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ABSTRACT 

A variational representation for the Dirac Coulomb Hamiltonian can be devel- 

oped using Sturmian functions where the matrices in the generalized eigenvalue 

problem Aa: = XBa: have a bandwidth of at most 5. Standard matrix algorithms 

will isolate N eigenvalues and inverse iteration will isolate in sucession N eigen- 

vectors in N N2 computer operations and using N N locations in memory. A 

new method is presented of evaluating the matrix elements which connect exact 

eisenstates and Sturmian variational states by the emission of radiation. The the- 

ory of the use of Sturmian functions for the Schrodinger Coulomb Hamiltonian is 

-reviewed and extended. 
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Introduction 

The calculation of two-photon decay rates using standard perturbation theory 

requires one to sum over an infinite number of intermediate atomic states. For 

hydrogenic ions described by the Schrodinger or Dirac equation the intermediate 

states are known exactly, but both evaluating the needed matrix elements and 

doing the final sum are difficult. To calculate rates in hydrogenic ions a powerful 

computational method is to replace the infinite sum over exact bound and contin- 

uum states by a finite sum over a discrete set of states obtained by diagonalizing 

the Coulomb Hamiltonian in a basis of N functions. One selects the functions so 

that all necessary radial integrals can be done analytically instead of numerically, 

and so the matrix eigenvalue problem is the simplest possible. This paper adapts 

the Sturmian functions of Rotenberg’ to make the eigenvalue problem for both 

the Schrodinger and Dirac Coulomb Hamiltonians banded, and develops a simple 

method of evaluating the radial integrals that describe the emission of radiation 

of arbitrary multipolarity. This latter method avoids an expansion in powers of 

the photon wavenumber k and so is especially suited to the study of hydrogenic 

ions of high nuclear charge, where the wavelength of the emitted radiation is not 

small compared to the size of the ion. The simplification of the matrix problem 

and the new method of evaluating integrals make it possible to deal with numbers 

of virtual intermediate states in the thousa,nds. 

Section 1 of this paper defines the Sturmian functions, derives their key prop- 

erties, and shows how they render the Schrodinger matrix problem sparse. Section 

2 applies symmetries of the Schrodinger Coulomb Hamiltonian to construct an 

infinite set of analytically equivalent representations of any sum over intermedi- 

ate states. Section 3 presents a novel way of solving for the exact bound states 
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of the Dirac Coulomb problem. Section 4 reviews and extends Goldman’s finite 

- basis set methods as applied to the Dirac Coulomb problem and shows how the 

Sturmian functions render the matrix problem sparse. Section 5 reviews Grant’s 

description of the matrix elements needed to describe the emission of radiation 

from Dirac states, and develops a new algorithm for their calculation. Finally 

Section 6 presents the results of some numerical tests. 

1. The Sturmian functions and Schrodinger finite basis sets 

To motivate the introduction of the Sturmian functions t consider first the 

eigenstates of the Schrodinger Coulomb Hamiltonian. After the usual separation 

of the wavefunction Q into radial and angular parts, 

the problem to be solved is HS$ = E11, where the Coulomb Hamiltonian is 

HS = -;$ + ‘(:f21) _ z 
r 

(1.1) 

(1.2) 

Atomic units with ti = m = e = 1 and c = cr-’ will be used throughout this paper. 

The exact normalized bound state wavefunctions for angular momentum 1 may be 

written $lP, where p = 1,2,. . . indexes the wavefunctions in order of increasing 

energy, and the exact bound state eigenvalues are 

1 22 
J% = -z(I+p)y p= 0,1,2,... 

The eigenstate of lowest energy , $11, satisfies the differential equation 

d2 -- -- 
dr2 

+ I(l + 1) 
r2 

22 + 22 
r (I+ 1)2 d/l = O I 

(1.3) 

(1.4) 

