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1. Introduction 

Present day pertubative ca.lculations in the Standard Model (SM) and its ex- 

tensions often require tedious algebra calculations. While tree level calculations 

of two-body production processes in the SM can certainly be done manually, it is 

often helpful to have a check in the form of an automatic calculation method. Pro- 

cesses involving the production of more tha,n two particles (e.g. e+e- + W+W-y) 

or complicated Feynman rules (e.g. yy -+ T/T/+W- with arbitrary Wy couplings) 

involve much more difficult calculations in which computerized aid is almost indis- 

pensable. 

Two approaches ha.ve been used to automa.te calculations of this type. Hagi- 

wara et all’] have written a set of Fortran subroutines that calculate matrix ele- 

ments numerically. This a.pproach allows the automatic calculation of complicated 

tree level processes, but it is restricted to numeric results. An alternative approach 

introduced by Ve1tma.n PI with Schoonship is to allow symbolic manipulation of ex- 

pressions. While S h c oonship wa,s written as a special purpose program, with all 

the necessary algorithms ‘hard-wired’ into its assembly code, Reduce [31 followed 

a more general a,pproa.ch. Much more mathema.tica.1 knowledge (e.g. integration 

rules) is incorpora,ted into the program as higher-level lisp routines. The user, 

building on that basis of knowledge, can then expand the program by writing his 

or her own routines. The price for that flexibility is naturally paid in performance. 

We follow this latter approach by writing our packages in Mathernatica,[4’ one 

of the newer and most promising of the new generation of symbolic manipulation 
[51 languages which also includes A4aple. Using j%~a.thematica’s high-level program- 

ming language greatly simplifies the task of writing programs. Additionally, the 

physics calculations a.re embedded within a, powerful environment in which results 

can be simplified, ca,lculated numerica,lly and plotted. With the rapid advance in 

computer performa,nce, the CPU-time needed for the calculations is usually negli- 

gible compared with the time needed to prepare the input and process the output 

of the programs. This a.pproa.ch is also being used by the Wiirzburg group in their 



programs FeynArts [Gl [71 a.nd Feyn Ca.lc. 

Unlike Feyn Arts we do not attempt to automatically generate the necessary 

Feynman diagrams. Typically, tree-level diagrams can be easily generated manu- 

ally. HIP takes as input expressions describing the Feynman diagrams. HIP then 

provides the user with a. rich set of operators by which to manipulate the physi- 

cal objects occurring in these expressions. The user may, for example, substitute 

explicit four-vectors and particle polarizations, square the matrix elements to give 
PI traces that can then be evaluated or convert the expressions to spinor techniques. 

As an aid in calculating cross-sections and decay widths, phase-space integrals can 

be automatically constructed and evaluated symbolically, numerica.lly, or converted 

to a C or Fortra.n pr0gra.m. 

The traditiona. method of Feynman diagram calcula.tion involves squaring the 

matrix element symbolically. The number of terms involved increases like the 

square of the number of Feynman dia.gra,ms involved. In contrast, spinor tech- 

niques are methods for ca.lcula.ting Feynman dia.grams numerically at the matrix 

element level. The number of terms involved is linear with the number of Feynman 

diagrams. Photon and fermion pola.rizations have to be summed explicitly. Spinor 

techniques are simplest when the fermions involved can be taken to be massless. 

They are most useful when a large number of Feynman dia,grams is involved. 

We have used HIP extensively, typically ca.lculating processes with relatively 

simple topology ( 2 --t 2 and 2 + 3 tree-level cross-sections) but with complex 

Feynman rules. 

The paper proceeds as follows. In the next section we give a brief overview 

of HIP. Some of the major objects and functions are mentioned. In sect. 3 we 

describe in more deta,il some of HIP’s more important functions, presenting the 

mathematical rela.tions they use a.ncl short examples of their application. In sect. 4 

we give two complete examples: the calculation of the width for the muon decay 

p”- --+ vMe-Ve with a finite electron mass, and a calculation of the matrix element 

for el;e, ---f Z t t? -+ lV+I/T/-& including the 14’ coupling to light fermions, 
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which preserves all spin and angular correlations. In sect. 5 we summarize and 

give an outlook. The complete listing of HIP functions, with their usage messages 

(available as on-line documentation) is given in the appendix. 

2. Overview 

The packages in HIP contain functions that can manipulate various mathe- 

matical objects occurring in high-energy physics such as four-vectors, spinors and 

gamma matrices. Rather than follow one strict path from input to output, the 

packages allow the user to specify how a, ca.lcula.tion proceeds (either interactively 

or in batch mode). A typical ca.lcula.tion might be to construct a matrix element, 

square it and sum over polariza.tions, construct the phase-space integral and eval- 

uate this integral to give a symbolic expression for the total cross-section. 

The most fundamenta.l component of any high energy calculation is the ma- 

nipulation of four-vectors. Basic objects such a.s the dot-product (p . Q) (DotProd- 

uct [p , ql ), the metric yIL” (G [mu, nu] ) a.nd the completely anti-symmetric tensor 

E~““~ (EpsCmu, nu, sig, taul ) are defined, with some of their elementary prop- 

erties (e.g. the dot-product is symmetric in its two arguments). Four-vectors can 

be specified in terms of their components. They ca.n then be boosted (using the 

function Boost), represented a.s sum of other four-vectors (Decay), etc. In addi- 

tion, four-vectors ca.n also be trea.ted without reference to the explicit components. 

Dot products can be given explicit values (SetDotProduct, SetMass), Mandelstam 

variables defined (SetMandelstam), Lorentz indices defined (PrepareIndex) and 

contracted (Contract). 

