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Abstract 

The limitation in increasing the beam current in the SLC 
linac comes from the emittance growth caused by wakefields. 
Simulations of the beam transport that model the wakefield 
dynamics are being done to study methods to control this 
growth. To verify the theoretical estimates of the wakefield 
strengths assumed in these simulations, data were taken which 
are sensitive to their effect on the first order linac transport. 
Specifically, the dependence of single beam loading and 
betatron motion on beam current was measured in the range of 
0.5 * 10” to 3.5.10” electrons per bunch. This paper presents 
these data together with comparisons to results from simu- 
lations. 

I. INTRODU~ION 

The SLC linac accelerates bunches of particles from an 
energy of about 1 GeV to 47 GeV along a 3 km FODO lattice 
which contains 275 quadrupole magnets. The elements in the 
linac are illustrated in Figure 1. Along the linac, the phase 
advance of the FODO cells vary (90°+ 40’) as does the 
quadrupole spacing (3 m  + 12m). The beam is accelerated in 
disk-loaded waveguide structures which have an average iris 
radius (a) of 1.1 cm and a cell length of 3.5 cm. The 
longitudinal (WL) and transverse (Wr) wakefields generated in 
these structures have been computed for the m  = 0 and m  = 1 
modes, respectively [l]. They are plotted in Figure 2 as a 
function of the longitudinal separation (As) of the particle 
generating the field, and a test particle. Note that neither 
function depends on the transverse position of the test 
particle. 
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Figure 1. Segment of the SLC linac. 
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For an ensemble of particles, the wakefield interactions 
couple the particle motions. The effect can be described by 
treating the beam as series of longitudinal slices denoted by 
their longitudinal positions (s) relative to the bunch center. 
The energy loss and transverse angular kick per unit length (z) 
of each slice due to the wakefields are 

g 6) = e I I,” p(s) WL (s-s) ds’ (1) 

l Work supported by Department of Energy contract DE-AC03-76SF00515. 
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Figure 2. Longitudinal (WI.) and transverse (WT) wakefield 
functions. WT is linear in the transverse displacement (x/a) of 
the leading particle. 

p(d) wT(S’-S) X(S’) ds’ (2) 

where E(s) is the slice energy, I is the beam current, x is the 
transverse slice position relative to the waveguide axis, and 
p(s) is the longitudinal charge density (unit normalization). 
The average energy loss and kick angle are computed by inte- 
grating these expressions over the bunch length profile. 

Equation 1 shows that the beam loading is independent of 
the trajectories of the beam slices. Thus, a measurement of 
just the beam energy as a function of beam current is needed 
to gauge the longitudinal wakefield strength. The situation is 
more complicated for the angular kicks because the kick angle 
of one slice depends on the positions of all slices upstream of 
it. For the beam currents considered here, however, this is a 
weak effect in that the differential motion of the slices caused 
by the wakefield kicks over a distance of an oscillation 
wavelength is small compared to the oscillation amplitude. As 
described below, this condition can bc exploited to infer the 
strength of the transverse wakefields from their perturbation 
on bctatron motion. 
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II. BEAM PROPERTIES 

To do either of these analyses requires a knowledge of the 
longitudinal bunch profile. In the production of the linac 
bunches, this shape is determined by the profile of the bunch 
extracted from the damping ring, and by the compression that 
occurs in the ring-to-linac transport line [2]. For the data 
taken for this study, the bunches are expected to be nearly 
Gaussian in shape and have an rms length (os) which depends 
on current as 

os = .61 + .12.1+ .0076.12 (3) 
where os is in units of mm and I is in units of 10” electrons. 

Another beam property that affects betatron motion is the 
energy spread of the beam. The component of energy 
correlated with s results from the beam loading and the 
sinusoidial shape of the RF accelerating waveform. The latter 
contribution can be computed by summing the energy gains 
AEi from each klystron i. These have the form 

AEi = AE, i . COS ($BNs i + & + 2~ s/&c=) (4) 
where AEoi is the ‘no-load’ energy gain of the klystron, hRF is 
the RF wavelength (105 mm), &, is a phase adjustment com- 
mon to all klystrons, and oBNSi is a phase used to generate an 
energy spread to help cancel the variation in the transverse 
wakefield kicks along the bunch [3]. The BNS phases are 
constrained by the maximum energy gain possible in the 
linac, and by the requirement of a small energy spread at the 
end of the linac. As a tradeoff, a value of -20” (15’) is used in 
the first third (last two thirds) of the linac. Operationally, a 
global phase adjustment (@,) is made to minimize the energy 
width when the beam current is changed. As an example of 
these contributions, Figure 3 shows the corn 
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width profile along the linac for I= 3.0.10 . A global phase 
of 2” was assumed which corresponds to the value expected 
for the data taken for this study. The energy spread within any 
slice of the beam is roughly 1%/E where E is the beam energy 
in GeV. This component can be ignored for this analysis 
without significantly changing the results. 
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Figure 3. Predicted rms energy width profile along the linac 
for a current of 3.0.10” electrons per bunch. 

