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ABSTRACT 

In storage rings with very low frequency of synchrotron oscillations coherent 

beam-beam instabilities can be suppressed due to the “phase averaging” effect, 

which recently was described by S. Krishnagopal and R. Siemann for the incoherent 

beam-beam instability. In this paper using the Vlasov’s equation we calculate the 

form factors, which renormalize beam-beam parameters of coherent beam-beam 

oscillations. This results in the variations of stability criteria as well as widths of 

stopbands of unstable modes for bunches with lengths comparable with p-function 

at the interaction point. 
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1. Introduction 

Recently R. Siemann and S. Krishnagopal’ showed that the incoherent beam- 

beam interaction in circular colliders can be strongly suppressed by the spreading 

of the interaction region (IR) d ue to the finite length of the colliding bunches. As 

after the crossing the IR a particle gets the phase advance of betatron oscillations 

of the order of: 

Ap II 2arctg(o,/P*) , 

the Floquet modulation of its betatron oscillations can strongly affect the powers 

of beam-beam resonances in the region, where the bunch length oC has close value 

to @*-the value of /3- function at the interaction point (IP). In fact, the effect 

of the suppression of beam-beam instability for incoherent oscillations is caused 

by particles crossing the IR at the angle, when the beam-beam kick is canceled. 

Same arguments indicate that the particles executing the oscillations with large 

amplitude of synchrotron oscillations Is - ctl >> cc will feel the nominal beam- 

beam kick and thus will be perturbed by the beam-beam resonances of the nominal 

strength. 

Even the simplified consideration based on the calculations within the frame- 

work of the so-called rigid bunch model2 indicates that the same effect can suppress 

the coherent beam-beam interaction of colliding bunches, provided their lengths 

differ not very much from /?*. Except for the special conditions, when coherent os- 

cillations with large longitudinal amplitudes are artificially excited, the collective 

motion of the colliding bunches can be considered as very synchronous. There- 

fore, one may expect more clear indication of the phase averaging effect in the 

suppression of coherent beam-beam resonances. 
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In this paper we present more straightforward calculations confirming this effect 

in the special case when the frequencies of synchrotron oscillations of the particles in 

the colliding bunches are considerably low, and thus one can neglect the excitation 

of coherent synchrobetatron beam-beam oscillations. 

2. General Equations 

The most general description of coherent beam-beam oscillations can be done 

using Vlasov’s equations. If the action-phase variables ?, 4 are used to describe 

unperturbed oscillations of individual particles, these equations read: 

(1) 

Here 19, = w,t and w, is the revolution frequency of the synchronous particles of 

bunches. The Lagrangians L1,2 and respectively L~,I, describe the interaction of 

a particle from one bunch with the fields of the counter-moving bunch. For the 

relativistic case (y = E/M c2 >> 1) with identical bunches in a e+, e--collider 

(erez = -e2), one can write La,b in the form: 

L 
2Ne” 

l,,? = - 
C 

G,2 7 

u1,2 = 
J 

-$ exp(ikry))p(2)(k, 0) , 

pc2)(k, 0) = 
J 

d2rld3p exp(-ikrl)f (@(rl, 0 + OS, P, 4~) . 

(3) 

Here E is the energy of a particle, e is its charge and k” = k: + kf. 
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In this paper we assume no dispersion at the (IP). Then the unperturbed 

betatron oscillations of the particles can be described by the following formulae: 

(v> = mcos(ll+ x(q) 1(x& Px,z = g-)y ) 

(5) 

Ix+ = psJz,z/T 8(1,2) = fB.9 + $91,2, 0s = wst , 

cp = cpc cos( $c>, G:: = UC * (6) 

Here the subscript s marks the values describing the synchronous particle; 2rRs is 

the perimeter of its closed orbit; the subscript c marks the variables of synchrotron 

oscillations. More generally, Eqs. (5) and (6) generate the canonical transforma- 

tion from variables (p, r) to the action-phase variables (i, 4) of the unperturbed 

oscillations. 

Below we shall discuss the stability of small coherent beam-beam oscillations. 

This problem can be treated using equations which are obtained by the lineariza- 

tion of Eqs. (1) and (2) for small deviation from the unperturbed distribution 

functions. For the sake of simplicity we assume that such distributions are uniform 

in betatron phases: 

f(V) = fp)(q ) 

while coherent oscillations are described by the nonuniform and nonstationary 
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addition to fo: 

f(q1: 7J, e> = fp2)(7) + f(‘)“)(r’, 4, e> ) (7) 

f W) 
0 

> f(V). 

In fact, for colliding bunches such a structure of the distribution function is not so 

obvious and generally assumes that the working point of the ring is placed outside 

the stopbands of the incoherent beam-beam instability. 

