
SLAC-PUB-5576
July 1991

Pm

HIP - Symbolic High-Energy Physics Calculations

ALEXANDER HSIE~ AND ERAN YEHUDAI

Stanford Linear Accelerator Center

Stanford Uniuersity, Stanford, California 94309

ABSTIL4CT

We present HIP - a set of computer packages for symbolic calculation of

Feynman diagrams. The pxkages were designed as an aid in calculating tree-level

multi-particle electrowe& production processes, though they can be used for a

much wider class of calcula.tions. We ha.ve used the packa.ges to calculate such pro-

cesses as ey + WV and yy -+ IV+W- a.t tree level with arbitrary Wy couplings.

The packages are written in the computer a.lgebra langua.ge Mathematics which

provides a powerful working environment.

Submitted to Clornpu ters iI Physics

JC Work supported by the Department of Ewrgy, contract DE-AC03-7GSF00515.

1. Introduction

Present day pertubative ca.lculations in the Standard Model (SM) and its ex-

tensions often require tedious algebra calculations. While tree level calculations

of two-body production processes in the SM can certainly be done manually, it is

often helpful to have a check in the form of an automatic calculation method. Pro-

cesses involving the production of more tha,n two particles (e.g. e+e- + W+W-y)

or complicated Feynman rules (e.g. yy -+ T/T/+W- with arbitrary Wy couplings)

involve much more difficult calculations in which computerized aid is almost indis-

pensable.

Two approaches ha.ve been used to automa.te calculations of this type. Hagi-

wara et all’] have written a set of Fortran subroutines that calculate matrix ele-

ments numerically. This a.pproach allows the automatic calculation of complicated

tree level processes, but it is restricted to numeric results. An alternative approach

introduced by Ve1tma.n PI with Schoonship is to allow symbolic manipulation of ex-

pressions. While S h c oonship wa,s written as a special purpose program, with all

the necessary algorithms ‘hard-wired’ into its assembly code, Reduce [31 followed

a more general a,pproa.ch. Much more mathema.tica.1 knowledge (e.g. integration

rules) is incorpora,ted into the program as higher-level lisp routines. The user,

building on that basis of knowledge, can then expand the program by writing his

or her own routines. The price for that flexibility is naturally paid in performance.

We follow this latter approach by writing our packages in Mathernatica,[4’ one

of the newer and most promising of the new generation of symbolic manipulation
[51 languages which also includes A4aple. Using j%~a.thematica’s high-level program-

ming language greatly simplifies the task of writing programs. Additionally, the

physics calculations a.re embedded within a, powerful environment in which results

can be simplified, ca,lculated numerica,lly and plotted. With the rapid advance in

computer performa,nce, the CPU-time needed for the calculations is usually negli-

gible compared with the time needed to prepare the input and process the output

of the programs. This a.pproa.ch is also being used by the Wiirzburg group in their

programs FeynArts [Gl [71 a.nd Feyn Ca.lc.

Unlike Feyn Arts we do not attempt to automatically generate the necessary

Feynman diagrams. Typically, tree-level diagrams can be easily generated manu-

ally. HIP takes as input expressions describing the Feynman diagrams. HIP then

provides the user with a. rich set of operators by which to manipulate the physi-

cal objects occurring in these expressions. The user may, for example, substitute

explicit four-vectors and particle polarizations, square the matrix elements to give
PI traces that can then be evaluated or convert the expressions to spinor techniques.

As an aid in calculating cross-sections and decay widths, phase-space integrals can

be automatically constructed and evaluated symbolically, numerica.lly, or converted

to a C or Fortra.n pr0gra.m.

The traditiona. method of Feynman diagram calcula.tion involves squaring the

matrix element symbolically. The number of terms involved increases like the

square of the number of Feynman dia.gra,ms involved. In contrast, spinor tech-

niques are methods for ca.lcula.ting Feynman dia.grams numerically at the matrix

element level. The number of terms involved is linear with the number of Feynman

diagrams. Photon and fermion pola.rizations have to be summed explicitly. Spinor

techniques are simplest when the fermions involved can be taken to be massless.

They are most useful when a large number of Feynman dia,grams is involved.

We have used HIP extensively, typically ca.lculating processes with relatively

simple topology (2 --t 2 and 2 + 3 tree-level cross-sections) but with complex

Feynman rules.

The paper proceeds as follows. In the next section we give a brief overview

of HIP. Some of the major objects and functions are mentioned. In sect. 3 we

describe in more deta,il some of HIP’s more important functions, presenting the

mathematical rela.tions they use a.ncl short examples of their application. In sect. 4

we give two complete examples: the calculation of the width for the muon decay

p”- --+ vMe-Ve with a finite electron mass, and a calculation of the matrix element

for el;e, ---f Z t t? -+ lV+I/T/-& including the 14’ coupling to light fermions,

3

which preserves all spin and angular correlations. In sect. 5 we summarize and

give an outlook. The complete listing of HIP functions, with their usage messages

(available as on-line documentation) is given in the appendix.

2. Overview

The packages in HIP contain functions that can manipulate various mathe-

matical objects occurring in high-energy physics such as four-vectors, spinors and

gamma matrices. Rather than follow one strict path from input to output, the

packages allow the user to specify how a, ca.lcula.tion proceeds (either interactively

or in batch mode). A typical ca.lcula.tion might be to construct a matrix element,

square it and sum over polariza.tions, construct the phase-space integral and eval-

uate this integral to give a symbolic expression for the total cross-section.

The most fundamenta.l component of any high energy calculation is the ma-

nipulation of four-vectors. Basic objects such a.s the dot-product (p . Q) (DotProd-

uct [p , ql), the metric yIL” (G [mu, nu]) a.nd the completely anti-symmetric tensor

E~““~ (EpsCmu, nu, sig, taul) are defined, with some of their elementary prop-

erties (e.g. the dot-product is symmetric in its two arguments). Four-vectors can

be specified in terms of their components. They ca.n then be boosted (using the

function Boost), represented a.s sum of other four-vectors (Decay), etc. In addi-

tion, four-vectors ca.n also be trea.ted without reference to the explicit components.

