle be measured 

in deep inelastic scattering off the bound state. Figure 7 shows the ratio of the 

probabilities as a function of the parameter p = (1 - x)M2/m2. We note that the 

intrinsic diagrams dominate the extrinsic contributions for p 2 5. 

3.3 PAIR PRODUCTION CROSS SECTIONS 

As a second example of physics in the limit (1.2), we will consider the cross 

section for large mass quark pair production in the peripheral scattering of a bound 

state off a heavy target. This process requires the materialization of the massive 

pair Fock state in the bound state wavefunction. At high energies, only a small 

momentum transfer e to the target is required to put the pair on its energy shell. 

The momentum distribution of the produced pair will then be largely determined 

by its Fock state amplitude (3.5). Using the scalar quark theory of Subsection 3.2, 
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we will evaluate the scattering amplitude in the limit 

p >> M N dm& >> mil>> e, . (3.12) 

where rnfL = m2 + pfl (i=1,2) is the effective mass of the constituent valence 

quarks in the final state. As before, TV = (1 - x)M2/m2 is held fixed. 

A typical extrinsic diagram contributing to the peripheral scattering amplitude 

is shown in Fig. 8a. There are eleven other extrinsic diagrams analogous to 

Fig. 8a which contribute at leading order, differing by the time ordering of the 

instantaneous exchanges, by the scattering occurring off either constituent, and by 

the pair being emitted from either constituent. Diagrams with transverse exchanges 

or with scattering off the produced pair itself give non-leading contributions in the 

limit (3.12). It is convenient to write the scattering amplitude in the form 

7(1 - r)TQu:! 1 
2 

p7(1 - +1u2 + UlT + u2(1 - 7) 
G 

(3.13) 

where rnt is the target mass. We find that the twelve extrinsic diagrams give the 

following contribution to the factor G in the integrand: 

Gextrinsic = Y (1 + Y>PP - 1) 
1-T 

.e; * P;i7u2 p(l - :)u2 + 1 + l] 
(3.14) 

+cL * pi*+ pm: + 1+ l] } ’ 

where p’;l (; = 1,2) are the transverse momenta of the original constituents in the 

final state, with magnitudes given by (3.6). B ecause the bound state is neutral, 

the numerator in (3.14) is of O(e,). A similarity to the Fock state amplitude (3.8) 

may be seen. The scattering amplitude is, however, enhanced when the interacting 

constituent carries high transverse and low longitudinal momentum. 
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An example of an intrinsic diagram contributing at leading order to the scat- 

tering amplitude is shown in Fig. 8b. There are two other time orderings for 

the scattering of gluon .! on the lower constituent. Counting also the interactions 

of gluon e on the upper constituent, we have altogether six diagrams that have 

a configuration of the produced pair as in Fig. 8b. Three other groups of six 

diagrams are obtained by interchanging the times of the instantaneous exchanges 

jr and j2 attached to the pair, and by interchanging the momenta (p + 1 - p) 

of the pair. Hence there are 24 intrinsic diagrams in all that give a leading or- 

der contribution in the limit (3.12). A s is the case for the extrinsic amplitude, 

diagrams with transverse exchanges or with scattering off the produced pair give 

non-leading contributions to the amplitude. Using the y + 1 - y symmetry (3.9) 

of the distribution amplitude, the total intrinsic contribution to the factor G in 

(3.13) is 

G. intrinsic = C2P - Y >C2P - Y - l> 

1-T 
x ei * pill-u.2 

{ 1 

1 1 
7 py(l - p)(l - 7)u2 + y - p + p(l - YMl - +2 + P - Y 1 

-.e; * &~+l 
[ 

1 1 
PY(l - P)9 + Y - P 

+ II pp-Y)Pw+P-Y * 
(3.15) 

Notice that the denominators in (3.15) can vanish inside the integration region, 

and therefore have to be regulated with the +k prescription. Hence the intrinsic 

production amplitude is complex.15 The physical reason for this can be understood 

by considering the intermediate state indicated by the cut in the diagram of Fig. 