The second component in HIP is the Dira.c a.lgebra. The basic objects involved 

are the Dirac gamma matrices yp (DiracGamma[mu]), y5 (DiracGammaS), the pro- 

jection opera.tors PA = (l+Xy5)/2 (HelicityProjection[lambda]) and $ = p,yP 

(SlashCpl). The D irac matrix product is represented by the Alathematica built- 

in function NonCommutativeMultiply (aliased to **). The trace of a product of 

Dirac gamma ma.trices is computed using the opera,tor GammaTrace. 
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Some programs handling Dirac algebra,, notably Reduce, can only deal with 

gamma matrices. HIP can also work with spinors. The basic spinor objects 

U(P) and 4P> (SP inorUCp1 and SpinorVCp]) and their conjugates U(P) and E’(P) 

(SpinorUbar [p] and SpinorVbar [pl ) are defined. The function AbsSquared is 

used to square ma.trix element expressions which may include these spinors. 

Expressions involving spinors do not have to be squared before they are cal- 

culated numerica.lly. The HIP function ConvertToST converts a suitable expres- 

sion involving spinors to an expression involving the elementary spinor products 

s(p,lc) = UR(p)uL(IC) and t(p,k) = UL(~)uR(IC) (SpinorS[p, k] and SpinorT[p, 

kl ) defined in reference 8. The expression produced can then be evaluated numeri- 

cally by giving explicit values to the components of the four-vectors. Alternatively, 

it can be squared and converted ba.ck to an expression involving traces using the 

function STToTraces. 

Given an expression for the ma,trix element squared associated with a process, 

the ca.lcula.tion of physical observables such a.s cross sections and decay widths in- 

volves integration over the pha.se spa.ce of the out-going pa,rticles. The functions 

CrossSection and DecayWidth set up the phase-space integral. The functions 

return a PhaseSpaceIntegral object that can then be evaluated either symboli- 

cally using EvaluatePhaseSpaceIntegral or numerically using NEvaluatePhas- 

eSpaceIntegra1. Alternatively, one can write a Afathematica program to convert 

such an object to a C or Fortran progra.m for numeric evaluation. Such a conver- 

sion program would be highly specific, depending on the particular programming 

language, integra.tion routine etc. \&re ha,ve used one such program in our work, 

but it is not included with HIP. 

HIP includes some of the common Feynman rules of the Standa.rd Model which 

are implemented using the functions Vertex and Propagator. Constants such as 

sin’ 8~ (Sin [ThetaW] -2) and pa.rticle ma,sses (e.g. Mass [ZBosonl ) are usually kept 

as symbolic constants. However, HIP stores a table of their numerical values; these 

are substituted for the symbolic expression by the Ma.thematica function N. 
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3. HIP functions 

Strictly speaking, Mathematics. does not distinguish between data-structures, 

functions and procedures. In practice, however, the Mathematics objects defined in 

HIP can be divided into several broad categories. In all cases we try to follow the 

Mathematics convention of beginning each name with a capital letter. Further, 

as far as is practical we use full, descriptive English names rather than cryptic 

acronyms. Using Mathematics utilities, the user can choose his or her own cryptic 

abbreviations. The major categories are: 

1. Objects such as ga.mma matrices or clot products. These are characterized 

by the property tl1a.t they usually rema.in unevaluated. 

2. Declara.tions and definitions. These do not typically return anything, but are 

rather invoked a.s pa,rt of the initialization process. 

3. Operations such as contracting indices or ta.king traces. These typically take 

their input and convert it to a.n equiva,lent expression. 

In this section we describe the most important members of each class. 

Table 1 lists the ma.jor functions representing objects with their equivalent in 

ordinary physica. nota.tion. 

The most useful decla.ra,tive functions a.re: 

- PrepareIndex: PrepareIndex [mu, nul decla.res ~1 and u and Lore&z in- 

dices. 

- SetMass: SetMass [pl, p2, . . . , ml sets pl, p2,.. to be four-vectors with 

invariant mass m.* 

- SetMandelstam:SetMandelstam[(pl, p2, p3, ~41, (ml, m2, m3, m4), 

S, t, u] sets pl, p2, p3 and p4 to be on-shell with masses ml, m2, m3 and 

* Note that the p’s are used in a. dua.l mode, bot,h a.s representing momenta and as representing 
particles. The mass m associa.ted with p is the ma.ss of the particle carrying the momentum 
p. For off-shell particles, p2 # nx? (DotProduct [p, pl ! = Mass Cpl -2). 



Ta.ble 1. HIP funclions represent,ing objects 

HIP Function Example Physical Equivalent 

0 -tpx, py, pz, e3 The four-vector (pz, pY, pz, E) 

DotProduct DotProductCp, q] P’Q 

G G[mu, nu] gpu 

EPS Eps[p, q, mu, nd hrpvPTQU 

DiracGamma DiracGamma[mu] YP 

Slash Slash[p] $ 

DiracGamma5 DiracGamma5 Y5 

** DiracGamma[muI**Slash[p] yp $ 

SpinorU SpinorU[p, lambda] UA (PI 

SpinorUbar SpinorUbar[p, lambda] Q(P) 

HelicityProjectionHelicityProjection[Left] Pr, = (l-y5)/2 

SpinorS SpinorS[p, kl S(P, v = GdPMV 

SpinorT SpinorT[p, kl t(p, k> = Q(P)w@) 

m4 respectively and sets the DotProducts of pl, p2, p3 and p4 in terms of 

the h/land&tam variables s, t a.nd u and the masses: 

1 
(Pl * pa) + -(s - ,nT - n,.;, 2 (113 * p4) -+ i(s - mi - VA:) 

(PI * p3) -+ $(-t + m; + nxi) 

; 
(Pl * 214) --) 3(--u + 772; + In;) 

(Pa * P4) + f(-t + m; + n2i) 

(P2 - p3) --) $-u + m; + n2$ 

where m; is the ma,ss of the particle 13;. 

Most of HIP’s functiona.lity is implemented a.s operator-type functions. The 

main ones are: 

- Boost: Boost [fv, rap, dir] gives a four-vector obtained by boosting the 

four-vector fv by rapidity rap in the direction specified by dir. Example: 



I I 
InCIl:= Boost[(O, 0, 0, ml, r, (cth, 031 

Boost the four-vector (0, 0, 0, m) by rapidity r in the direction cos 8 = cth, 

(is = 0. 