Dot products can be given explicit values (SetDotProduct, SetMass), Mandelstam

variables defined (SetMandelstam), Lorentz indices defined (PrepareIndex) and

contracted (Contract).

The second component in HIP is the Dira.c a.lgebra. The basic objects involved

are the Dirac gamma matrices yp (DiracGamma[mu]), y5 (DiracGammaS), the pro-

jection opera.tors PA = (l+Xy5)/2 (HelicityProjection[lambda]) and $ = p,yP

(SlashCpl). The D irac matrix product is represented by the Alathematica built-

in function NonCommutativeMultiply (aliased to **). The trace of a product of

Dirac gamma ma.trices is computed using the opera,tor GammaTrace.

4

Some programs handling Dirac algebra,, notably Reduce, can only deal with

gamma matrices. HIP can also work with spinors. The basic spinor objects

U(P) and 4P> (SP inorUCp1 and SpinorVCp]) and their conjugates U(P) and E’(P)

(SpinorUbar [p] and SpinorVbar [pl) are defined. The function AbsSquared is

used to square ma.trix element expressions which may include these spinors.

Expressions involving spinors do not have to be squared before they are cal-

culated numerica.lly. The HIP function ConvertToST converts a suitable expres-

sion involving spinors to an expression involving the elementary spinor products

s(p,lc) = UR(p)uL(IC) and t(p,k) = UL(~)uR(IC) (SpinorS[p, k] and SpinorT[p,

kl) defined in reference 8. The expression produced can then be evaluated numeri-

cally by giving explicit values to the components of the four-vectors. Alternatively,

it can be squared and converted ba.ck to an expression involving traces using the

function STToTraces.

Given an expression for the ma,trix element squared associated with a process,

the ca.lcula.tion of physical observables such a.s cross sections and decay widths in-

volves integration over the pha.se spa.ce of the out-going pa,rticles. The functions

CrossSection and DecayWidth set up the phase-space integral. The functions

return a PhaseSpaceIntegral object that can then be evaluated either symboli-

cally using EvaluatePhaseSpaceIntegral or numerically using NEvaluatePhas-

eSpaceIntegra1. Alternatively, one can write a Afathematica program to convert

such an object to a C or Fortran progra.m for numeric evaluation. Such a conver-

sion program would be highly specific, depending on the particular programming

language, integra.tion routine etc. \&re ha,ve used one such program in our work,

but it is not included with HIP.

HIP includes some of the common Feynman rules of the Standa.rd Model which

are implemented using the functions Vertex and Propagator. Constants such as

sin’ 8~ (Sin [ThetaW] -2) and pa.rticle ma,sses (e.g. Mass [ZBosonl) are usually kept

as symbolic constants. However, HIP stores a table of their numerical values; these

are substituted for the symbolic expression by the Ma.thematica function N.

5

3. HIP functions

Strictly speaking, Mathematics. does not distinguish between data-structures,

functions and procedures. In practice, however, the Mathematics objects defined in

HIP can be divided into several broad categories. In all cases we try to follow the

Mathematics convention of beginning each name with a capital letter. Further,

as far as is practical we use full, descriptive English names rather than cryptic

acronyms. Using Mathematics utilities, the user can choose his or her own cryptic

abbreviations. The major categories are:

1. Objects such as ga.mma matrices or clot products. These are characterized

by the property tl1a.t they usually rema.in unevaluated.

2. Declara.tions and definitions. These do not typically return anything, but are

rather invoked a.s pa,rt of the initialization process.

3. Operations such as contracting indices or ta.king traces. These typically take

their input and convert it to a.n equiva,lent expression.

In this section we describe the most important members of each class.

Table 1 lists the ma.jor functions representing objects with their equivalent in

ordinary physica. nota.tion.

The most useful decla.ra,tive functions a.re:

- PrepareIndex: PrepareIndex [mu, nul decla.res ~1 and u and Lore&z in-

dices.

- SetMass: SetMass [pl, p2, . . . , ml sets pl, p2,.. to be four-vectors with

invariant mass m.*

- SetMandelstam:SetMandelstam[(pl, p2, p3, ~41, (ml, m2, m3, m4),

S, t, u] sets pl, p2, p3 and p4 to be on-shell with masses ml, m2, m3 and

* Note that the p’s are used in a. dua.l mode, bot,h a.s representing momenta and as representing
particles. The mass m associa.ted with p is the ma.ss of the particle carrying the momentum
p. For off-shell particles, p2 # nx? (DotProduct [p, pl ! = Mass Cpl -2).

Ta.ble 1. HIP funclions represent,ing objects

HIP Function Example Physical Equivalent

0 -tpx, py, pz, e3 The four-vector (pz, pY, pz, E)

DotProduct DotProductCp, q] P’Q

G G[mu, nu] gpu

EPS Eps[p, q, mu, nd hrpvPTQU

DiracGamma DiracGamma[mu] YP

Slash Slash[p] $

DiracGamma5 DiracGamma5 Y5

** DiracGamma[muI**Slash[p] yp $

SpinorU SpinorU[p, lambda] UA (PI

SpinorUbar SpinorUbar[p, lambda] Q(P)

HelicityProjectionHelicityProjection[Left] Pr, = (l-y5)/2

SpinorS SpinorS[p, kl S(P, v = GdPMV

SpinorT SpinorT[p, kl t(p, k> = Q(P)w@)

m4 respectively and sets the DotProducts of pl, p2, p3 and p4 in terms of

the h/land&tam variables s, t a.nd u and the masses:

1
(Pl * pa) + -(s - ,nT - n,.;, 2 (113 * p4) -+ i(s - mi - VA:)

(PI * p3) -+ $(-t + m; + nxi)

;
(Pl * 214) --) 3(--u + 772; + In;)

(Pa * P4) + f(-t + m; + n2i)

(P2 - p3) --) $-u + m; + n2$

where m; is the ma,ss of the particle 13;.