8b. The energy difference (3.1) of this state is, to leading order in the limit (3.12), 

AE(8b) = 
m2 

2p(l - x)7%1 1 
1 _ PY(l - PbUl 1 P-Y * 

(3.16) 
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Since p-y > 0 in this diagram, the energy difference will change sign in the interval 

0 < y < p. When (3.16) vanishes a threshold is crossed for real pair production 

in the intermediate state. Loosely speaking, the extra energy required to stop 

constituent 1 is compensated by the energy gained from having accelerated the 

particle in the pair, which has a large effective mass of O(M). As we shall discuss 

in Section 4, the fact that the intrinsic amplitude is complex in leading order can 

give rise to transverse polarization effects in the real world with spin 3 quarks. 

It is also interesting to observe that the intrinsic amplitude (3.15) vanishes not 

only for large p, but also as ~1 + 0, which corresponds to the limit (1.3). Hence only 

extrinsic contributions are relevant in calculating the x + 1 end-point behavior 

of the cross section. The physical reason for this is that in intrinsic processes the 

quark pair is created at transverse distances rl N dz/rnh, which for small 

~1 are shorter than the Compton wavelength l/M of the pair. This mismatch is 

avoided in extrinsic processes. 

The pair production cross section is given in terms of the amplitude (3.13) by 

da 1 lo3 
dxdM2d2& =&-- mip2 1 -2 J d2zu d2m ’ dpdr J 7(1 _ + IA12. WV 

0 0 

We have evaluated the cross section numerically using the model wavefunction 

(3.11) for the bound state. In Fig. 9 we show the ratio of the cross section cal- 

culated using A = Aextrinsic + Aintrinsic to that obtained with A = Aezlrinsic as 

a function of the parameter p. As expected, the ratio approaches unity in both 

the large and small p limits where the intrinsic diagrams vanish. However, for 

intermediate values of p the intrinsic diagrams are important. Somewhat unex- 

pectedly, the intrinsic contribution remains sizeable up to quite large values of p. 
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This might imply that there can be important intrinsic effects in realistic heavy 

quark processes even at only moderately large values of z. The numerical values 

obtained in our simple model of course should only be taken as an indication of 

what might be expected in QCD. 

4. Summary and Conclusions 

As we have seen in this paper, there are a number of novel features of QCD 

which emerge when massive lepton or quark pairs are examined in the large x 

domain. We have particularly focussed on a new QCD limit (1.2) where the pair 

mass M2 is large but (1 - x)M2 is fixed. In this new QCD limit: 

l The leading contributions to the production cross section actually come from 

spectator interactions rather than direct interactions with the pair itself; 

l The coherence of the Fock state is easily broken by soft interactions of finite 

transverse momentum since the transverse velocity inflicted to the spectators 

vl = pl/p( 1 - x) is large; 

l QCD factorization is invalid in this limit since there is no relative suppression 

of interactions involving several constituents of the same hadron; 

l The nuclear target dependence of the production cross section in this limit 

is a function Aa of the pair momentum fraction x rather than a function 

A(Y(Z~) of the target parton momentum fraction x2; 

l Because of the rapid transverse size expansion of the spectators, production 

cross sections in nuclear targets become surface dominated at large x; 

l The intrinsic mechanism offers the possibility to produce the J/$ directly in 

a color singlet state. In analogy to Fig. 6b, the three quarks of a proton may 
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all couple to the J/lc, via gluon exchange. Hence there is no need for further 

soft gluon radiation; 16 

l Although the absolute normalization of the intrinsic contributions to massive 

pair production requires knowledge of two or more particle correlations in 

the non-perturbative hadron wavefunction, it is still possible to use QCD 

perturbation theory to analyze both the power law behavior and logarithmic 

evolution of these contributions in a manner analogous to PQCD treatments 
10 of large momentum transfer exclusive reactions, since the short-distance 

components of the wavefunction dominate. In particular, the extrapolation 

from charm to beauty processes is straightforward using scaling at fixed p = 

M2(1 - x). 

Our investigation can provide a QCD framework for understanding a number 

of puzzling features of the large x data: 

l The nuclear suppression seen for J/lc, production is much larger than that 

for p”‘p- production.3 Only extrinsic diagrams of the type shown in Fig. 