III. SINGLE BEAM LOADING 

To measure the strength of the longitudinal wakefields, 
the beam energy at the end of the linac was recorded for seven 

beam currents in the range of 0.5*1010 to 3.5+10” electrons 
per bunch. No other tuning of the linac was done during data 
taking. Because only relative energy changes are well 
measured, a systematic adjustment was made to the values to 
compute the energy loss relative to the zero current energy. 
This adjustment was determined by finding the best overall 
match of the measured energy losses to the values from a 
simulation of these measurements. The results, expressed as 
fractional energy losses (AE/E) at the end of the linac, are 
shown in Figure 4 for both the data and simulation. 

The good agreement between the measured and simulated 
energy losses indicates that the longitudinal wakefields are 
well modeled. In the simulation, the bunch length profile was 
assumed to be Gaussian with a sigma given by Equation 3. 
The shaded area in the plot shows the range of predictions if 
the bunch length is changed within +/- 20% of the nominal 
values. The small nonlinearity in the energy loss arises mainly 
from the assumed bunch length dependence on current. A few 
percent nonlinearity also results from the phase shift caused 
by the beam loading in the acceleration section used for bunch 
compression in the ring-to-linac return line [4]. 
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Figure 4. Measured (circles) and simulated (solid line) 
fractional energy loss as a function of beam current. The 
shaded region is described in the text. 

IV. BETATRON OSCILLATIONS 

The measurement of the transverse wakefield strength uses 
the approximation that the variation of the slice positions 
within a bunch undergoing betatron motion can be ignored 
relative to the mean oscillation amplitude. This approxima- 
tion, which is independent of the amplitude of the oscillation, 
is valid in only certain regimes which must be determined 
through a simulation of the beam transport. In this regime, the 
equations of motion can be simplified by removing the x(s’) 
term from the integral in Equation 2. The average kick angle 
in this approximation, denoted here by a subscript A, is 

where 
M M 

a= e2 
I I 

p(s) p(d) W, (s-s) ds ds’ 6) 
-m s 

and E is the mean beam energy. This relation has a 
quadrupole-like form in that the kick angle depends linearly 

2 



on beam position. However, the kick is always away from the 
waveguide axis which leads to a lengthening of the betatron 
oscillation wavelength. This effect makes it appear that the 
beam energy is larger, which is opposite to that of beam 
loading. 

To check the validity of this approximation, and to model 
any linac measurements involving betatron oscillations, a 
simulation program was written which treats the beam as a 
series of slices and transports them through the linac elements 
in a step wise manner. The beam profile, which was assumed 
Gaussian, was represented by 41 slices covering +/- 3 times 
the rms bunch length as given by Equation 3. The effect of 
wakefields was included by integrating Equations 1 and 2 for 
each slice over the lengths of the acceleration sections. 

With this program, betatron oscillations beginning at the 
upstream end of the linac were simulated to check the approx- 
imation used to derive Equation 5. Specifically, the ratio 

(7) 

was computed at each beam position monitor (BPM) location 
using Equations 2 and 5 with the substitution 

X(s) + x”(s) cos(@(s>-$M) + z’(s) sin(t)(s)-@M) (8) 

to make R insensitive to the phase of the oscillation. Here Z(s) 
and it’(s) are the normalized position and slope coordinates of 
the slice, and 4(s)-@M is the phase of the slice relative to the 
mean phase of the beam. If the motion of the slices remains 
coherent, R is unity, while for complete decoherence, R + 013. 
From the simulations, it was found that R remains within 
+/- 25% of unity in the first third of the linac for the beam 
currents being considered. Given this somewhat arbitrary 
measure of the goodness of the kick angle approximation, it 
was decided to limit the data analysis to only this region of 
the linac. Within this region, R is larger on average at low 
currents than at high currents although the mechanism for this 
is not clear. 

The effect of the average kick angle described by Equation 
5 can be incorporated into a first order transport matrix (in x 
and x’) representation of the linac by including a matrix for 
the acceleration sections which is an integration of the kick 
angles over the lengths (L) of the sections. For the case of no 
acceleration, the 2 x 2 drift transport matrix is modified as 

to first order in c1 (note that this correction does not apply to 
the propagation of beam ellipses). With this substitution, the 
1,2 elements of the transport matrices computed from a 
corrector magnet to all downstream BPM positions should ap- 
proximately match the shape of a betatron oscillation induced 
using that corrector. Conversely, a fit to betatron oscillation 
data can be made to extract the beam current dependence as 
specified in Equation 9. This has the advantage of allowing 
the effect of approximations to be absorbed into the fit 
current. 