If the contribution from the stationary part of the perturbation (L(O) = L[fo]) 

is included in the tunes v’ and the p-functions of the ring, the linearized system of 

equations for f”(‘j’) reads: 

( aL, 1 dfp 
&+y(I)-$ p++-= 

o 

S > a$ al’ ’ 

Using here Eq. (3) and the Fourier expansions for solutions: 

f(‘~“)(I’, T+?, 0,) = C fiy2’(T, 0,) exp(iGJ) , 

(8) 

(9) 

(10) 
iii 

one can rewrite Eqs. (8) and (9) in the form: 

(11) 

df,$2) Ne2 w 
-iCi~ -FJd~>l, 7 

dI c (12) 

Since the phase of synchrotron oscillation $, is a cyclic variable, Eqs. (10-12) 

generally contain harmonics of the distribution functions in synchrotron phases 
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f mx,mz,mc describing the coherent synchrotron (or, respectively, synchrobetatron) 

oscillations of the bunches. The possibility to select such modes as the normal 

modes of coherent motion and thus to classify solutions using definite multipolarity 

of synchrotron oscillations m, is generally determined by the ratio between the rate 

of time variations of amplitudes of coherent oscillations, which we shall denote 

here as 1m(v), and v,. For the beam-beam interaction this rate is specified by 

the so-called beam-beam parameter [. For bunches with Gaussian distributions in 

transverse coordinates: 

PO@, 2) = 
1 

( 

x2 2 --_- 
27ra,0, exp 24 24 > 

these parameters for respectively vertical and radial oscillations are: 

tx = NroP,* 
2TJx (0, + 0,) ’ 

7-o = e2/Mc2 . 

(13) 

In this paper we shall assume that parameters both of the bunches and of the ring 

are in the region: 

Im(v) > UC , (15) 

and therefore the synchrotron oscillations of particles can cause the adiabatically 

slow variations of the parameters of coherent oscillations, but do not classify the 

collective modes of the beam. For these fast coherent beam-beam oscillations the 

coupling of synchrotron modes is so strong that it becomes more reliable to describe 
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the coherent oscillations assuming the variables Ap and cp as the integrals of motion. 

In this case the distribution functions can be presented by the expansions: 

describing the bunches with a rigid longitudinal distribution. 

Below we shall make the calculations for coherent betatron oscillations. Neglect- 

ing for the sake of simplicity the frequency spread of the bunches due to momentum 

spread and assuming as the unperturbed the distribution functions: 

f(lr2) = ~o(J;WP)POW , 0 

let us write solutions of Eqs. (11) and (12) in the form: 

(17) 

The substitution of these expressions into Eqs. (11) and (12) as well as making use 

of the expansions: 

exp(ikmcos$) = 2 Jm(km)exp(im4) 7 
m=-co 

where Jm(x) is the Bessel function, yields the system of equations for amplitudes 
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POwPow + cp) 
J 

where 

Finally, introducing the momenta: 

2x 

xk’(f, 0,) = 
J 

@A$@, c,o, e,), a= 1,2 (22) 
0 

and assuming the Gaussian linear density distributions in bunches: 

~c = Roq, , 

one can get for Xij2): 

(23) 
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(25) 

where 

According to these equations, the perturbation of colliding bunches caused by the 

counter-moving beam is described by a sequence of rather short periodic kicks, 

which for two bunches colliding at one (IP) are spaced by apart the revolution 

period T,. Between collisions both bunches execute free oscillations f&(0,) N 

exp(--ijJLCOS), but after crossing through the interaction region the amplitudes 

x$2’ get the variations: 

x;,2)(o+) = xg~2)(o-) + bXF2), 

where Xg’“)(Oi) w4 are the amplitudes before and after collision. The values SX, 

determine the corresponding variations in the harmonics jk’2). Then the obvious 

requirement for eigensolutions: 

yields the system of homogeneous integral equations, which determine both the 

(14 eigenfunctions fm and the eigenvalues X of coherent modes. 
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3. The Factorization 

The calculation of the values c~X:‘~) can be significantly simplified if a partic- 

ular geometry of colliding bunches is assumed. Therefore below we shall consider 

separately two important cases: when colliding bunches are round (gz = a,; p,* = 

p,*), and when they are flat (a, >> a,). 