Out[Il= (SqrtCI - cth2] m SinhEr], 0, cth m Sinhbl, m CoshL'rl) 

(ntdmsinh T, 0, nx cos 0 sin11 r, m cash r). 

- Decay:Decay[v, dir, (ml, m231 givestwofour-vectorsvl and v2 suchthat 

01 +v2 = v, vf = mf, vi = nzi a.nd the direction of VI in the v center-of-mass 

frame is given by dir. Example: 

I I 
InCIl := Decay[(O, 0, 0, ml, (cth, 03, (ml, 031 

Decompose the four-vector p = (0, 0, 0, ~72) into two four-vectors pl and pa 

such that pf = 172f, pi = 0 and the direction of p1 in the p center-of-mass 

frame is given by cos 0 = cth a.nd C$ = 0. After some rearrangement one 

gets: 

Sqrt[I - cth2] (m2 
2 2 2 2 2 

- ml > cth (m - ml > m + ml 
out[l-J= tC-----------;-m-----------, 0, __-_---------- -w--v--- 

2m '2m 
3, 

2 2 2 2 
(-(Sqrt[I -cth] (m -ml>> -(cth 

cm2 2 2 
-ml>> m -ml 

> ___________----------------- 0, _---------------- , > 
2m 2m --L---33 

8 



( 
A/iT23(1122 - nl;) 

0, 
cos U(m2 - In!) ,22 + mf pl = 

277-z 9 2nz 7 2m > ’ 

( -diTZT(n22 - 772:)) o - cos 19(172~ - rn:) m2 - mf 
P2 = 

2112 
7 2m 7 

) 2m ’ 

- Contract: Contract [expr, index] conhcts index in expr. Contract 

with respect to a. particu1a.r index /L invokes a large set of rules. The basic 

rules for handling arbitra,ry tensors and vector are: 

g;,” ---f D 

P/l c1/” --+ 1, * q (34 
$7 

vl”‘fL...v,I +T LQ...r...Y, 

where D is the dimension of space-time.* For handling the completely anti- 

symmetric 6 symbol we use 

The rules a.ssociatecl with y-ma.trices aae: PI 

P,lYfL -+ 

YfLY p+D 

Y/LY~-Y~ -+ (2 - Dh 

g rn . . . 
W 

*. . : . 

Y 
Tn . . . VII 

(3.2) 

(34 

* Most of HIP’s functions operate well in arbit,ra.ry D dimensions. The exceptions are the 
functions dealing with vectors given in terms of their explicit components (e.g. Boost), 
functions associated with phase-spa.ce integrals and functions treating y5. 



For more complicated ca.ses we use 

y/J++ + 

where 

Example: 

2r+4 + 2rp 

- 244 

(-i)n (D -4)r@) +2$) 
( 

(n even) 
(D=4) 

(n odd) 
n-3 

2 C(-l)i~v,r~nJ 
i=4 

(3.5) 

I I 
InCIl:= Contract [G [mu, nu] p [mu] , mu] 

Contract the index p in gP,,,pp. 

Out [II = p [nul 

In[21:= Contract [DiracGamma [mu] **Slash [p] **DiracGamma [nu] ** 
DiracGamma[mu] , mu] 

Out[2]= (-4 + SpaceTimeDimension) Slash[p] ** DiracGamma[nu] + 

> 4 p Cm1 
CD - 4) #Yv + 42 1” where D is the space-time dimension. 
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- GammaTrace: GammaTrace [expr] is the trace (in spinor space) of expr. tr { 1) 

can be left unevaluated as the constant DiracGammaSize, but is usually set 

to 4. Whenever possible, GammaTrace uses the following simple rules: 

Traces of longer espressions invoke the following recursive rules: 

tr { ypI?(n)} -+ ~(-l)(i+lJgi.vitr { ITi’“‘} 
i=l 

tr { y5d”)} + C ( -l)(i+j+L+‘)?ty,v,vh~~tr { I$;!,} . 
lLi<j<k<l<n 

(3*7) 

Example: 

I I 
In[il:= GammaTrace [DiracGamma [mu] **DiracGamma [nu] 

Out cl] = 4 G [mu, nu] 

In[21 := GammaTrace [DiracGamma5**DiracGamma[mu] **DiracGamma [nu] ** 
DiracGamma[sigl **DiracGamma[tau]] 

tr { ~~~~~~~~~~~ 
Out[2]= 4 I EpsCmu, nu, sig, tau] 



In[3]:= 

out c33 = 

GammaTrace [DiracGammaCmu] **SlashCpl] **DiracGamma[nu] ** 
Slash[p2] **DiracGamma[mu] **Slash[p3] **DiracGamma[nu] ** 
Slash Cp411 

tr {YP hYv $2-Y $37” $4) 
-32 DotProduct [pi, p3l DotProduct [p2, p4] 

-3% * ~~S)(p:! * 2’4) 

- AbsSquared: AbsSquared[expr] is the absolute value of expr squared. Ab- 

ssquared sums over polarization of both external spinors and vectors unless 

their polarizations are explicitly specified: 

I-wP)12 --+ C Xux(p)E~(p)X* + X(j + m)X* 

IP-V(P)12 --+ 6 .Uvx(p)?Tx(p)X* + X(j - m)X* 
x 

l~dZ.412 -+ 
1 

- S/L/L’ (m = 0) 
P/l P/L’ 

- YPll’ + 1723 cm # O>? 

where m is the mass associa,tecl with p. Exa.mple: 

(3.8) 

I I 
InCll:= AbsSquared [SpinorUbar [p] **SpinorV [q]] 

Out Cl]= 4 DotProduct [p,q] - 4 Mass [p] Mass [q] 

41, . q - 4mpm, 

In[2] := AbsSquared [SpinorUbar [p, Right] **SpinorV [q, Left] ] 



Out [2] = 2 DotProduct [p ,q] 

In[3] := AbsSquared[SpinorUbar [p] **DiracGamma[mu] **SpinorU[q]] 

out [31= -4 DotProduct [p, q] G[mu, Conjugate[mu]l + 

> 4 G [mu, Conjugate [mu]] Mass Cpl Mass [q] + 

> 4 p [Conjugate [mull q[mul + 4 p [mu] qCConjugateCmul1 

Conjugate [mu] (1~’ is the new index needed on squaring the expression). 