Consider the Sturmian functions t(r) and eigenvalues [ defined by the related 

3 



differential equation 

d2 -- 
dr2 

+ ?(I’ + 1) 22’ 12 

r2 -++ (l/z+ 1)2 1 t(r) = 0 (1.5) 

where Z’ and I’ are numbers (not necessarily integers) greater than zero. The form 

of this eigenvalue equation differs from those which arise naturally in quantum 

mechanics in that the eigenvalue C appears not multiplying the eigenfunction [ 

alone, but multiplying a function times [. Such an equation can be used to gen- 

erate a set of functions complete on the interval r = (0,oo) by imposing suitable 

boundary conditions 2. Require then that the functions .&, like the functions &,, 

be square-integrable as r + 0 and as r + 00. If the value of Z’ is chosen equal to 

Z and the value of 1’ chosen equal to 1, evidently one such solution has 5 = 1 and 

t(r) proportional to $11. For all Z’ > 0 the complete set of solutions is 

1’ + n 
Cn = - 1’ + 1 

[ 

1 (n-l)! 
&= EQ(21’+1+n) 

]+1’2 (q’” e-(zw+lHL~r.~l (;T;) w, 

where the index n runs 1,2,3,. . . . The symbol L:(z) represents an associated 

Laguerre polynomial, which is a polynomial of degree n in x whose coefficients 

-depend continuously on the upper index a. There survive in the mathematical 

literature different definitions of the associated Laguerre polynomials; the definition 

Goldman 3,4 and I use is5 

(l-7) 

where the symbol in parentheses denotes a binomial coefficient, defined for real x 
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and integer k by 

(1 { 

qx + 1) 
5 
k = k!I’(x - k + 1) 

,k>O 
(l-8) 

0 ,k<O 

The functions en are normal with respect to the weight function l/r and the 

normalization in equation 1.6 has been chosen so that 

The functions not however normal in the familiar sense, (~nIll~m) # S,,. The 

Laguerre polynomials have the orthogonality property that’ 

00 

J 
{ 

0 7 m # n, Re CY > -1 
x”e-2LXx)LiX4 da: = F(CY + n + 1) (1.10) 

0 n! 
,m=n,Rea>O 

which together with the recursion relation’ 

XL:+‘(X) = (n + a + l)Lz(x) - (n + l)LE+,(x) (1.11) 

suffices to show that 

(tnllltm) - Tnm = 3 

2(n + 1’) ,n=m 

-l[n(n + 22’ + 1)]‘i2 , In-ml=1 ,n=minn,m 

0 ,In-ml>1 
(1.12) 

Thus the matrix of the overlap of the unorthogonal functions &, is, fortuitously, 

tridiagonal and simple. Finally. the differential equation (1.5) shows that the fol- 

lowing matrix is tridiagonal: 

d2 
Sn 1 - jjY5 + “(‘:z ‘) It-> = S,m - (1, ytj2 T,, (1.13) 

Thus the matrices of (l), (l/r), and ( -d2/dr2 + I’( I’ + 1)/r2) in the set of 

functions {<} h ave bandwidth at most 3. It follows immediately that the matri- 
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ces in the generalized matrix eigenvalue problem (HS) X = E (1) X also have a 

- bandwidth of at most 3. In fact the matrix of the Coulomb Hamiltonian can be 

made diagonal. Define the constant C(Z’) by C( Z’) = -Z’2/(2(Z + 1)“) and con- 

sider the matrix eigenvector problem H’X = c/TX, where H’ = H - C(Z’) and 

e’ = E - C( Z’). Th’ p bl is ro em has the same eigenvectors X as does HX = ETX, 

but the matrix H’ is diagonal: 

H’ nm = (tnIH’lEm) 

1 
(E I 

K 

d2 =- n -- 
2 dr” 

+ qz+ 1) + z’2 
r2 (I+ 1)” > 

1 =- ll. -- 
2 (E l(c m it) FIG-, 

72, m = 1,2, . . . 

F IEm) 1 
(1.14) 

Therefore the matrix problem H’X = &TX is of the canonical form AX = XBX 

where A and B are real symmetric band matrices of bandwidth 1 and 3 respectively 

and B is positive definite. Crawford’s implementation6 of Cholesky factorization, 

applied to the banded matrix B, transforms in N N” computer operations this 

generalized matrix problem into the ordinary problem AX = XX, where the new 

matrix A is symmetric and tridiagonal. This can be attacked by better known 

methods (for example, the QL or QR algorithm)7’8 , to isolate the N eigenvalues 

in a net N N2 computer operations. With the eigenvalues known the method 

of inverse iteration I9 may be applied to the original equation H’X = E’TX to 

yield each of the N eigenvectors separately. Because the matrices H’ and T are 

sparse the computation of each eigenvector takes N N operations instead of the 

N N2 which would be required if either matrix was full. The number of operations 

required to compute all N eigenvectors is therefore also N N”. 
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The sparsity of H' and T also reduces the amount of computer memory required 