Most of HIP’s functiona.lity is implemented a.s operator-type functions. The

main ones are:

- Boost: Boost [fv, rap, dir] gives a four-vector obtained by boosting the

four-vector fv by rapidity rap in the direction specified by dir. Example:

I I
InCIl:= Boost[(O, 0, 0, ml, r, (cth, 031

Boost the four-vector (0, 0, 0, m) by rapidity r in the direction cos 8 = cth,

(is = 0.

Out[Il= (SqrtCI - cth2] m SinhEr], 0, cth m Sinhbl, m CoshL'rl)

(ntdmsinh T, 0, nx cos 0 sin11 r, m cash r).

- Decay:Decay[v, dir, (ml, m231 givestwofour-vectorsvl and v2 suchthat

01 +v2 = v, vf = mf, vi = nzi a.nd the direction of VI in the v center-of-mass

frame is given by dir. Example:

I I
InCIl := Decay[(O, 0, 0, ml, (cth, 03, (ml, 031

Decompose the four-vector p = (0, 0, 0, ~72) into two four-vectors pl and pa

such that pf = 172f, pi = 0 and the direction of p1 in the p center-of-mass

frame is given by cos 0 = cth a.nd C$ = 0. After some rearrangement one

gets:

Sqrt[I - cth2] (m2
2 2 2 2 2

- ml > cth (m - ml > m + ml
out[l-J= tC-----------;-m-----------, 0, __-_---------- -w--v---

2m '2m
3,

2 2 2 2
(-(Sqrt[I -cth] (m -ml>> -(cth

cm2 2 2
-ml>> m -ml

> ___________----------------- 0, _---------------- , >
2m 2m --L---33

8

(
A/iT23(1122 - nl;)

0,
cos U(m2 - In!) ,22 + mf pl =

277-z 9 2nz 7 2m > ’

(-diTZT(n22 - 772:)) o - cos 19(172~ - rn:) m2 - mf
P2 =

2112
7 2m 7

) 2m ’

- Contract: Contract [expr, index] conhcts index in expr. Contract

with respect to a. particu1a.r index /L invokes a large set of rules. The basic

rules for handling arbitra,ry tensors and vector are:

g;,” ---f D

P/l c1/” --+ 1, * q (34
$7

vl”‘fL...v,I +T LQ...r...Y,

where D is the dimension of space-time.* For handling the completely anti-

symmetric 6 symbol we use

The rules a.ssociatecl with y-ma.trices aae: PI

P,lYfL -+

YfLY p+D

Y/LY~-Y~ -+ (2 - Dh

g rn . . .
W

*. . : .

Y
Tn . . . VII

(3.2)

(34

* Most of HIP’s functions operate well in arbit,ra.ry D dimensions. The exceptions are the
functions dealing with vectors given in terms of their explicit components (e.g. Boost),
functions associated with phase-spa.ce integrals and functions treating y5.

For more complicated ca.ses we use

y/J++ +

where

Example:

2r+4 + 2rp

- 244

(-i)n (D -4)r@) +2$)
(

(n even)
(D=4)

(n odd)
n-3

2 C(-l)i~v,r~nJ
i=4

(3.5)

I I
InCIl:= Contract [G [mu, nu] p [mu] , mu]

Contract the index p in gP,,,pp.

Out [II = p [nul

In[21:= Contract [DiracGamma [mu] **Slash [p] **DiracGamma [nu] **
DiracGamma[mu] , mu]

Out[2]= (-4 + SpaceTimeDimension) Slash[p] ** DiracGamma[nu] +

> 4 p Cm1
CD - 4) #Yv + 42 1” where D is the space-time dimension.

10

- GammaTrace: GammaTrace [expr] is the trace (in spinor space) of expr. tr { 1)

can be left unevaluated as the constant DiracGammaSize, but is usually set

to 4. Whenever possible, GammaTrace uses the following simple rules:

Traces of longer espressions invoke the following recursive rules:

tr { ypI?(n)} -+ ~(-l)(i+lJgi.vitr { ITi’“‘}
i=l

tr { y5d”)} + C (-l)(i+j+L+‘)?ty,v,vh~~tr { I$;!,} .
lLi<j<k<l<n

(3*7)

Example:

I I
In[il:= GammaTrace [DiracGamma [mu] **DiracGamma [nu]

Out cl] = 4 G [mu, nu]

In[21 := GammaTrace [DiracGamma5**DiracGamma[mu] **DiracGamma [nu] **
DiracGamma[sigl **DiracGamma[tau]]

tr { ~~~~~~~~~~~
Out[2]= 4 I EpsCmu, nu, sig, tau]

In[3]:=

out c33 =

GammaTrace [DiracGammaCmu] **SlashCpl] **DiracGamma[nu] **
Slash[p2] **DiracGamma[mu] **Slash[p3] **DiracGamma[nu] **
Slash Cp411

tr {YP hYv $2-Y $37” $4)
-32 DotProduct [pi, p3l DotProduct [p2, p4]

-3% * ~~S)(p:! * 2’4)

- AbsSquared: AbsSquared[expr] is the absolute value of expr squared. Ab-

ssquared sums over polarization of both external spinors and vectors unless

their polarizations are explicitly specified:

I-wP)12 --+ C Xux(p)E~(p)X* + X(j + m)X*

IP-V(P)12 --+ 6 .Uvx(p)?Tx(p)X* + X(j - m)X*
x

l~dZ.412 -+
1

- S/L/L’ (m = 0)
P/l P/L’

- YPll’ + 1723 cm # O>?

where m is the mass associa,tecl with p. Exa.mple:

(3.8)

I I
InCll:= AbsSquared [SpinorUbar [p] **SpinorV [q]]

Out Cl]= 4 DotProduct [p,q] - 4 Mass [p] Mass [q]

41, . q - 4mpm,

In[2] := AbsSquared [SpinorUbar [p, Right] **SpinorV [q, Left]]

Out [2] = 2 DotProduct [p ,q]

In[3] := AbsSquared[SpinorUbar [p] **DiracGamma[mu] **SpinorU[q]]

out [31= -4 DotProduct [p, q] G[mu, Conjugate[mu]l +

> 4 G [mu, Conjugate [mu]] Mass Cpl Mass [q] +

> 4 p [Conjugate [mull q[mul + 4 p [mu] qCConjugateCmul1

Conjugate [mu] (1~’ is the new index needed on squaring the expression).