- ConvertToST: ConvertToST [expr] a.ttempts to convert expr to Spinors and 

SpinorT objects. Unless instructed otherwise, the program assumes every 

massive vector q is the sum of two massless vectors LightlikeVectorDe- 

cayedFrom [q, 11 and LightlikeVectorDecayedFrom[q, 21. Example: 

InCll:= ConvertToST [ 
SpinorUbar [p, Right] **Slash [q] **SpinorU [k, Right] ] 

Convert CR(P) @n(k) t o s liner 1 techniques. p a.nd k have previously been 

set massless. 

out Cl] = - (SpinorS [p , LightlikeVectorDecayedFrom[q, Ill * 

> SpinorT[k, LightlikeVectorDecayedFromCq, 111) - 
> SpinorS [p, LightlikeVectorDecayedFrom [q, 211 * 

> SpinorT[k, LightlikeVectorDecayedFromCq, 211 
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The result is s(p, ql)t(k, ql) - s(p, qz)t(k, 42) where qf = qg = 0 and 

q1 + q2 = q are assumed. 

- Vertex: VertexClinel, line2, . . .] is the Feynman rule for a vertex. 

Each line is of the form particle or (particle, p) or (particle, p, 

indices) where particle is the particle type, p is the particle’s momentum, 

and indexes are the appropriate Lorentz or gauge group indexes. Example: 

I I 
InClI := Vertex [Electron, Electron, (ZBoson, p, mu)] 

The eeZ vertex for 2 boson carrying momentum pP 

Out Cl] = (-2 I Sqrt [Alpha] Sqrt [Pi] DiracGammaCmu] ** 

-HelicityProjection[Left] 
> ( ------------------------- + Sin[ThetaW12)) / 

2 

> (Cos CThetaW] Sin [ThetaW] > 

-2ififi 
cos 6~ sin 0.c~ YP 

( 
--~PL + sin” 6~ 

L > 

where CY is the electroma,gnetic fine structure constant and 0~ is the Wein- 

berg angle. 

- CrossSection a,nd DecayWidth: CrossSectionCme2, ql->(qlx, qly, 

qlz, el3, q?.-Hq2x, q2y, q2z, e2), outGoing] returns an expression 

for the phase space integral to be evaluated by EvaluatePhaseSpaceInte- 

gral. me2 is the expression for the mat,rix element squared, (plx, ply, 

plz, el) a.nd (p2x, p2y, p2z, e2) a.re the explicit four-vectors of the in- 

coming particles, a,nd outGoing specifies the order of phase-space evalua- 

tion as explained below. DecayWidthCme2, p -> {px, py, pz, e), out- 

Going] similarly returns an expression for the phase space integral resulting 
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in the decay width given matrix element squared me2 and initial momentum 

(px, py, pz, e3. 
The formula used for cross-section calculations is 

aad for the decay width it is 

r = t2T>4 
m IM12ct~,,(P;pll...pn). 

s 

W-9 

(3.10) 

Phase-space integra,tion is performed by a recursive use of the relations 

d@n(P; Pl, * * * ,pn) = d@n-1 (Pi j~12,1)3, f + * ,Pn) d@2(P12; Pl,P2) (2T)3dmT2 

’ = d@n-l(P; J-)12,1)31.. . ,Pn) -- 21p11 cZfl~2 dm2 
8(2~>~ ml2 

127 

(3.11) 

where pT2 = mf2 and 012 represents t,he direction of the ‘decay’ of the vector ~12 

to pl and p:! in its center-of-mass fra.me. The factor 21~1 I/ml2 is given by 

/ K n2T2 - (1721 + ?722)2) (my? - (7721 - ?742)] 1’2 

I,,?, 

(ml = m2> 

(m2 = 0) 

(ml = m;! = 0). 

\l 
(3.12) 

The argument outGoing tells HIP how to build the phase space element da,. 

It specifies both the order that the nlomenta p1 . . .pla are paired (eq. (3.11)) and, 

optionally, the symmetry of the individual two-body phase-space elements. By 

default, the complete angu1a.r integral over 012 is constructed. Often, due to the 



symmetry of the process, one can reduce the dimension of this integral (in the 

case of cylindrical symmetry), or eliminate it completely (in the case of spherical 

symmetry). This is done using the keywords Cylindrical and Spherical. 

For example, let us consider the decay process /L-(P) --t e-(pl)tr,(p2)vP(p3). If 

the p is unpolarized, the decay process is spherically symmetric. The direction of 

V~ may be chosen arbitrarily. Once that is done, the direction of the electron with 

respect to the (e-v,) system has cylindrical symmetry about the up direction. The 

outGoing argument is given by Spherical [Cylindrical [pl, p2] , ~31. If the p 

is polarized, the spherica. symmetry of the decay is reduced to a cylindrical sym- 

metry about the polarization axis. outGoing is then given by Cylindrical [(pl, 

~23, pal. 

4. Examples 

In this section we give two exa.mples showing step by step how a HIP calculation 

is carried out. In the first example we compute the decay width of a muon in the 

process p”- t e-vpVe and with a non-zero electron mass. In the second example 

we express the ma.trix element for the process eie; + 2 --t t? -+ W+W-bb as a 

spinor-technique expression. 

4.1 ryp- -+ e-upiTe) 

We use a low-energy a,pproximation in which the W-propa,gator is a constant 

and is absorbed, along with the coupling constant g into the Fermi constant GF. 

fig. 1 shows the single Feynman diagram for the process. 

