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ABSTRACT 

Generalizations of the well-known Bassetti and Erskine formula to in- 
clude tilt angle and non-Gaussian particle distributions, as well as centroid 
deflections, are derived. 

1. Introduction 

The electric field of a relativistic upright Gaussian beam was first 
calculated in closed form by Bassetti and Erskine in Ref. 1. In this note 
we first generalize their formula to include tilt angle, thereby putting it in a 
covariant form. We follow the strategy Talman outlines in Ref. 2. Second, 
we comment on issues arising in the numerical evaluation of this formula. 
Third, we average the single particle deflection angle that is proportional to 
the transverse electric field over an offset distribution to derive the centroid’s 
beam-beam deflection angle. Both Gaussian and non-Gaussian beams are 
considered. A section about possible applications concludes this paper. 

2. The Covariant Form 

Following Ref. 2, we see that the deflection angle (q = horizontal, 
x2 = vertical) a single particle experiences, can be written using a complex 
Green function 

Ax; + ;Ax; = N,K 
J 

n2 d2 5 G(x - 2) &,(%, a) (1) 

where we define K = -2rJy with y being the normalized energy of the 
deflected particle and r, the classical electron radius. Ni is the number of 
particles in the field producing bunch described by the distribution function 
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that generates the electric field. The Green function is ,given by 

G(x - 2) = 
(Xl - 6) 1 i(x2 - 22) * (3) 

In this report we denote vector valued quantities in bold typeface. It is well 
known that Eq. 1 can be rewritten in terms of a potential 

Axk+iAxc: = -(-&+i&) $(x1,x2) 

(4) 
4(X 142) 

N,I- 00 = --y- l dq $--&q exp [-(q + 24;j’XiXJ 

where we have to deal with a matrix rather than individual sigmas as in 
Refs. 1,2. The appearing symmetric sigma matrix is explicitely given by 

(q + 2O)ij = q ;;oll q y;;,, 
( 

. 
12 ) 

In the next step we diagonalize (q + 20) and reduce the required integrals to 
those appearing in the original derivation. The diagonalization can be done 
by a simple coordinate rotation given by 

Zl + iZ2 = eeia (x1 + ix2) . P-9 

The sigma matrix then transforms according to 

(::: ;;;)=(y:: -:::)(f (y;)(-;;:: :::) (7) 

which reduces the potential $ to 

NIK 00 
$(x1,x2) = - J 1 

2 0 dq 
J(P + W)(q + 203 

exp[-f$-&] (8) 

which leads to the well known Bassetti and Erskine result 
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Finally, we have to relate all quantities back to those of the original coordinate 
system. Note that we can write with the help of Eqs. 6 and 7 

a: - uy” = e -2ia(ull - 022 + 2ia12) (10) 
UY a, zl- + ig,- = emza 

uY I 

022 - ial2 

03: Jxx+Jsx2 . 1 
We have to remember that Eq. 9 was derived from the potential given by 
Eq. 8 by differentiation with respect to the variables X. Therefore we have to 
write 

A%l, + iA& = eia (Ax; + iAx;> . (11) 

Inserting Eqs. 10 and 11 in Eq. 9 leads to the final covariant form of Bassetti 
and Erskine’s formula, which reads 

Ax; + iAx; = N~KFo(xI, x2,0) (12) 

where Fo is defined by 

E&I, x2,0> = 

II 
(13) 

- exp [-4 cfJu-‘)jjxixj] w 022 - ial XI + i ~11 + ial x2 

J~ZFSJ~C~! -a22 +ji~j * 
The kick angle given by Eq. 12 and 13 is now valid in any coordinate system 
and for any tilt angle the beam might have. 

3. Numerical Issues 

In the evaluation of F. various numerical problems can arise. Here a 
few are mentioned and methods described to circumvent them. 

First, for round beams that are characterized by cl1 = 022 and 
0i2 = 0 there seems to be a singularity, because the root 

vanishes. However, this singularity is compensated by a similar one in the 
arguments of the complex error functions w(z). Considering that w(z) has 
an asymptotic expansion w(z) + i/&z, we see that the singularities cancel 
and we are led to the result for round beams 

FO(XI, 52, m = m, 012 = 0) = i 
1 - exp [-(a? + xi)/20111 

XI + ix2 
(14) 
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Second, for large negative imaginary arguments, the complex error 
functions grow exponentially. This leads to the evaluation of differences of 
very large numbers, which can become numerically unstable. The problem 
can be circumnavigated by rewriting the expression in the curly brackets as 

w(z1) - es w(z2) = -[w(%) - eg w(Z2)] . (15) 

The arguments zl and z2 are those of the complex error functions in Eq. 13 
and g is the expression in the exponential. In this way, we flip the sign of 
the imaginary part in arguments of the complex error functions and make 
the expression numerically well behaved. 

Third, the evaluation of the complex error function is computationally 
expensive. We adapt Talman’s approach and calculate a Pade approximation 
for w(z) which consists of a tenth order polynomial in the numerator and a 
eleventh order polynomial in the denominator [3]. Checks show that such 
a routine is accurate to about five significant digits in the first quadrant of 
the complex plane. Values in other quadrants can be calculated using well 
known relations for the complex error functions for negative and complex 
conjugate arguments [4]. 