- ConvertToST: ConvertToST [expr] a.ttempts to convert expr to Spinors and

SpinorT objects. Unless instructed otherwise, the program assumes every

massive vector q is the sum of two massless vectors LightlikeVectorDe-

cayedFrom [q, 11 and LightlikeVectorDecayedFrom[q, 21. Example:

InCll:= ConvertToST [
SpinorUbar [p, Right] **Slash [q] **SpinorU [k, Right]]

Convert CR(P) @n(k) t o s liner 1 techniques. p a.nd k have previously been

set massless.

out Cl] = - (SpinorS [p , LightlikeVectorDecayedFrom[q, Ill *

> SpinorT[k, LightlikeVectorDecayedFromCq, 111) -
> SpinorS [p, LightlikeVectorDecayedFrom [q, 211 *

> SpinorT[k, LightlikeVectorDecayedFromCq, 211

13

The result is s(p, ql)t(k, ql) - s(p, qz)t(k, 42) where qf = qg = 0 and

q1 + q2 = q are assumed.

- Vertex: VertexClinel, line2, . . .] is the Feynman rule for a vertex.

Each line is of the form particle or (particle, p) or (particle, p,

indices) where particle is the particle type, p is the particle’s momentum,

and indexes are the appropriate Lorentz or gauge group indexes. Example:

I I
InClI := Vertex [Electron, Electron, (ZBoson, p, mu)]

The eeZ vertex for 2 boson carrying momentum pP

Out Cl] = (-2 I Sqrt [Alpha] Sqrt [Pi] DiracGammaCmu] **

-HelicityProjection[Left]
> (------------------------- + Sin[ThetaW12)) /

2

> (Cos CThetaW] Sin [ThetaW] >

-2ififi
cos 6~ sin 0.c~ YP

(
--~PL + sin” 6~

L >

where CY is the electroma,gnetic fine structure constant and 0~ is the Wein-

berg angle.

- CrossSection a,nd DecayWidth: CrossSectionCme2, ql->(qlx, qly,

qlz, el3, q?.-Hq2x, q2y, q2z, e2), outGoing] returns an expression

for the phase space integral to be evaluated by EvaluatePhaseSpaceInte-

gral. me2 is the expression for the mat,rix element squared, (plx, ply,

plz, el) a.nd (p2x, p2y, p2z, e2) a.re the explicit four-vectors of the in-

coming particles, a,nd outGoing specifies the order of phase-space evalua-

tion as explained below. DecayWidthCme2, p -> {px, py, pz, e), out-

Going] similarly returns an expression for the phase space integral resulting

14

in the decay width given matrix element squared me2 and initial momentum

(px, py, pz, e3.
The formula used for cross-section calculations is

aad for the decay width it is

r = t2T>4
m IM12ct~,,(P;pll...pn).

s

W-9

(3.10)

Phase-space integra,tion is performed by a recursive use of the relations

d@n(P; Pl, * * * ,pn) = d@n-1 (Pi j~12,1)3, f + * ,Pn) d@2(P12; Pl,P2) (2T)3dmT2

’ = d@n-l(P; J-)12,1)31.. . ,Pn) -- 21p11 cZfl~2 dm2
8(2~>~ ml2

127

(3.11)

where pT2 = mf2 and 012 represents t,he direction of the ‘decay’ of the vector ~12

to pl and p:! in its center-of-mass fra.me. The factor 21~1 I/ml2 is given by

/ K n2T2 - (1721 + ?722)2) (my? - (7721 - ?742)] 1’2

I,,?,

(ml = m2>

(m2 = 0)

(ml = m;! = 0).

\l
(3.12)

The argument outGoing tells HIP how to build the phase space element da,.

It specifies both the order that the nlomenta p1 . . .pla are paired (eq. (3.11)) and,

optionally, the symmetry of the individual two-body phase-space elements. By

default, the complete angu1a.r integral over 012 is constructed. Often, due to the

symmetry of the process, one can reduce the dimension of this integral (in the

case of cylindrical symmetry), or eliminate it completely (in the case of spherical

symmetry). This is done using the keywords Cylindrical and Spherical.

For example, let us consider the decay process /L-(P) --t e-(pl)tr,(p2)vP(p3). If

the p is unpolarized, the decay process is spherically symmetric. The direction of

V~ may be chosen arbitrarily. Once that is done, the direction of the electron with

respect to the (e-v,) system has cylindrical symmetry about the up direction. The

outGoing argument is given by Spherical [Cylindrical [pl, p2] , ~31. If the p

is polarized, the spherica. symmetry of the decay is reduced to a cylindrical sym-

metry about the polarization axis. outGoing is then given by Cylindrical [(pl,

~23, pal.

4. Examples

In this section we give two exa.mples showing step by step how a HIP calculation

is carried out. In the first example we compute the decay width of a muon in the

process p”- t e-vpVe and with a non-zero electron mass. In the second example

we express the ma.trix element for the process eie; + 2 --t t? -+ W+W-bb as a

spinor-technique expression.

4.1 ryp- -+ e-upiTe)

We use a low-energy a,pproximation in which the W-propa,gator is a constant

and is absorbed, along with the coupling constant g into the Fermi constant GF.

fig. 1 shows the single Feynman diagram for the process.

I
InCl] := PrepareIndex [sig]

Instruct Mathenmtica. to treat, sig as an index.