I 
InCl] := PrepareIndex [sig] 

Instruct Mathenmtica. to treat, sig as an index. 

In[2] := SetMass [(pnub, 03, (pe, me), {pnu, 03, (pmu, mmu31 
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Ve 

5-91 
6953Al 

pe’ 
\ e- 

Figure 1. Feynman diagra.m for muou decay p- - e-T,Y, 

Set the masses of the four externa,l particles. The neutrinos (vP and V, 

carrying momenta pnu and pnub respectively) have zero mass. The electron 

(pe) is set to have mass me while the muon (pmu) is set to have mass mmu. 

Later on, these ma,sses can he given numerica. values. 

In[3] := matrixelement = 2 Sqrt [2] FermiGF * 
SpinorUbarCpnu] ** DiracGamma[sig] ** SpinorU[pmu, Left] * 
SpinorUbar Cpe] ** DiracGamma [sig] ** SpinorV [pnub, Left] ; 

In[41:= me2 = AbsSquared[matrixelement] /2; 

Square the matris-element using the Ma.thematica function AbsSquared. 

We suppress the printing of the long intermedia.te result. 

In[5] := me2 = Contract [me:!, {sig , ConjugateCsig] )] // Factor 

Contract over the indices o and a’. // Factor instructs Mathematics to 

the factor the expression. 
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Out[5]= 128 FermiGF2 DotProduct[pe, pnu] DotProduct [pmu, pnub] 

In[6]:= width = DecayWidthCme2, pmu -> (0, 0, 0, mm&, 
Spherical[Cylindrical[pe, pnub], pnu]] 

Ask Mathelnatica. to construct the phase-space integral to compute the 

decay-width. The expression Spherical[Cylindrical[pe, pnub], pnul 

indicates a cylindrical symmetry in the phase-space integral over the pair 

(e-, v~) and a spherica. symmetry over pair (vi,,, (e-, ve)) (here (e-, v~) 

is the combined system of e- a.nd F~.) 

Out[71= -PhaseSpaceIntegral- 

In[8]:= width = EvaluatePhaseSpaceIntegral[width]; 

Evaluate the phase-space integra.1 symbolically. Aga.in we suppress the long 

intermedia,te result. 

In[91:= Factor[width /. me-)x mmu /. Log[a- b-1 :> Log[a]+Log[b]] 

Use some Mathema.tica rules to tidy up the expression. We express the 

mass of the electron in terms of the ma.ss of the muon m, = xmp and 

combine logarithms using the rule log(ab) + log a + log b. 

2 5 2 6 8 
-(FermiGF mmu (-1 + 8 x -8x +x + 12 x4 LogCx21)) 

out[l()]= ------------------------------3---------------------------- 

192 Pi 

lT(p- --+ e-vpF,) = 
G$m;( 1 - sx” + sxG - x8 - 12x4 1og(x2)) 

19'73 
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4.2 MATRIX ELEhfENT FOR eze; + 2 t tt -+ bv+w-bb IN SPINOR TECHNIQUE 

FORM 

We convert the ma.trix element for the process eze; + 2 --+ tS + TV+W-b& 

into the spinor technique form [81 . The advantage of this form is that it can easily 

be used in a numerica. calculation. The spinor technique objects s(p, q) and t(p, q) 

are defined in table 1. s a.nd t have compact expressions which are easily evaluated 

numerically. 

The relevant diagram is shown in fig. 2. The AJa.thematica computation follows. 

We have suppressed most of the intermedia.te output. 

r- I 
In[ll:= PrepareIndex [t au, mu, nu] 

Instruct Akthematica to treat tau, mu and nu a.s indices. 

In[2] := SetMassC(pl, ~2, pb, pbb, 03, (pwp, pwm, MassCWBoson])] 

Set the masses of the external pa.rticles. The e- and e+ have momenta pl 

and p2 respectively, aad are maasless. The b and b have momenta pb and 

pbb respectively, and are also ma.ssless. The IV+ and T/V- have momenta 

pwp and pwm respectively, and ma.ss Mass [WBoson] . 

In[31:= SetDotProduct [(PI, p2, s/231 

We set the va.lue of (I-,* . p3) to s/2. 
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Figure 2. Feynman diagram for the process eie; -+ 2 iti- W+W-bt. 

InC41 := matrixElement = 
HeavyVectorPolarizationCpwp, nul * 
HeavyVectorPolarization[pwm, mu] * 
SpinorVbarEp2, Right] ** 
Vertex[(Electron), (Electron), (ZBoson, pI+p2, tau)] ** 
SpinorUCpI, Right] * Propagator[{ZBoson, pI+p231 * 
SpinorUbarCpb, Left] ** 
Vertex[(BottomQuark), (TopQuark), (WBoson, pwp, null ** 
FermionPropagatorCTopQuark, pwp+pbl ** 
Vertex[(TopQuark), (TopQuark), (ZBoson, pI+p2, tau)] ** 
FermionPropagator[TopQuark, -pwm-pbbl ** 
Vertex[(BottomQuark), (TopQuark), (WBoson, pwm, mu)] ** 
SpinorV[pbb, Left] 

ePw+ )EP(Pw-) {qp2)~r( e, e7 -V4pl) > A( 2, PI + 232) 

x (GhG40, t, T+‘)A(t TP~ + p+P’r(t, t, W(t, --pg - p-)V,i(b, t, WV&)} , 

where A(X,J~) is the propagator for particle X with momentum p and 

V,(A, B, C) is the vertex of the prticlcs A, B and C with Lorentz index 

u. 
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In[5] := 1ightlikeVectorRules = 
(LightlikeVectorDecayedFrom[pwp, l] -> ri, 
LightlikeVectorDecayedFrom [pwp, 23 -> r2, 
LightlikeVectorDecayedFrom[pwm, 1] -> r3, 
LightlikeVectorDecayedFrom[pwm, 21 -> x-4); 

In the computation the massive four-vector pwp is replaced by the sum of 

two massless four-vectors rl a,nd r2. pwm is similarly replaced by r3+r4. 