Since we have assumed that the lengths of bunches CT, and /3* can have the 

comparable values, in these calculations we have to take into account that in the 

close vicinity of the interaction point one has: 

2 

and thus, the corresponding phase advance of betatron oscillations can be large 

enough: 

b(s) = arctg(+) . 
(Y 

(29) 

Let us first discuss the case, when the bunches are round (03: = a,; ,Bf = 

(14 pz). Taking into account that the nontrivial behaviour of the amplitudes X, 

is associated with the tuning of the working point towards nonlinear resonances 

Giv’ = n, and assuming t << 1, one can rewrite, for instance, Eq. (24) in the form: 

If pz(s) = p,(s) = p(s), using Eqs. (21, 26) and the substitutions k, 4 k,m 

andk,+k,m s one can easily verify that the kernel I<,,, does not depend on 
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OS. Then, the integration of Eq. (30) over 0, yields: 

6x(l) = ~,(~,/p*) m J dr;K,,,(T, Jl)xF(J’) , (31) 

where 

ym(5) = 
O” du 

J 
Texp[-u2 + %(m, + m,) arctg(u/C)], 5 = P*/gc . (32) 

--CO 

Except for the factor Y,(c), Eq. (31) coincides with that which had been previ- 

ously obtained, for instance in the papers 3-5 to describe coherent oscillations of 

colliding bunches of zero length. This and the complementary equation for 6x2’ 

yield the system of integral equations, which enable one to calculate the stability 

criteria, coherent tune shifts, widths of stopbands and other important parameters 

of oscillations. For bunches of finite length the dependencies of these parameters on 

crC is described by the function Y,(c). S ince this dependence can be factored out 

of the kernel of the integral equation (31), the influence of the expansion of the in- 

teraction region as well as Floquet modulation is equivalent to the renormalization 

of the beam-beam parameter: 

6 eff = ym(C)t 7 

and provided the factor Y,(c) is small, describes the suppression of coherent beam- 

beam resonances. As one more interesting feature of this modification of 5 we have 

to mention the following. Since the position of the stopbands relative to particular 

resonance v = n/m is determined by the sign of the production4: 

tfeffA=<Y(()AIO ,A = u-n/m , 

in the regions of [, where Y(c) < 0, the stopbands occur above the resonant 

11 



values of Y. 

The asymptotes of Ym([) can be easily calculated for extremely short or ex- 

tremely long bunches. For short bunches 5 >> 1 one can use the expansion: 

arctg(u) N u, u << 1 , 

when the calculation of the integral in Eq. (32) yields the result of the paper ‘: 

Ym(() = exp(-q2/C2) E 1 - (4/02, Q = m, + mz , (33) 

It indicates weak suppression of coherent beam-beam resonances when the inter- 

action region is only slightly extended due to finite bunch length. 

The inverse asymptote of Y,(c) can be obtained by rewriting this function in 

the form: 

Y,(c) = 
ca du 

s 
7e-“‘Tq 

-CCJ 
(34) 

where Tp(z) are the Chebyshev polynomials. Then using the relationship T,(O) = 

wq, one can easily find that for round, long bunches 

w3 + wq, 5 K 1 , (35) 

the infinite extension of the interaction region of the bunches does not suppress 

the coherent beam-beam instability2. 

The behaviour of Ym( <) f or a wider region can not be predicted analytically. 

The inspection of the results of numerical calculations of the integral in Eq. (34) 

(see in Fig. 1) indicates that coherent resonances, especially of higher orders, can 
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be significantly suppressed for round bunches with lengths g, - ,B*. On the other 

hand, as the condition (15) must be valid, the value of the suppression factor 

must be limited from the below. Using, for instance, resuts of the paper4 for the 

estimation of the value of the maximum increment for the mode with the given 

combination (m, , m,) one can rewrite (15) in the form: 

This condition valids as better as smaller is the frequency of synchrotron oscillations 

E >>vc, but still can be violated for oscillations with multipole numbers 

Let us now consider in more details the case, when colliding bunches are flat 

(a, >> a,). If this also assumes cz: >> cZ and therefore ,B,* N ,Bf, the calculations 

can be simplified since one can neglect the radial modulation of the beam-beam 

force. In this case one has & >> &, and thus can expect that only resonances of 

vertical oscillations m,v, = n are important. Then the kernel ICm,m in Eqs. (24, 

25) can be written in the form: 

After the obvious substitutions the equation for variations of amplitudes SXi’2) 

can be written in the form similar to Eq. (31), but with different factor Ym(<): 

exp[-U2 + 2im, arctg(u/[)] 
J 

1 + $ . (37) 

This function has the same asymptote as Y,(c) in Eq. (32) for short bunches 

(5 > l), but diverges like Yi N l/c, when C + 0. This difference in the behaviour 
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of the form factors Y, and YA describes the mismatching between the beam-beam 

kick and the p-function, which takes place for flat colliding bunches. As can be seen 

from Fig. 2, within the intermediate region of parameters (a, - ,O*), the extension 

of the interaction region generally suppresses coherent resonances, especially of 

higher orders. 