In[2] := SetMass [(pnub, 03, (pe, me), {pnu, 03, (pmu, mmu31

16

+ -
Ve

5-91
6953Al

pe’
\ e-

Figure 1. Feynman diagra.m for muou decay p- - e-T,Y,

Set the masses of the four externa,l particles. The neutrinos (vP and V,

carrying momenta pnu and pnub respectively) have zero mass. The electron

(pe) is set to have mass me while the muon (pmu) is set to have mass mmu.

Later on, these ma,sses can he given numerica. values.

In[3] := matrixelement = 2 Sqrt [2] FermiGF *
SpinorUbarCpnu] ** DiracGamma[sig] ** SpinorU[pmu, Left] *
SpinorUbar Cpe] ** DiracGamma [sig] ** SpinorV [pnub, Left] ;

In[41:= me2 = AbsSquared[matrixelement] /2;

Square the matris-element using the Ma.thematica function AbsSquared.

We suppress the printing of the long intermedia.te result.

In[5] := me2 = Contract [me:!, {sig , ConjugateCsig])] // Factor

Contract over the indices o and a’. // Factor instructs Mathematics to

the factor the expression.

17

Out[5]= 128 FermiGF2 DotProduct[pe, pnu] DotProduct [pmu, pnub]

In[6]:= width = DecayWidthCme2, pmu -> (0, 0, 0, mm&,
Spherical[Cylindrical[pe, pnub], pnu]]

Ask Mathelnatica. to construct the phase-space integral to compute the

decay-width. The expression Spherical[Cylindrical[pe, pnub], pnul

indicates a cylindrical symmetry in the phase-space integral over the pair

(e-, v~) and a spherica. symmetry over pair (vi,,, (e-, ve)) (here (e-, v~)

is the combined system of e- a.nd F~.)

Out[71= -PhaseSpaceIntegral-

In[8]:= width = EvaluatePhaseSpaceIntegral[width];

Evaluate the phase-space integra.1 symbolically. Aga.in we suppress the long

intermedia,te result.

In[91:= Factor[width /. me-)x mmu /. Log[a- b-1 :> Log[a]+Log[b]]

Use some Mathema.tica rules to tidy up the expression. We express the

mass of the electron in terms of the ma.ss of the muon m, = xmp and

combine logarithms using the rule log(ab) + log a + log b.

2 5 2 6 8
-(FermiGF mmu (-1 + 8 x -8x +x + 12 x4 LogCx21))

out[l()]= ------------------------------3----------------------------

192 Pi

lT(p- --+ e-vpF,) =
G$m;(1 - sx” + sxG - x8 - 12x4 1og(x2))

19'73

18

4.2 MATRIX ELEhfENT FOR eze; + 2 t tt -+ bv+w-bb IN SPINOR TECHNIQUE

FORM

We convert the ma.trix element for the process eze; + 2 --+ tS + TV+W-b&

into the spinor technique form [81 . The advantage of this form is that it can easily

be used in a numerica. calculation. The spinor technique objects s(p, q) and t(p, q)

are defined in table 1. s a.nd t have compact expressions which are easily evaluated

numerically.

The relevant diagram is shown in fig. 2. The AJa.thematica computation follows.

We have suppressed most of the intermedia.te output.

r- I
In[ll:= PrepareIndex [t au, mu, nu]

Instruct Akthematica to treat tau, mu and nu a.s indices.

In[2] := SetMassC(pl, ~2, pb, pbb, 03, (pwp, pwm, MassCWBoson])]

Set the masses of the external pa.rticles. The e- and e+ have momenta pl

and p2 respectively, aad are maasless. The b and b have momenta pb and

pbb respectively, and are also ma.ssless. The IV+ and T/V- have momenta

pwp and pwm respectively, and ma.ss Mass [WBoson] .

In[31:= SetDotProduct [(PI, p2, s/231

We set the va.lue of (I-,* . p3) to s/2.

19

5-91 vJ4
6953A2 P- W-

Figure 2. Feynman diagram for the process eie; -+ 2 iti- W+W-bt.

InC41 := matrixElement =
HeavyVectorPolarizationCpwp, nul *
HeavyVectorPolarization[pwm, mu] *
SpinorVbarEp2, Right] **
Vertex[(Electron), (Electron), (ZBoson, pI+p2, tau)] **
SpinorUCpI, Right] * Propagator[{ZBoson, pI+p231 *
SpinorUbarCpb, Left] **
Vertex[(BottomQuark), (TopQuark), (WBoson, pwp, null **
FermionPropagatorCTopQuark, pwp+pbl **
Vertex[(TopQuark), (TopQuark), (ZBoson, pI+p2, tau)] **
FermionPropagator[TopQuark, -pwm-pbbl **
Vertex[(BottomQuark), (TopQuark), (WBoson, pwm, mu)] **
SpinorV[pbb, Left]

ePw+)EP(Pw-) {qp2)~r(e, e7 -V4pl) > A(2, PI + 232)

x (GhG40, t, T+‘)A(t TP~ + p+P’r(t, t, W(t, --pg - p-)V,i(b, t, WV&)} ,

where A(X,J~) is the propagator for particle X with momentum p and

V,(A, B, C) is the vertex of the prticlcs A, B and C with Lorentz index

u.

20

In[5] := 1ightlikeVectorRules =
(LightlikeVectorDecayedFrom[pwp, l] -> ri,
LightlikeVectorDecayedFrom [pwp, 23 -> r2,
LightlikeVectorDecayedFrom[pwm, 1] -> r3,
LightlikeVectorDecayedFrom[pwm, 21 -> x-4);

In the computation the massive four-vector pwp is replaced by the sum of

two massless four-vectors rl a,nd r2. pwm is similarly replaced by r3+r4.

In the spinor technique, ~-1 and rz are the momenta of the massless fermion

and antifermion into which the W decays. The final expression, thus,

provides us with the angu1a.r distribution of the final state fermions.

In[6] := ConvertedMatrixElement =
ConvertToST[matrixElement] /. 1ightlikeVectorRules;

Convert the matrix element to spinor t,echniclue form and apply the sim-

plifying rules.