In the spinor technique, ~-1 and rz are the momenta of the massless fermion 

and antifermion into which the W decays. The final expression, thus, 

provides us with the angu1a.r distribution of the final state fermions. 

In[6] := ConvertedMatrixElement = 
ConvertToST[matrixElement] /. 1ightlikeVectorRules; 

Convert the matrix element to spinor t,echniclue form and apply the sim- 

plifying rules. 
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After some rearrangement, we get the following expression: 

Out[7]= (-4 I Alpha2 Pi KobayashiMaskawa[BottomQuark, TopQuark] 
2 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

SpinorSCpbb, r4] SpinorT[pb, rl] 

2 
(4 MassCTopQuark] SpinorSCp2, r2] SpinorTCpl, r3] + 

(4 - ---2-----) 

Sin[ThetaW12 

(SpinorS[pb, r2] SpinorT[pl, pb] + 

SpinorSCrl, r2] SpinorT[pl, r-l]) 

(SpinorSCp2, pbb] SpinorT[pbb, r3] - 

SpinorSCp2, r4] SpinorT[rS, r4]))) / 

(Cos[ThetaW12 Mass[WBoson12 

(2 DotProductCpb, pwpl - Mass[TopQuark12 
2 

+ MassCWBoson] > 

(2 DotProductLpbb, pwm] - Mass[TopQuark12 + Mass[WBoson]2) 

(s - Mass[ZBoson]2)) 

-4ia2nC:2s(pg,ra)l(pb,rl)[4nz:s(p~,r3)l(p1,r3) 

+(4 - n/sill” ol?;)(s(pb,r2)t(pi,pb) + s(rl,r2)t(pl,rl)) 

X (S(Ps~z~)t(p~, 1.3) - +a, r&(r3, Tq))] / 

[ cm2 ow?&(2(p~ * 11+)-m; + n&,7) (2(]3 * p-) - mp + ?nh) (s - rY&) 1 

22 



5. Conclusion and Outlook 

We developed HIP as an aid in the calculation tree-level processes in high 

energy physics which would otherwise be much more difficult. HIP’s main feature 

_ is in providing an environment within Ma.thematica. in which one can refer to 

objects and perform operations that occur frequently in this field. One can use 

HIP interactively to assist with small calculations, or set it up to automatically 

perform massive ‘symbol crunching’. 

We have checked HIP aga.inst hand ca.lculations of e+e- + 1V+W-, ey -+ 

M/v, both with arbitrary (C a.nd P conserving) II/y couplings, and of numerous 

simple electr0wea.k processes. We also checked them a.gainst published results for 

e+e- ---t W+tV--y, e+e- + lVsLt’-Z, e+e- -+ yyy a.nd eSe- -+ 222. 

In the future, we hope to extend HIP’s capabilities into performing loop inte- 

grals, calculating color factors and incorporating other techniques for symbolically 

calculating Feynman diagrams at the matrix element level. We also hope to trans- 

late HIP to other symbolic langua.ges such a.s Maple, so as to maximize the group 

of its potential users. 

HIP is ava.ilable for distribution. The distribution includes the va.rious compo- 

nent kfathematica packages, the online documenta.tion as listed in the appendix, 

and several files containing sample calculat.ions done by HIP. 

We are grateful to M. Peskin for his encouragement and for critically reading 

the manuscript. E. Y. would like to thank Wolfram R.esearch Inc. for their support, 

both financial a.nd technical. We would also like to thank all the people who have 

used our packages a.nd given us bot,h encouragement and bug reports. 
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APPENDIX 

In this appendix we include the complete listing of the objects defined in HIP, 

together with their usage messa,ges. These usa.ge messages are also available as 

on-line documentation. The functions aae listed in alphabetical order. 

AbsSquarad::usage = "AbsSquared[expr] is the absolute value squared 
of expr." 

Boost::usage = "Boost[fv, rap, dir] gives a four-vector obtained by 
boosting fv by rapidity rap in the direction specified by dir. If 
dir is of the form {cth, phi), cth is the Cosine of the angle 
between the direction and the z axis and phi is the angle between 
the direction's projection on the x-y plane and the x axis. If dir 
is of the form {x, y, 21, the direction is taken to be the 
direction of the vector <x, y, z). Boost[fv, rap] boosts fv by 
amount rap in the z direction." 

BoostAmount::usage = "BoostAmountCfvl gives a vector (rap, xx, y, 
2)) such that Boost.[{O, 0, 0, Mass[fv]), rap, (x, y, z)] is fv." 

CommutativeAllQ::usage = "CommutativeAllQ[expr] is True if expr 
does not have any non-commuting sub-expressions, and False 
otherwise." 

CommutativeQ::usage = "CommutativeQCx] is True if x is commutative 
(the default), and False if x is non-commutative." 

Commutator::usage = "CommutatorCa, b] is an equivalent expression 
to a**b, with a and b interchanged (e.g. Commutator[a, b] = b**a + 
[a, bl)." 

Commute::usage = "Commute[expr, {x, y)] commutes y from the right 
of x to the left of x everywhere in expr." 

Contract::usage = "ContractCexpr, index] contracts index in expr. 
All subexpressions of form G[index, -1 or p- [index, -1 can 
potentially be effected. Contract[expr, {indexl, index2, . ..)I does 
the contraction sequentially." 

ConvertToChiralFermions::usage = "ConvertToChiralFermions[expr] 
attempts to convert all occurrences of DiracGamma5 and 
HelicityProjection in expr into products of chiral spinors." 

ConvertToGamma5::usage = "ConvertToGanunaS[expr] attempts to convert 
all occurrences of HelicityProjection and spinors of specific 
chirality into products involving DiracGammaS." 