If on the contrary the bunches are flat due to big difference in vertical and 

horizontal p-functions (,BZ << &), ‘t 1 may happen that the parameters of bunches 

and of the ring will satisfy condition: 

It is obvious that in this region the radial beam-beam resonancies will not be 

suppressed. For instance, this can be proved making the calcullations for radial 

oscillations assuming the model distribution function4: 

when the kernel of Eq. (31) gets the form: 

cm 

ev( - J&h) 
J 

Jm,(u&) Jm,(u a)$ ) 

--CO 

(39) 

which has exactly the same form as the kernel, calculated for a short bunch. This 

means that in the region (38) th e widths of stopbands as well as increments of 

unstable radial coherent beam-beam oscillations will be determined by the nominal 
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value of &. Hence, the limitations on the ring performance due to coherent beam- 

beam effects in this case will be weak, provided 

(41) 

4. Discussion 

The calculations, which have been presented above, definitely indicate the pos- 

sibility of significant suppression of the fast coherent beam-beam instability due 

to the “phase averaging” effect. In the case of dipole oscillation these results are 

in general agreement with the prediction of simplified calculations based on the 

rigid bunch mode12. For multipole coherent beam-beam oscillations the same sup- 

pression effect takes place too. However, since the sign of the suppression factor 

depends on the value of 5, the positions of the stopbands relative the resonant 

values v = n/m generally can differ for oscillations of different multipolarity. Let 

us also note that for two dimensional coherent oscillations the suppression factor 

depends on the partial multipole numbers in the combination m, + m,. Therefore, 

it may happen that the instability of oscillations with higher, but close m, and m, 

will be suppressed less than that with lower, but more different m, and m,. 

The suppression of the instability of coherent beam-beam oscillations in the 

region gC 21 p* can offer some new possibilities for the realization of schemes, which 

previously were supposed to be limited by the coherent beam-beam instability. 

As two widely known examples we can mention here the scheme with 4-beam 

compensated colliding beams; and asymmetric B factories having low and high 

energy rings of the different perimeter. 
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In low energy rings like coming Phi-factories, when the parameters are not lim- 

ited by the synchrotron radiation of bunches, the round cross sections of colliding 

bunches can be realized rather easily6. For this geometry due to ,Q = ,8; one 

can expect the strong suppression of the instability for both vertical and horizon- 

tal betatron coherent oscillations, if & N &. Together with the suppression of 

coherent beam-beam instability along the main coupling resonance vZ = Y, 4this 

possibility makes the round beam geometry as the most attractive. 

In the high energy rings like coming B-factories, due to the problems with 

the synchrotron radiation background, the flat bunches present the most favorable 

geometry (see, for instance in7). In this case, provided ,O,* >> p,*, in order to 

suppress coherent beam-beam instability, the beam-beam parameter for horizontal 

oscillations must be significantly decreased. Let us underline that this limitation on 

the beam and ring parameters is specific for colliders with flat bunches (B-factories, 

Phi-factories, etc). 

It is my pleasure to thank SLAC and its B factory group for their hospitality. 

N. Dikansky, P. Ivanov, E. Perevedenstev, G. Tumaikin and A. Skrinsky from INP 

(Novosibirsk) as well as A. Hutton, T. Knight and R. Siemann from SLAC are 

kindly acknowledged for encouriging discussions and comments. 

16 



REFERENCES 

1. S. Krishnagopal and R. Siemann, Phys. Rev. D 41, 2312 (1990). 

2. N. Dikansky, P. Ivanov and D. Pestrikov, in T(EI( Worlcshop on Accelerators 

for Asymmetric B Factories, 1990, KEK, Japan. 

3. Ya. S. Derbenev in Proceedings of the Third All Union Particle Accelerator 

Conference, Moscow, (1972); Nauka 1, 382 (1973). 

4. N. Dikansky and D. Pestrikov, Part. Act. 12, 27 (1982). 

5. A. W. Chao and R. D. Ruth, Part. Act. 16, 201 (1985). 

6. L.M. Barkov et al . Proc. of the KEK topical Conf. on e+e- Collision Phys. 

KEK report 89-23, p.44. 

7. An Asymmetric B Factory Based on PEP. Conceptual Design Report. LBL 

PUB-5303, SLAC-372, CALT-68-1715, UCRL-ID-106426,UC-IIRPA-91-01. 

1991. 

Figure Captions 

Fig. 1 The dependence of the form factor Y, on the ratio [; round beams; a: q = 1, 

b: q = 2, c: q = 3, d: q = 4. 

Fig. 2 The same as in Fig. 1, but for flat beams. 
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