5b contribute to the lepton pair process, whereas also intrinsic contributions 

like Fig. 5c exist for quark pairs. In a simple model we found that for 

intermediate values of M2(1 - x) the intrinsic diagrams can dominate the 

production cross section. If this interpretation of the data is correct, it 

suggests very important intrinsic contributions to J/+ production in &CD. 

l Another consequence of large intrinsic contributions is that the charm and 

beauty structure functions measured in deep inelastic scattering can have 

a larger than expected support at high XBj. There is some evidence for 

this from EMC measurements of the charm structure function of the nu- 

l7 cleon. This will be an important area of investigation at HERA. 
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l The intrinsic reaction mechanism that we have studied may give an expla- 

nation of the surprisingly large rates of open and hidden charm production 

observed* at high x, as well as of the leading particle effect. Previous models 

919 have postulated a ‘recombination , 720 or ‘string acceleration , of slow heavy 

quarks by fast valence quarks, to boost the fast charm rate. However, such 

a mechanism could not correspond to a soft process, since the momentum 

exchange between the light and heavy quarks is required to be large. Hence 

the acceleration process should be treated using PQCD. In the intrinsic di- 

agram of Fig. 8b we see an example of this, where a heavy quark produced 

off one constituent later absorbs momentum from the other. After the heavy 

quark has gained momentum, it can coalesce with co-moving light quarks at 

low x through a soft process. This gives an immediate interpretation for the 

existence of leading particle effects in open charm and beauty production.* 

Coalescence is enhanced in gauge theories when the quarks have the same 

velocity or rapidity. A QED analog is explored in Ref. 23. Unlike recombina- 

tion and string pictures, where fast valence quarks pull the heavy particles to 

high momenta, the intrinsic heavy quark picture implies not only fast open 

charm and beauty states, but also heavy quarkonium production at large x. 

l The intrinsic production mechanism offers an intriguing new possibility of 

understanding ‘cumulative’ meson production in nuclei at large transverse 

+ Note that the dashed curve shown in Fig. lla of Ref. 18, which already is below the data, 
is the prediction of extrinsic QCD assuming that the D meson carries all of the momentum 

+ of the charm quark. In fact it is known from e e - data that the meson on average only 
carries 70% of the quark momentum. Hence the QCD prediction should be correspondingly 
reduced. 

* This same effect can also account for the observed suppression of quarkonium production 
in the nuclear fragmentation region in E7723 and at high particle density in heavy ion 
collisions in NA38.‘i For a recent discussion and references see Ref. 22. 

27 



24’25 momentum. As has been established in many experiments, a particle 

produced in the nuclear fragmentation region can carry more momentum 

than single nucleons (z > 1). The two (or more) gluons transferring momen- 

tum to the heavy quarks in intrinsic processes, such as the one in Fig. 6b, 

need not, in fact, originate from the same nucleon. Two or more nucleons 

with a small transverse separation can both transfer momentum to the same 

quark pair. Moreover, the number of intrinsic diagrams increases quickly 

with the nuclear number A and the number of gluons involved. 

l Among the puzzles of particle production at high 2 is the observed depen- 

dence on the transverse polarization of the beam. Recent data 26 show a re- 

markable increase of the polarization asymmetry in the region 0.3 < x < 0.9. 

It has been difficult to describe such polarization effects in the framework of 

perturbative QCD because the polarization is given by an interference term 

between flip and non-flip amplitudes, 

(4-l) 

In leading twist QCD calculations very small transverse polarizations are ex- 

pected, since the helicity flip amplitudes are suppressed and the amplitudes 

27 are predominantly real. On the other hand, as we noted in Section 3.3, 

the intrinsic diagrams such as Fig. 8b have a sizeable imaginary part, which 

appears immediately in the lowest order amplitude. Furthermore, the incom- 

ing Fock state involves large transverse momenta for the constituents, which 

can lead to important helicity flip contributions. It would thus appear that, 

assuming helicity flip amplitudes are prsent, the intrinsic production mech- 

anism may be a dominant source of transverse polarization effects. This is 
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supported by the fact that the observed polarization increases with the trans- 

verse momentum of the detected hadron. It is in the combined limit of large 

x and high pair mass (i.e. high pl) that the intrinsic diagrams contribute at 

leading order. 