ConvertToMassless::usage = "ConvertToMassless is an option for 
ConvertToST." 

ConvertToST::usage = "ConvertToST[expr] attempts to convert 
DiracGamma5 and HelicityProjection occurrences in expr to SpinorS 
and SpinorT objects." 
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CrossSection::usage = "CrossSectionCmeZ, pi -> (plx, ply, plz, el), 
P2 -' (p2x. p2y, p2z, e21, outGoing] returns a PhaseSpaceIntegral. 
me2 is the matrix element squared, cpix, ply, plz, el) and <p2x, 
P2Y, p2z, e2) are the explicit four-vectors of the incoming 
particles, and outGoing specifies the order of phase-space 
evaluation." 

Cylindrical: :usage = "Cylindrical[pl, p2] indicates a cylindrically 
symmetric two body decay into pi and p2 about the direction of 
motion of the decaying particle." 

Decay ::usage = "Decaycfv, dir, (ml, m2)] gives two four-vectors 
{fvl. fv2) such that fvitfv2 is fv, Mass[fvi] is ml, Mass[fv2] is 
m2 and the direction of fvl in the fv center-of-mass frame is given 
by dir. If dir is of the form Ccth, phi), cth is the Cosine of the 
angle between the direction and the z axis and phi is the angle 
between the direction's projection on the x-y plane and the x axis. 
If dir is of the form Ix, y, z), the direction is taken to be the 
direction of the vector {x, y, z). DecayCfv, dir] is the same as 
DecayCfv, dir, (0, 031." 

DecayWidth::usage = "DecayWidthCmeZ, p -> Cpx, py, pz, e), 
outGoing] returns a PhaseSpaceIntegral. me2 is the matrix element 
squared, (px, py, pz, e) is explicit four-vector of the decaying 
particle, and outGoing specifies the order of phase-space 
evaluation." 

DiracGamma5::usage = "DiracGamma5 is mainly meaningful for 
SpaceTimeDimension of 4. Some of its features will work in any even 
spacetime dimension." 

DiracGamma::usage = "DiracGamma[mu] is the Dirac Gamma matrix. It 
is set to be non-commutative. Note that DotProductCDiracGamma, pl 
is simplified to Slash[p]." 

DiracGammaSize: :usage = "DiracGammaSize is the dimension of the 
Dirac spinors. Its default value is 4." 

DotProduct::usage = "DotProduct[p, ql is the Lorentz invariant dot 
product. It is evaluated explicitly (using the metric) if both p 
and q are lists of length SpaceTimeDimension." 

DotProductRules::usage = "DotProductRules[{p, q, u)] returns 
(toRule, fromRule). toRule takes DotProductCp, ql to u and 
fromRule takes u to DotProductCp, ql. DotProductRules[(pl, ql, 
1113, Cp2, q2, u23,...1 returns (toRules, fromRules) where toRules 
are the rules for converting DotProducts to u's and fromRules are 
the rules for converting u's to DotProducts. DotProductRules[(p, 
q, u), Mandelstam -> <s)] will define fromRules in terms of s." 

Energy::usage = "EnergyCfv] is the energy of fv." 

Eps ::usage = "Eps[a, b, c, . . .I is the completely anti-symmetric 
object. Its arguments are automatically sorted alphabetically. 
Eps[..., p, . ..I is the same as EpsC..., mu, . ..I p[mu]." 

EvaluatePhaseSpaceIntegral::usage = 
"EvaluatePhaseSpaceIntegral~PhaseSpaceIntegral[...ll will 
evaluate the Phase-space-integral." 
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ExpandSlash::usage = "ExpandSlash[expr] expands slash of sums to 
sums of slashes in expr." 

G::usage = "G[mu, nu] is the ordinary spacetime metric. mu and nu 
range from I to SpaceTimeDimension." 

GammaTrace::usage = "GammaTrace[expr] is the trace (in spinor 
space) of expression. Note that no division by DiracGammaSize is 
carried out, ie GammaTraceCi] gives DiracGammaSize." 

HeavyVectorPolarization::usage = "HeavyVectorPolarizationCp, mu, 
poll represents the polarization vector of a massive vector 
particle with momentum p, polarization pol and index mu." 

HeavyVectorPolarization::usage = "HeavyVectorPolarization[p, mu, 
poll represents the polarization vector of a massive vector 
particle with momentum p, polarization pol and index mu." 

HelicityProjection::usage = "HelicityProjection[pol] is the 
helicity projection operator (I +/- Gamma5)/2." 

KobayashiMaskawa::usage = "KobayashiMaskawaCpl, p2] is the 
Kobayashi-Moskawa matrix element connecting particles pl and ~2." 

LightlikeVectorDecayedFrom::usage = "LightlikeVectorDecayedFromCp, 
n] represents a lightlike vector used for the polarizations of 
massive vector bosons. It obeys p = 
LightlikeVectorDecayedFrom[p,l] + LightlikeVectorDecayedFromCp,21 
where p is the momentum of the external massive vector boson." 

LightlikeVectorNotCollinearWith::usage = 
"LightlikeVectorNotCollinearWith[p] represents a lightlike vector 
that is not collinear with p." 

LongitudinalPolarization::usage = "LongitudinalPolarization[pl is a 
four-vector longitudinal polarization of the four-vector p." 

Mandelstam::usage = "Mandelstam is an option for specifying a list 
of Mandelstam-type variables." 

MandelstamRules::usage = "MandelstamRules[{pi, p2, p3, ~41, (ml, 
m2, m3, m41, s, t, u] returns {toRules, fromRules). toRules are 
rules for converting DotProducts of pl, p2, p3 and p4 to 
expressions containing s, t and u and the masses. fromRules are 
the rules for converting s, t and u to expressions containing the 
DotProducts of pi, p2, p3 and p4 and the masses. It sets pi, p2, 
p3, p4 to be on-shell with masses ml, m2, m3, m4 respectively." 