_ throughout. Storage of the non-zero entries in both matrices requires only N 

N locations in memory. Crawford’s algorithm and, for the resulting tridiagonal 

problem, the QR and QL algorithms, need only rr, N locations in memory to 

determine all N eigenvalues. To solve by inverse iteration H'X = dTX for one 

eigenvector also requires for such sparse matrices only N N locations in memory. 

Provided one needs each eigenvector only once, so one can use the same N locations 

in memory to store in succession the N components of each eigenvector, complete 

calculations can be done with only N N locations in memory, instead of the N N2 

which would be needed merely to store any full matrix. For the calculation of 

two-photon decay rates in particular this economy of memory is possible. 

The functions & and their properties are by no means novel. Similar func- 
. 

tions first applied to problems in atomic physics by Rotenberg’, who studied the 

scattering of positrons from hydrogen. Edmonds’ in a study of the quadratic Zee- 

man effect in hydrogen recognised the functions rendered the generalized eigenvalue 

problem for the Coulomb Hamiltonian sparse. His work was preceeded the publica- 

tion of the Crawford algorithm, but Clark and Taylor” recognised the algorithm’s 

applicability and were able to extend I1 Edmonds’ work with the functions. The 

treatment here is new only in that both 2’ and and 1’ in equation 1.6 are allowed 

to be non-integers, a generalization essential if they are to be applied to the Dirac 

Coulomb Hamiltonian. 

For special but useful values of 2’ the sparse generalized eigenvalue problem 

H'X = &TX reduces still further to a sparse ordinary eigenvalue problem. Pro- 

vided 2’ > 2 the elements of H' are all positive and the eigenvalues E’ are all 

greater- than zero. Because Hh,, > 0 one can define a diagonal matrix S, with 
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elements S,,,, = [Hk,J-1/2, for which SH'S = 1. The generalized matrix equa- 

tion H'X = c'TX may then be transformed into the ordinary matrix equation 

Tc2)Y = pY, where Tt2) = STS is real, symmetric and tridiagonal and where 

the new eigenvalue ~1 and the new eigenvector Y are trivially related to the old 

by p = l/c’ and Y = S-IX. This transformation doesn’t work when 2’ exactly 

equals 2 because Hi, is then zero and so Srr = [Hi,] -l/2 * is undefined. The choice 

of 2’ equal to 2 is otherwise a natural one because the en basis then includes the 

exact lowest energy eigenfunction $11, which becomes merely a linear combination 

of [r and (2. The lowest variational energy considered as a function of 2’ is then at 

its absolute minimum, and so the basis is automatically optimized with respect to 

variations in the parameter 2’. For 2’ = 2 the transformation can be salvaged by 

using the slightly modified basis of functions g n, in which ?+!~rr has been decoupled 

by hand from all but one of the basis functions: 

91 = $21 = 
ZJZ 
--1 
I+1 

92 = s22 x K2 - (~~1 K2) ?fhI 

gn=Snn X[n, 11 =2,...,N 

In this basis the matrices H' and T take the form 

H’(g) = 

(1.15) 

(1.16) 
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where the matrix Tc3) is defined by 

(21+3 ,n =m=l 

I 
2(1+3 ,n=m,n>l 

Ti”nl= +yi ,ln-ml=l 

0 , In- ml > 1 

(1.17) 

The function $~r, proportional to 91, is a normalized eigenvector with eigenvalue 

E’ = 0. The remaining eigenvectors are linear combinations of gn for n > 1 and 

the eigenvalues and eigenvectors follow from a solution of Tt3)X = XX, where 

X = 2Z2/(c'(l + 1)“). Th is is a numerical problem which is almost trivial. The 

matrix Tt3) is real, symmetric, tridiagonal, and positive definite. Its elements 

are simple functions. It has convenient property of diagonal dominance, that is, 

IT;;) > lTc3) - n--l,nl + lTi?l,n I for all n, and the inequality is strict for at least one 

value of n (it happens the inequality is strict for all n). The diagonal dominence 

of T13) allows for example a matrix equation like Tc3)X = Y to be solved for 

a vector X given a vector Y by Gaussian elimination without pivoting, instead 

of by the more complicated algorithm of Gaussian elimination with 
12 

pivoting. 