For this purpose, oscillation data were taken at the seven 
current settings used when measuring the beam loading. One 

corrector was used to generate an oscillation in the horizontal 
plane near the beginning of the linac and the resulting BPM 
difference orbit was recorded together with the magnets 
settings and the computed energy profile along the linac. The 
largest error in reconstructing the lattice from this information 
comes from the uncertainty in the energy scale. This factor, 
however, can be estimated by fitting the data to a single par- 
ticle trajectory with the energy scale included as a variable 
[5]. For this analysis, the scale factor was adjusted so the fit 
to the 0.5 - 10” data yielded the same result as the fit to a 
simulation of these data. The lowest current data were chosen 
because they are least affected by wakefields. A correction of 
about 2% was found and was applied to all seven data sets. A 
correction for beam loading for each current was then made 
using the results in Figure 4. Finally, each BPM difference 
orbit was fit assuming a single particle trajectory, but 
including the correction in Equation 9. The initial position and 
slope of the trajectory was allowed to vary in the fit, as was 
the beam current (Ifit) entering the correction. 

The same procedure was applied to simulated BPM 
oscillation data for the seven beam currents. No errors were 
included in the BPM readings, which in the data can be 
ignored relative to the amplitude of the oscillations. As an 
example of the results, Figure 5 shows the measured and 
simulated BPM values, and the resulting fits for I= 3.0 * 10”. 
In each plot there is some systematic disagreement between 
the fit and the BPM readings. However, an exact fit is not 
expected even without wakefields because a single particle 
trajectory does not account for incoherence effects. For the 
simulation, the rms of the fit residuals are 10% to 20% of the 
rms of the BPM values. In the data, they are 20% to 30% for 
all but the lowest two current settings where they are 37% and 
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Figure 5. Measured and simulated BPM oscillations (circles) 
and the resulting fits (solid lines) for I = 3.0.10”. 
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34%, &spectively. This may be due to the fact that the lower 
current data is more sensitive to errors in the energy profile 
along the linac. 

The results from the current fits are shown in Figure 6 for 
both the data and simulation. Note that the good agreement 
for 1=0.5 * 10” is the result of the energy scale factor cor- 
rection to the data. The error bars on the data correspond to a 
0.2% uncertainty in the energy scale, which is a rough 
estimate of the error given the method in which the scale was 
determined. However, other types of energy profile errors are 
not included. The shaded region represents the range of 
predictions for a +/- 3’ change in the global phase (&,) or a +/- 
20% variation in the bunch length. The phase change was 
made so it affected only the energy spread and not the mean 
energy gain. 
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Figure 6. The fit value for the beam current from measured 
(circles) and simulated (solid line) BPM difference orbits as a 
function of the actual beam current. The shaded region is 
described in the text. 

Given these systematic errors, the values of Ifit for the 
data are still larger than expected. Scaling the strength of the 
transverse wakefield function improves the agreement, 
although a 60% increase is necessary due in part to the 
decrease in the results from the simulation that also occurs 
with stronger wakefields. Other possible causes of the 
difference are errors in the energy profile along the linac, a 
non-Gaussian bunch length profile, or a value of R for the 
beam at the beginning of the oscillation which is not unity as 
assumed in the simulation. Repeating the measurements with 
a more careful setup of the linac may help eliminate some of 
these possibilities. In any case it is interesting to note the 
leveling-off of the Ifit values at large currents. This is most 
likely due to the fact that R decreases at larger currents as was 
noted previously. Equation 5 thus overestimates the average 
wakefield kick angle as the current increases. 

To get a sense of the size of the wakefield effect, an 
equivalent energy change was computed for each FODO cell 
of the linac that cancels the change in phase advance per cell 
due to the transverse wakefields. That is, the change in the 
1.1 and 2,2 elements of the cell transport matrix from the 
substitution in Equation 9 is canceled by a decrease in energy 
of 

where K is the inverse focusing strength of the quadrupoles in 
the cell. For I= 3.0 * lOlo, the required fractional energy de- 
crease is plotted in Figure 7 for the region of the linac used in 
the oscillation analysis. Compensation of the average wake- 
field kick angle would thus require energy shifts as large as 
10%. It is interesting to note that a similar calculation can be 
done to compute the energy change as a function of s to make 
the phase advance independent of s (this is sometimes referred 
to as autophasing). In this case, the resulting rms energy 
spread is similar in magnitude to the mean energy shift shown 
in Figure 7. Comparing Figures 3 and 7 shows that the energy 
spread in the upstream end of the linac is approximately that 
required for this condition. This agreement is consistent with 
the fact that R remains close to unity in this region. 
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Figure 7. The fractional energy decrease required to cancel the 
effect of the transverse wakefields on the phase advance per 
cell as a function of quadrupole unit for I = 3.0. IO”. The 
discontinuities in the values are due to the uneven spacing of 
the quadrupoles. 

V. SUMMARY 

The measurements of beam loading are well modeled 
which gives one confidence in the assumed strength of the 
longitudinal wakefields. Measuring the transverse wakefield 
strength is more complex, requiring a perturbation treatment 
of their effect on betatron motion. The fits for the beam 
current from measured oscillation data show a qualitative 
agreement with the results from simulated data. Further mea- 
surements of this type with a better control of systematic er- 
rors are needed to make more quantitative conclusions. 
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