Mass: :usage = “Mass [p] is the mass of a four-vector p. It is 
evaluated explicitly if p is a list of length SpaceTimeDimension. 
11 

MasslessVectorPolarization::usage = "MasslessVectorPolarizationC p, 
mu, poll represents the polarization vector of a massless vector 
particle with momentum p, polarization pol and index mu." 

MasslessVectorPolarization::usage = "MasslessVectorPolarizationC p, 
mu, poll represents the polarization vector of a massless vector 



particle with momentum p, polarization pol and index mu." 

Momentum::usage = "Momentum[fv] is the three-component momentum of 
fv." 

NEvaluatePhaseSpaceIntegral::usage = 
"NEvaluatePhaseSpaceIntegral[PhaseSpaceIntegral[.. .I1 will 
evaluate the Phase-space-integral numerically." 

NonCommutativeExpand::usage = "NonCommutativeExpand[expr] expands 
NonCommutativeMultiply of sums." 

NonCommutativeFactor::usage = "NonCommutativeFactor[expr] attempts 
to factor sums of NonCommutativeMultiply's." 

0pposite::usage = "OppositeCp] represents a four-momentum which has 
the same energy but opposite three momentum to the four-momentum 
p. " 

PerpendicularMomentum::usage = "PerpendicularMomentum[fv] gives the 
component of fv perpendicular to the z-axis." 

PhaseSpaceIntegral::usage = "PhaseSpaceIntegral[integrand, <pi, 
(p2)), decays, integrals, extmom] specifies a phase-space integral. 
Use EvaluatePhaseSpaceIntegral to evaluate the integral 
symbolically, and NEvaluatePhaseSpaceIntegral to evaluate it 
numerically." 

PolarizationCombinations::usage = "PolarizationCombinationsCme] 
returns a list of the possible polarization combinations of the 
initial and final particles for the matrix-element me over the 
polarizations which are not explicitly written in the 
matrix-element." 

PrepareIndex::usage = "PrepareIndex[a, b, c, . . .I makes future 
contractions involving a, b, c, . . . work faster." 

Propagator::usage = "PropagatorCline] is the factor associated with 
the particle line, where line can be {type, p) or (type, p, mu, nu) 
where type is the type of particle, p is the momentum, and mu and 
nu are Lorentz indexes. PropagatorCCtype, p--)1 is the same as 
PropagatorCtypel Cpl” 
STToTraces::usage = "STToTraces[expr] attempts to convert products 
of SpinorS's and SpinorT's in expr to traces using the rule 
SpinorS[pi,p2]+SpinorT[p2, p31...SpinorS[pn, pi1 = 
GammaTrace[Slash[pl]**Slash[p21**... 
**Slash[pn]**HelicityProjection[Rightl]" 

SetDotProduct::usage = "SetDotProductCCp, q, 1111 sets DotProduct [p, 
q] to be u. SetDotProduct[{pi, qi, ul), {p2, q2, u2),...] sets 
DotProduct[pi, qi] to be ui, DotProductCp2, q2] to be u2, etc." 

SetMandelstam::usage = "SetMandelstam[{pl, p2, p3, ~41, {ml, m2, 
m3, m4), s, t, u] sets pi, p2, p3, p4 to be on-shell with masses 
ml, m2, m3, m4 respectively and sets the DotProducts of pi, p2, p3 
and p4 in terms of the Mandelstam variables s, t and u and the 
masses." 



SetMass: :usage = "SetMass[{p, m)] sets p to be a four-vector with 
invariant mass m. SetMass[(pl, p2,..., m)] sets pi, p2,.. to be 
four-vector with invariant mass m. SetMass[<pl, ml), (~2, m2),...] 
applies SetMass to {pl, ml>, cp2, m2>,.. in turn." 

SetNonCommutative::usage = "SetNonCommutative[a, b, c, . . .I sets 
the symbols a, b, c, . . . to be non-commutative." 

SetReal::usage = "SetReal[a] sets ConjugateCal = a. SetReal[a, 
b ) . . . 1 applies SetReal to a, b,... in turn." 

Slash::usage = "Slash[p] is the same as 
Contract[p[mu]DiracGamma[mul, mu]. Slash is set to be 
non-commutative." 

SpaceDirection::usage = "SpaceDirectionCfv] gives the pair Ccth, 
phi) describing the direction of the momentum of fv." 

SpaceTimeDimension::usage = "SpaceTimeDimension is what you'd 
expect." 

Spherical::usage = "SphericalCpl, ~21 indicates a spherically 
symmetric two body decay into pl and ~2." 

SpinorS::usage = "SpinorS[p, q] is the same as SpinorUbarCp, 
Right]**SpinorU[q, Left]. Both p and q have to be massless." 

SpinorT::usage = "SpinorT[p, q] is the same as SpinorUbarCp, 
Left]**SpinorU[q, Right]. Both p and q have to be massless." 

SpinorU::usage = "SpinorU[p] is a spinor object of a four-vector p. 
SpinorU[p, poll is a spinor object of particular polarization." 

SpinorUbar::usage = "SpinorUbarCp] is a spinor object of a 
four-vector p. SpinorUbarCp, poll is a spinor object of particular 
polarization." 

SpinorV::usage = "SpinorV[p] is a spinor object of an anti-particle 
of four-vector p. SpinorVCp, poll is a spinor object of particular 
polarization." 

SpinorVbar::usage = "SpinorVbarCpl is a spinor object of an 
anti-particle of four-vector p. SpinorVbar[p, poll is a spinor 
object of particular polarization." 

Vertex::usage = "VertexClinel, line2, . ..I is the Feynman rule for 
the vertex. Each line is of the form {particle) or {particle, p) 
or (particle, p, indexes) where particle is the particle type, p is 
the particle's momentum, and indexes are the appropriate Lorentz or 
gauge group indexes." 

ZAxis::usage = "ZAxis is an option used with functions receiving a 
direction as an argument. It specifies the axis with respect to 
which the direction is given." 
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