‘Finally the matrix differs only slightly from a simple matrix whose eigenvalues and 

eigenvectors are known analytically. An n x n symmetric tridiagonal matrix whose 

diagonal elements are equal to a and whose off-diagonal elements are equal to b 

has eigenvalues Xk given by 13 

kn 
X~=a+2bcos - 

( > n+l 
(1.18) 

and eigenvectors x (k) , normalized so x -(k) - S(li) = 1, with components given by13 

(1.19) 
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where j,k = 1,2 ,..., N. With the choice a = 2 and b = -1 the elements of 

- the simple matrix differ from the elements of T13) by the first term on the Tc3) 

diagonal, 21 + 3, and elsewhere only by terms of leading order N l/n for large 

n. The existence of this nearby matrix with known eigenvalues and eigenvectors 

both aids the debugging of computer code which solves for the eigenvalue and 

eigenvectors of Tc3), and gives useful analytic estimates of the magnitude of both 

.the eigenvalues and the components of the eigenvectors. 

2. Symmetries of the Schrodinger Coulomb Hamiltonian 

There are symmetries buried in the Schrodinger Hamiltonian, equation 1.2, 

which both have applications in practical problems and which which are related 

to the more complicated symmetries of the Dirac Coulomb Hamiltonian, which 

will be treated in section 3. Consider the Schrodinger Coulomb Hamiltonian in 

equation 1.2 as a operator which depends on 1: 

H(1) = -$ + r2 
l(1 + 1) - 7 W) 

One can solve for the eigenvalues and eigenvectors of this Hamiltonian by using a 

system of raising and lowering operators 
14 , a method which will now be reviewed. 

Consider the operator J(I) defined by 

J(1) = -z + f + 1; ,I > 0 (2.2) 

Simple algebra shows that 

H(1 - l)J(I) l>O 
J(l)H(l) = 

H(1) J(l) l=O 
P-3) 

Therefore if $1 is an eigenstate of H(1) with eigenvalue A, then J(l)?,!11 is an eigen- 

state of H(l - 1) with the same value of A, provided 1 > 0. Thus J(1) for 1 > 0 
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is a lowering operator with respect to 1. It is convenient to rescale by defining an 

operator q(I) by 

q(1) = , b(l)=$+f+$ I>0 (2.4 

Consider the hermitian conjugate of q(l) defined by 

qyr) = -4 + ; - f ,I > 0 (2.5) 

The operator qt satisfies the commutation relation 

$(l+ l)H(l) = H(l+ l)qt(I), 1 2 0 (2.6) 

so qt(Z) is a raising operator. Both qt and q respectively raise and lower the angular 

momentum of both bound and continuum eigenstates. The Hamiltonian H(Z) can 

be rewritten in terms of these operators in the two forms 

I 

$(l)q(r) = H(l) + Z2/E2 J21 

q(z)qyl) = H( I - 1) + .P/P Jll 
(2.7) 

These operators q and qt form an efficient way to construct the exact solutions of 

the problem, since the equation H(I)@ = XQ may be rewritten for all 1 as 

q(l+ 1)&l + I)$ = (A+ ,*+z:,2) + Gw 

One can conclude that any function satisfying qt(l + 1)11, = 0 has eigenvalue X = 

--.Z2/(l + 1)2. A n such function cannot be raised in 1 further. The normalized y 

solutions to the simple first orderdifferential equation qt(l + l)lc, = 0 are 

?)l = [ (!!)21+3r(2( + 4 -1’2 ,~+l,-zr/Q+l~ (2.9) 

These are of course the yrast Is, 2p, 3d, . . . bound states. The other bound states 

states can be found by repeatedly lowering I, down of course to 1 = 0 which cannot 
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be lowered further. There are Z+l such states. If H(L)$L = X$J~, and (+LI+L) = 1, 