4. Centroid Deflection Angle 

In the second section of this paper we were concerned about the deflec- 
tion angle a single particle experiences. Here we average that over a second 
Gaussian particle distribution which may be offset with respect to the field 
generating distribution. We can write this centroid deflection angle in the 
form 

o,, + iO,, = N~IC JR2 d2y G~(Y - Y) JR2 d2X G(Y - X> $1 (X - X> (16) 
where X is the centroid position of the first beam and Y of the second, 
deflected beam. We can now change the variables, exchange the order of 
integration, and arrive at 

e,, + ie,, = ~11~ JR2 d2y G(Y - X - Y) JR2 d2X $lCx) @2cx - 3’) . (17) 
Note that this expression has the same structure as Eq. 1, which was used 
to calculate the single particle kick, except that here the distance between 
the two bunch centers, Y - X, appears. The convolution of both the field- 
producing and deflected distribution functions shows up as the source distri- 
bution. This observation, which is valid for arbitrary distribution functions 
$1 and $5, indicates that it is impossible to obtain information about in- 
dividual beam-beam centroid deflection data. Only information about the 
convolution is accessible. 
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We now evaluate Eq. 17 for two Gaussian distributions, given by 

+itX,~> = 2ri!z exp 
[ 

-f e(flml);i"i~j 
293 1 

+2(X - Y+) = 2Tjm exp [ -f &5-')jj(~j - yi)(xcj - yj) 1 (18) 
. 

873 

The convolution is easily performed with the result 

J ,,d2X~1(XI~)~2(X-Y,~) = 2,d& exp 
[ 

-f $(C-‘)jjyjyj (19) 
%,.I 1 

where we introduce I= = CJ + 6. Clearly the new “effective” distribution 
function depends on the sum of the correlation matrices of the individual 
beams. We can now utilize the discussion in Section 2 to deduce the centroid 
deflection angle and get 

Cl,, + iO,, = Nl.KFo(Yl - X1, Y2 - X2, E) . 

which again depends only on C. 
(20) 

Note that Eq. 20 also depends on the relative distance between the 
centroids of both bunches Y - X. Furthermore, the kick angle for the other 
bunch is given by Eq. 20 with X and Y exchanged and KN2 substituted for 
KN,. Writing the centroid angles for beams 1 and 2 as X’ and Y’, respec- 
tively, we can write for their variation during one collision 

y’ - X’ L&r = y’ - X’ Lore + (A-N, + KN2) Fo(Y - X, E) . (21) 
Assuming a storage ring with equal tunes for the counter-rotating beams , 
we can infer that the centroid difference variables Y - X, Y’ - X’ trans- 
form among themselves, and that the dynamics described by such a system 
is equivalent to that of a single particle in the field of a fixed Gaussian beam 
with Z = a+8 and (NK),E = KNl +KN2. We have thus proven that the dy- 
namics of “strong-strong” rigid-bunch models with equal tunes is equivalent 
to “weak-strong” models with appropriately modified parameters [5]. 

Next, we generalize this discussion to non-Gaussian beams, which we 
parametrize by a Gaussian $0 and an arbitrary polynomial Pl 

Ih(x,n > = e(x) +o(vl) * (22) 

An example is the Stratonovich expansion in terms of generalized Hermite 
polynomials, as used by Hirata in Ref. 6. In order to simplify the algebra, 
we rewrite Eq. 22 in the form 

&(x, al) = PI & mk exp [-i Cf,j(a-l)ijxixj + C? &xi] IBzO . ( > 1 

(23) 

5 



The required convolution with the deflected distribution, parametrized in a 
similar fashion, yields 

J @d2X tilh71) $2(X-37,62) = Pl (A) p2 (A) 
x exp [i cr,BB + 4 2 0 CC 1 $O(Y - JIB + ~2c, 01+ Q~)IB=~=~ . (24) 

The centroid deflection angle of beam 2 is then trivially calculated by plug- 
ging Eq. 24 into Eq. 17, and following the derivation for the covariant version 
of the Bassetti and Erskine formula. We obtain 

o,, + io,, = NIKPI (A) f’2 (49 

x exp [-& alBB + 4 2 0 CC 1 F,(Y - X - o1B + c72C, 01 + a2)/B,C,o 
(25) . 

Now only parametric differentiations of Gaussians and complex error func- 
tions (in Fs) are required, which are easily done. Note in particular that 
multiple derivatives of w(z) can be generated recursively according to [4] 

Jn+2)(Z) = -2[mJ~“+1)(z) + (n + 1) &‘(*)] ) (26) 

which makes the evaluation of Eq. 25 computationally inexpensive, because 
only w(O)(z) needs to be evaluated directly by a Pade approximation or oth- 
erwise. 

5. Applications 

First, Eq. 25 can be used in tracking codes for the beam-beam in- 
teraction to either calculate the coherent centroid deflection angle or the 
incoherent single particle deflection angle, by setting 02 = 0, C = 0 and 
P2 = 1. This may serve to make beam-beam codes more self consistent. 

Second, it is possible to expand Eq. 25 around the “round beam case” 
[7]. By this we mean to expand O,, + i@,, around gll = ~~~ and g12 = 0 
in small parameters such as & 1 = 2C12/(Cll + C22) for the tilt signature, 
~2 = (&I - &J/(&I + &2), for th e ellipticity signature or coefficients 
of the polynomials to assess non-Gaussian characteristics. By plotting the 
resulting “signature curves” along a path (~r(t),~(t)), it is then possible to 
discern systematic deviations from the normally used round beam deflection 
curve given by Eq. 14. 
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6. Conclusion 

In this paper the Bassetti and Erskine formula for the deflection 
angle from elliptic Gaussian beams was generalized to incorporate tilt angles. 
Thereby, the formula was transformed into a covariant form. Furthermore, 
we used this formula to calculate the centroid deflection angles of Gaussian 
and non- Gaussian beams. 

In the analysis it turned out that the centroid deflection angle depends 
only on the convolution of the field-producing and deflected distribution func- 
tions. It is therefore not possible to determine properties of the individual 
beams from deflection data alone. 

As a direct consequence, it was shown that the “strong-strong” 
rigid-bunch models are equivalent to “weak-strong” models with modified 
parameters. 
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