21

After some rearrangement, we get the following expression:

Out[7]= (-4 I Alpha2 Pi KobayashiMaskawa[BottomQuark, TopQuark]
2

>

>

>

>

>

>

>

>

>

>

>

SpinorSCpbb, r4] SpinorT[pb, rl]

2
(4 MassCTopQuark] SpinorSCp2, r2] SpinorTCpl, r3] +

(4 - ---2-----)

Sin[ThetaW12

(SpinorS[pb, r2] SpinorT[pl, pb] +

SpinorSCrl, r2] SpinorT[pl, r-l])

(SpinorSCp2, pbb] SpinorT[pbb, r3] -

SpinorSCp2, r4] SpinorT[rS, r4]))) /

(Cos[ThetaW12 Mass[WBoson12

(2 DotProductCpb, pwpl - Mass[TopQuark12
2

+ MassCWBoson] >

(2 DotProductLpbb, pwm] - Mass[TopQuark12 + Mass[WBoson]2)

(s - Mass[ZBoson]2))

-4ia2nC:2s(pg,ra)l(pb,rl)[4nz:s(p~,r3)l(p1,r3)

+(4 - n/sill” ol?;)(s(pb,r2)t(pi,pb) + s(rl,r2)t(pl,rl))

X (S(Ps~z~)t(p~, 1.3) - +a, r&(r3, Tq))] /

[cm2 ow?&(2(p~ * 11+)-m; + n&,7) (2(]3 * p-) - mp + ?nh) (s - rY&) 1

22

5. Conclusion and Outlook

We developed HIP as an aid in the calculation tree-level processes in high

energy physics which would otherwise be much more difficult. HIP’s main feature

_ is in providing an environment within Ma.thematica. in which one can refer to

objects and perform operations that occur frequently in this field. One can use

HIP interactively to assist with small calculations, or set it up to automatically

perform massive ‘symbol crunching’.

We have checked HIP aga.inst hand ca.lculations of e+e- + 1V+W-, ey -+

M/v, both with arbitrary (C a.nd P conserving) II/y couplings, and of numerous

simple electr0wea.k processes. We also checked them a.gainst published results for

e+e- ---t W+tV--y, e+e- + lVsLt’-Z, e+e- -+ yyy a.nd eSe- -+ 222.

In the future, we hope to extend HIP’s capabilities into performing loop inte-

grals, calculating color factors and incorporating other techniques for symbolically

calculating Feynman diagrams at the matrix element level. We also hope to trans-

late HIP to other symbolic langua.ges such a.s Maple, so as to maximize the group

of its potential users.

HIP is ava.ilable for distribution. The distribution includes the va.rious compo-

nent kfathematica packages, the online documenta.tion as listed in the appendix,

and several files containing sample calculat.ions done by HIP.

We are grateful to M. Peskin for his encouragement and for critically reading

the manuscript. E. Y. would like to thank Wolfram R.esearch Inc. for their support,

both financial a.nd technical. We would also like to thank all the people who have

used our packages a.nd given us bot,h encouragement and bug reports.

23

APPENDIX

In this appendix we include the complete listing of the objects defined in HIP,

together with their usage messa,ges. These usa.ge messages are also available as

on-line documentation. The functions aae listed in alphabetical order.

AbsSquarad::usage = "AbsSquared[expr] is the absolute value squared
of expr."

Boost::usage = "Boost[fv, rap, dir] gives a four-vector obtained by
boosting fv by rapidity rap in the direction specified by dir. If
dir is of the form {cth, phi), cth is the Cosine of the angle
between the direction and the z axis and phi is the angle between
the direction's projection on the x-y plane and the x axis. If dir
is of the form {x, y, 21, the direction is taken to be the
direction of the vector <x, y, z). Boost[fv, rap] boosts fv by
amount rap in the z direction."

BoostAmount::usage = "BoostAmountCfvl gives a vector (rap, xx, y,
2)) such that Boost.[{O, 0, 0, Mass[fv]), rap, (x, y, z)] is fv."

CommutativeAllQ::usage = "CommutativeAllQ[expr] is True if expr
does not have any non-commuting sub-expressions, and False
otherwise."

CommutativeQ::usage = "CommutativeQCx] is True if x is commutative
(the default), and False if x is non-commutative."

Commutator::usage = "CommutatorCa, b] is an equivalent expression
to a**b, with a and b interchanged (e.g. Commutator[a, b] = b**a +
[a, bl)."

Commute::usage = "Commute[expr, {x, y)] commutes y from the right
of x to the left of x everywhere in expr."

Contract::usage = "ContractCexpr, index] contracts index in expr.
All subexpressions of form G[index, -1 or p- [index, -1 can
potentially be effected. Contract[expr, {indexl, index2, . ..)I does
the contraction sequentially."

ConvertToChiralFermions::usage = "ConvertToChiralFermions[expr]
attempts to convert all occurrences of DiracGamma5 and
HelicityProjection in expr into products of chiral spinors."

ConvertToGamma5::usage = "ConvertToGanunaS[expr] attempts to convert
all occurrences of HelicityProjection and spinors of specific
chirality into products involving DiracGammaS."

ConvertToMassless::usage = "ConvertToMassless is an option for
ConvertToST."

ConvertToST::usage = "ConvertToST[expr] attempts to convert
DiracGamma5 and HelicityProjection occurrences in expr to SpinorS
and SpinorT objects."

24

CrossSection::usage = "CrossSectionCmeZ, pi -> (plx, ply, plz, el),
P2 -' (p2x. p2y, p2z, e21, outGoing] returns a PhaseSpaceIntegral.
me2 is the matrix element squared, cpix, ply, plz, el) and <p2x,
P2Y, p2z, e2) are the explicit four-vectors of the incoming
particles, and outGoing specifies the order of phase-space
evaluation."