- then H(L - l)$~-1 = X$L-~ and ($JL-~ /$~-r) = 1, where 

22 
$x-l = x + jy [ 1 

-l/2 
QW@L (2.10) 

One can of course step up in 1 as well as down. If H(L)$L = X$L and (+LI$L) = I, 

then H(L + l)$~ +I = J+L+I and (ti L+~@L+I) = 1, where 

-I/2 

h+1= 
Z-2 

A+ (L+1)2 
I 

4v + WJL 

Equations 2.10 and 2.11 apply not only to bound states, which have X < 0 and 

(2.11) 

for which the raising operation in 2.11 terminates at some maximum value of 1 for 

each bound state energy, but also to continuum states which have X > 0 and for 

which I may be raised indefinitely. The extra factors involving X in equations 2.10 

and 2.11 then preserve the appropriate normalization of the continuum states, that 

of one electron confined to a spherical volume of large radius. 

Thus the operators q and qf may be used to find quite elegantly the eigen- 

states of the Schrodinger Coulomb Hamiltonian. They also have practical value. 

A sum over a set of intermediate radial wavefunctions corresponding to angular 

momentum I may be transformed, by repeatedly raising and lowering I with q and 

qf, into an infinity of different sums over the radial wavefunctions corresponding 

to different angular momenta. These new sums like the original may be evaluated 

using discrete states and discrete eigenenergies found for the artificial new angular 

momentum. A sum like 

C f(&J(h Ibh?4(Th2l~2Th92) (2.12) 
n 

* * 
where Or and 02 are operators connecting exa,ct 1s and 2s states to virtual p states 
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with energies Em, and where f is some function of the energies of the intermediate 

states, has for example the analytically equivalent forms 

+ E2;y$,4 c (~2nIqt(2)~1~01)(~2nl9t(2)~2~02) 
n 

(2.13) 

When variational states with the appropriate Z are substituted into two of the 

infinity of such sums one can hope that one will converge as N + 00 from above 

and one from from below, allowing one bracket the true value. 

3. Symmetries of the Dirac Coulomb Hamiltonian 

Consider next the extension of these ideas from the Schrodinger to the Dirac 

Coulomb Hamiltonian. This generalization relies heavily on the seminal work of 
15 Goldman and of Drake , which is now briefly reviewed. The Dirac equation for a 

Coulomb potential can be written as HDQ = EQ, where 

(34 

-where Eu’ and @ are the usual 4 x 4 Dirac matrices. The solutions may be written 

;g’(‘)n, JlM II,= ( 1 f&jfh* ' 

i=2j-1 

-- 
r 

where g(r) and f ( ) r are the large and small radial wavefunctions and RjlM is a two- 

component spherical spinor. The large and small components satisfy the coupled 
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e q u a tio n s  

w h e r e  K  is th e  Di rac  q u a n tu m  n u m b e r , K  =  &( j  +  3 )  fo r  I =  j f % . G o ld-  

m a n 3 in t roduced  th e  fo l l ow ing  un i tary  t rans format ion  o f th e  fu n c tio n s  f a n d  g  

,which d e fin e s  a  n e w  pa i r  o f fu n c tio n s  4  a n d  8 : 

e 9  
( >  w  =  J &  (,)  -y’(4)  ( IFir;) (3 .4 )  

w h e r e  th e  p a r a m e te r  q ( K )  is d e fin e d  by  q (  6 )  =  Z C Y /(K  +  r), a n d  w h e r e  7  is d e fin e d  

by  + / =  d m . T h  e  e i  ‘g  e n v a l u e  e q u a tio n  t ransforms to  

7 7 ( K )  
>  4  4  

$ + F + J $  
>  

a 2 2  
-? j+c)  -  2 -  

r  
) o  0  

= E  
8  8  

(3 .5 )  

w h e r e  th e  constant  V ( K )  is d e fin e d  by  7  =  -r/ n  a n d  th e  n e w  e i g e n v a l u e  c is re la ted  

to  th e  o ld  by  e  =  0 2 E . 