l One of the most striking consequences of the analysis of this paper is the pre- 

diction for the soft, low Q2 - M2(1 - x), Coulomb excitation of the proton 

to high x massive quark pair configurations, especially ep + e’+J/++X and 

other heavy quarkonium states. The dominant diagrams at x -t 1 involve 

the electron scattering on the valence spectators, not on the heavy quarks 

themselves. The absolute size of the cross section can be estimated from J/$ 

production in proton-proton collisions, assuming factorization. A critical test 

of the importance of higher twist correlations in the proton wavefunction will 

be the observation of quarkonium states at large x in the proton’s fragmen- 

tation region. Furthermore, if intrinsic diagrams such as Fig. 8b account 

for the transverse polarization observed in high x hadronic reactions, then 

similar polarization effects should be present in peripheral ep collisions. It 

will be important to test these predictions at HERA. 
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Appendix 

In calculating hadron scattering amplitudes mediated by gluon exchange, it is 

convenient to view the hadron as a source for gluon pairs, as shown in Fig. 10. We 

may define the source amplitude as 

s;;(e) = (274324 Im J J g d4y exp(-ie * Y) (4 Ak(O) A;(Y) IP) (4.2) 
where AZ is the gluon field and IP) is a hadron of momentum P. The connection 

to the usual leading logarithmic gluon distribution is 

xG(x, Q2) = c / ‘y$f- S;;(I) P”(e)x26 O(Q2 - et) (4.3) 
a 

where 

with 7. v = v- for any vector v. We may write 

s$(e) = 2~- bab s(&, x) 
elel 

p ” 
(e;)2e-2 

(4.4) 

(4.5) 

in light-cone gauge and 

77/A% s;;(e) = 2~- bab s(ZL, x) - 
(Q2 

(4.6) 

in covariant gauge, with 77 . v = v+. Eqs. (4.5) and (4.6) are correct in the small 

x, high energy, limit. 
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FIGURE CAPTIONS 

1) A contribution to the forward elastic electron-electron amplitude, the imag- 

inary part of which (indicated by the vertical cut) gives the cross section for 

ee + p+p- ee through the subprocess yy + p+p-. 

2) Forward amplitudes for ee -+ ee, whose absorptive parts give contributions 

to the ee -+ /.I+P- ee cross section through the 7 + e + p+pL- + e subprocess. 

3) The analog of Fig. 2 in the case of hadron-hadron scattering. 

4) A perturbative contribution to the proton wavefunction, in which one quark 

carries most of the momentum xp, with x -+ 1. The momentum (il, yp) 

carried by the same quark in the non-perturbative wavefunction is integrated 

over. 

5) Amplitudes for quark or lepton pair production in a peripheral collision of 

a meson with momentum p. The invariant mass of the pair is M, and its 

S-momentum (zl, xp). (a) A leading t wist diagram, which does not involve 

the spectator quark. (b) A non-leading twist extrinsic diagram, where the 

pair is radiated from only one constituent. (c) A non-leading twist intrinsic 

diagram, in which the produced pair is connected to both constituents. The 

curved vertical line indicates the absorptive part. 

6) Perturbative contributions to a meson Fock state with an extra quark pair of 

large mass M and high longitudinal momentum xp (x + 1). The fractional 

momenta of the particles are indicated. Dashed lines indicate instantaneous 

Coulomb exchanges. (a) An extrinsic diagram. (b) An intrinsic diagram. 

7) Ratio of the Fock state probability (3.7) calculated using both extrinsic and 

intrinsic diagrams to that calculated with only the extrinsic diagrams, as a 
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function of ~1 = M2(1 - x)/m2. 

8) Production amplitudes for a quark pair of mass M and longitudinal momen- 

tum xp, in a peripheral Coulomb scattering of a meson from an elementary 

target of mass mt. The curved vertical line indicates an absorptive part. 

9) Ratio of the pair production cross section (3.17) calculated using both the 

extrinsic and intrinsic diagrams to that calculated with only the extrinsic 

diagrams, as a function of ~1 = M2(1 - x)/m2. 

10) Pictorial representation of the gluon source S$(e) of Eq. (4.2), viewed as 

the absorptive part of a forward gluon-hadron amplitude. 
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