Cylindrical: :usage = "Cylindrical[pl, p2] indicates a cylindrically
symmetric two body decay into pi and p2 about the direction of
motion of the decaying particle."

Decay ::usage = "Decaycfv, dir, (ml, m2)] gives two four-vectors
{fvl. fv2) such that fvitfv2 is fv, Mass[fvi] is ml, Mass[fv2] is
m2 and the direction of fvl in the fv center-of-mass frame is given
by dir. If dir is of the form Ccth, phi), cth is the Cosine of the
angle between the direction and the z axis and phi is the angle
between the direction's projection on the x-y plane and the x axis.
If dir is of the form Ix, y, z), the direction is taken to be the
direction of the vector {x, y, z). DecayCfv, dir] is the same as
DecayCfv, dir, (0, 031."

DecayWidth::usage = "DecayWidthCmeZ, p -> Cpx, py, pz, e),
outGoing] returns a PhaseSpaceIntegral. me2 is the matrix element
squared, (px, py, pz, e) is explicit four-vector of the decaying
particle, and outGoing specifies the order of phase-space
evaluation."

DiracGamma5::usage = "DiracGamma5 is mainly meaningful for
SpaceTimeDimension of 4. Some of its features will work in any even
spacetime dimension."

DiracGamma::usage = "DiracGamma[mu] is the Dirac Gamma matrix. It
is set to be non-commutative. Note that DotProductCDiracGamma, pl
is simplified to Slash[p]."

DiracGammaSize: :usage = "DiracGammaSize is the dimension of the
Dirac spinors. Its default value is 4."

DotProduct::usage = "DotProduct[p, ql is the Lorentz invariant dot
product. It is evaluated explicitly (using the metric) if both p
and q are lists of length SpaceTimeDimension."

DotProductRules::usage = "DotProductRules[{p, q, u)] returns
(toRule, fromRule). toRule takes DotProductCp, ql to u and
fromRule takes u to DotProductCp, ql. DotProductRules[(pl, ql,
1113, Cp2, q2, u23,...1 returns (toRules, fromRules) where toRules
are the rules for converting DotProducts to u's and fromRules are
the rules for converting u's to DotProducts. DotProductRules[(p,
q, u), Mandelstam -> <s)] will define fromRules in terms of s."

Energy::usage = "EnergyCfv] is the energy of fv."

Eps ::usage = "Eps[a, b, c, . . .I is the completely anti-symmetric
object. Its arguments are automatically sorted alphabetically.
Eps[..., p, . ..I is the same as EpsC..., mu, . ..I p[mu]."

EvaluatePhaseSpaceIntegral::usage =
"EvaluatePhaseSpaceIntegral~PhaseSpaceIntegral[...ll will
evaluate the Phase-space-integral."

25

ExpandSlash::usage = "ExpandSlash[expr] expands slash of sums to
sums of slashes in expr."

G::usage = "G[mu, nu] is the ordinary spacetime metric. mu and nu
range from I to SpaceTimeDimension."

GammaTrace::usage = "GammaTrace[expr] is the trace (in spinor
space) of expression. Note that no division by DiracGammaSize is
carried out, ie GammaTraceCi] gives DiracGammaSize."

HeavyVectorPolarization::usage = "HeavyVectorPolarizationCp, mu,
poll represents the polarization vector of a massive vector
particle with momentum p, polarization pol and index mu."

HeavyVectorPolarization::usage = "HeavyVectorPolarization[p, mu,
poll represents the polarization vector of a massive vector
particle with momentum p, polarization pol and index mu."

HelicityProjection::usage = "HelicityProjection[pol] is the
helicity projection operator (I +/- Gamma5)/2."

KobayashiMaskawa::usage = "KobayashiMaskawaCpl, p2] is the
Kobayashi-Moskawa matrix element connecting particles pl and ~2."

LightlikeVectorDecayedFrom::usage = "LightlikeVectorDecayedFromCp,
n] represents a lightlike vector used for the polarizations of
massive vector bosons. It obeys p =
LightlikeVectorDecayedFrom[p,l] + LightlikeVectorDecayedFromCp,21
where p is the momentum of the external massive vector boson."

LightlikeVectorNotCollinearWith::usage =
"LightlikeVectorNotCollinearWith[p] represents a lightlike vector
that is not collinear with p."

LongitudinalPolarization::usage = "LongitudinalPolarization[pl is a
four-vector longitudinal polarization of the four-vector p."

Mandelstam::usage = "Mandelstam is an option for specifying a list
of Mandelstam-type variables."

MandelstamRules::usage = "MandelstamRules[{pi, p2, p3, ~41, (ml,
m2, m3, m41, s, t, u] returns {toRules, fromRules). toRules are
rules for converting DotProducts of pl, p2, p3 and p4 to
expressions containing s, t and u and the masses. fromRules are
the rules for converting s, t and u to expressions containing the
DotProducts of pi, p2, p3 and p4 and the masses. It sets pi, p2,
p3, p4 to be on-shell with masses ml, m2, m3, m4 respectively."

Mass: :usage = “Mass [p] is the mass of a four-vector p. It is
evaluated explicitly if p is a list of length SpaceTimeDimension.
11

MasslessVectorPolarization::usage = "MasslessVectorPolarizationC p,
mu, poll represents the polarization vector of a massless vector
particle with momentum p, polarization pol and index mu."

MasslessVectorPolarization::usage = "MasslessVectorPolarizationC p,
mu, poll represents the polarization vector of a massless vector

particle with momentum p, polarization pol and index mu."

Momentum::usage = "Momentum[fv] is the three-component momentum of
fv."

NEvaluatePhaseSpaceIntegral::usage =
"NEvaluatePhaseSpaceIntegral[PhaseSpaceIntegral[.. .I1 will
evaluate the Phase-space-integral numerically."

NonCommutativeExpand::usage = "NonCommutativeExpand[expr] expands
NonCommutativeMultiply of sums."

NonCommutativeFactor::usage = "NonCommutativeFactor[expr] attempts
to factor sums of NonCommutativeMultiply's."

0pposite::usage = "OppositeCp] represents a four-momentum which has
the same energy but opposite three momentum to the four-momentum
p. "

PerpendicularMomentum::usage = "PerpendicularMomentum[fv] gives the
component of fv perpendicular to the z-axis."

PhaseSpaceIntegral::usage = "PhaseSpaceIntegral[integrand, <pi,
(p2)), decays, integrals, extmom] specifies a phase-space integral.
Use EvaluatePhaseSpaceIntegral to evaluate the integral
symbolically, and NEvaluatePhaseSpaceIntegral to evaluate it
numerically."

PolarizationCombinations::usage = "PolarizationCombinationsCme]
returns a list of the possible polarization combinations of the
initial and final particles for the matrix-element me over the
polarizations which are not explicitly written in the
matrix-element."

PrepareIndex::usage = "PrepareIndex[a, b, c, . . .I makes future
contractions involving a, b, c, . . . work faster."

Propagator::usage = "PropagatorCline] is the factor associated with
the particle line, where line can be {type, p) or (type, p, mu, nu)
where type is the type of particle, p is the momentum, and mu and
nu are Lorentz indexes. PropagatorCCtype, p--)1 is the same as
PropagatorCtypel Cpl”
STToTraces::usage = "STToTraces[expr] attempts to convert products
of SpinorS's and SpinorT's in expr to traces using the rule
SpinorS[pi,p2]+SpinorT[p2, p31...SpinorS[pn, pi1 =
GammaTrace[Slash[pl]**Slash[p21**...
Slash[pn]HelicityProjection[Rightl]"

SetDotProduct::usage = "SetDotProductCCp, q, 1111 sets DotProduct [p,
q] to be u. SetDotProduct[{pi, qi, ul), {p2, q2, u2),...] sets
DotProduct[pi, qi] to be ui, DotProductCp2, q2] to be u2, etc."

SetMandelstam::usage = "SetMandelstam[{pl, p2, p3, ~41, {ml, m2,
m3, m4), s, t, u] sets pi, p2, p3, p4 to be on-shell with masses
ml, m2, m3, m4 respectively and sets the DotProducts of pi, p2, p3
and p4 in terms of the Mandelstam variables s, t and u and the
masses."

SetMass: :usage = "SetMass[{p, m)] sets p to be a four-vector with
invariant mass m. SetMass[(pl, p2,..., m)] sets pi, p2,.. to be
four-vector with invariant mass m. SetMass[<pl, ml), (~2, m2),...]
applies SetMass to {pl, ml>, cp2, m2>,.. in turn."

SetNonCommutative::usage = "SetNonCommutative[a, b, c, . . .I sets
the symbols a, b, c, . . . to be non-commutative."

SetReal::usage = "SetReal[a] sets ConjugateCal = a. SetReal[a,
b) . . . 1 applies SetReal to a, b,... in turn."

Slash::usage = "Slash[p] is the same as
Contract[p[mu]DiracGamma[mul, mu]. Slash is set to be
non-commutative."

SpaceDirection::usage = "SpaceDirectionCfv] gives the pair Ccth,
phi) describing the direction of the momentum of fv."

SpaceTimeDimension::usage = "SpaceTimeDimension is what you'd
expect."

Spherical::usage = "SphericalCpl, ~21 indicates a spherically
symmetric two body decay into pl and ~2."

SpinorS::usage = "SpinorS[p, q] is the same as SpinorUbarCp,
Right]**SpinorU[q, Left]. Both p and q have to be massless."

SpinorT::usage = "SpinorT[p, q] is the same as SpinorUbarCp,
Left]**SpinorU[q, Right]. Both p and q have to be massless."

SpinorU::usage = "SpinorU[p] is a spinor object of a four-vector p.
SpinorU[p, poll is a spinor object of particular polarization."

SpinorUbar::usage = "SpinorUbarCp] is a spinor object of a
four-vector p. SpinorUbarCp, poll is a spinor object of particular
polarization."

SpinorV::usage = "SpinorV[p] is a spinor object of an anti-particle
of four-vector p. SpinorVCp, poll is a spinor object of particular
polarization."

SpinorVbar::usage = "SpinorVbarCpl is a spinor object of an
anti-particle of four-vector p. SpinorVbar[p, poll is a spinor
object of particular polarization."

Vertex::usage = "VertexClinel, line2, . ..I is the Feynman rule for
the vertex. Each line is of the form {particle) or {particle, p)
or (particle, p, indexes) where particle is the particle type, p is
the particle's momentum, and indexes are the appropriate Lorentz or
gauge group indexes."

ZAxis::usage = "ZAxis is an option used with functions receiving a
direction as an argument. It specifies the axis with respect to
which the direction is given."

28

REFERENCES

1. H. Murayama, I. Wata.nabe, I\;. Ha.giwara, “HELAS: HELicity Amplitude

Subroutines for Feynman diagram evaluations”, to appear in KEK-Report.

2. Schoonship by M. Veltman, see H. Strubbe, Comp. Phys. Comm 8(1974), 1.

3. Reduce by A. C. Hearn, see Reduce User’s h4anua1, version 3.2, Rand Crop.,

1985.

4. Maihematica: A System for Doing hlathema.tics by Computer, S. Wolfram,

Addison-Wesley Publishing Company, 1958.

5. A/laple by Wa.terloo h4aple Corp., see hlAPLE Reference Manual, Fifth

Edition, Waterloo h4aple Publishing, 19SS.

6. J. Kiiblbeck, hl. Biihm a.nd A. Denner, Comp. Phys. Comm. 60(1990), 165.

7. R. hlertig, hf. Bijhm and A. Denner, Report No. PRINT-90-0639 (1990).

S. R. Kleiss, W. J. Stirling, Nuc1. Phys. B262(19S5), 235.

9. h4. Veltman, Nucl. Phys. B319(1989), 253.

29

5-91
6953Al

Fig. 1

5-91
6953Az

Fig. 2