O n e  m ight  hit u p o n  th e  un i tary  t ran format ion  in  e q u a tio n  3 .4  as  th e  on ly  o n e  

wh ich  r e m o v e s  al l  d e p e n d e n c e  o n  r  f rom th e  te r m  in  th e  u p p e r  left co rne r  o f th is  

- m a trix. T h e  u s e  o f th e  fu n c tio n s  C $  a n d  0  ins tead o f th e  sta n d a r d  fu n c tio n s  g  a n d  f 

al lows o n e  to  so lve s e p a r a te ly  fo r  th e  b o u n d  sta tes  wi th a  c o m m o n  llcl wh ich  occur  

in  e n e r g y - d e g e n e r a te  pa i rs  ( e .g ., th e  2 .~ ~ 1 ~  a n d  2 p 1 i 2  sta tes)  a n d  th e  sta tes  wh ich  

a r e  iso la ted in  e n e r g y  ( e .g ., th e  lsr,2). Fu r th e r m o r e  o n e  so lves fo r  o n e  fu n c tio n  

0  wh ich  is c o m m o n  to  e a c h  d e g e n e r a te  pai r ,  ins tead o f two. T h e  p r o o f runs  as  

follo\l is. It is imposs ib le  to  fin d  a  so lu t ion wi th th e  fu n c tio n  C#J  i d e n tical ly ze ro  a n d  

1 4  



the function 0 # 0. The function 0 can be zero if and only if the eigenvalue E is 

equal to 77 and C$ satisfies the first order differential equation 

( 2 7 d ; + - - z 
r > 

4(r) = 0 (3.6) 

For K > 0 this equation has no normalizable solution. For K < 0 there is the one 

normalized solution 

4(r) = ( ~rc2’+l:(27 + 1)] 
[ 

-l/2 

rYe-z+/IKI (3.7) 

which is the one bound state of given 1~1 has no accompanying degenerate state. 

These are the 1sr12, 2~~12, 3d5/2, . . . , states. For all other states of given InI one 

has E $: q and 8 # 0 so one may solve the top line of equation 3.5 for C#J in terms of 

4 

and eliminate 4 in the second line. One finds that the function 8 satisfies the 

differential equation 

I Y(7 + 1) + 1 - c2 d” 226 
dr2 r2 

--- rg=o 
cr2 r 3 

(3.9) 

This, remarkably, has no dependence on the sign of K. For given Inl, then, except 

for the one already excluded state, the solutions with opposite signs for K must 

have the same energy c and, except for a multiplicative constant, the same function 

0 for a lower component. 

One can go further and solve equation 3.9 for the bound states, though it is 

not a standard eigenvalue equation (note the eigenvalue c appears squared). In the 
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process  o n e  fin d s  th e  Di rac  a n d  S c h r o d i n g e r  exact  so lu t ions a r e  cur ious ly  l inked.  

-  Cons ide r  th e  di f ferent ia l  e q u a tio n  

I 7 ( 7  +  1 )  d 2  2 2 ’ 
d r 2  r 2  

- 2 E ,-- 
r  1  Q m = O  ( 3 .1 0 )  

T h e  di f ferent ia l  o p e r a to r  a p p e a r i n g  in  e q u a tio n  3 .1 0  looks l ike th e  S c h r o d i n g e r  

C o u l o m b  Hami l ton ian ,  e q u a tio n  2 .1 , excep t th e  n u m b e r  p lay ing  th e  ro le  o f th e  

a n g u l a r  m o m e n tu m , 7 , is n o t a n  in teger ,  a n d  ne i ther  necessar i ly  is th e  constant  2 ’ 

p lay ing  th e  ro le  o f th e  nuc lea r  c h a r g e . If o n e  rev iews th e  so lv ing o f e q u a tio n  2 .1  

fo r  b o u n d  sta tes  by  m e a n s  o f th e  o p e r a tors  q  a n d  q t, e q u a tio n s  2 .2  th r o u g h  2 .1 1 , 

o n e  fin d s  it car r ies  th r o u g h  if, ins tead o f b e i n g  on ly  a  posi t ive in teger ,  I is a l l owed  

to  b e  a n y  posi t ive n u m b e r . Fo r  b o u n d  sta tes  th e  e igenva lues  E , o f e q u a tio n  3 .1 0  

a r e  th e r e fo r e  g i ven  by  

E , =  -  
Z 1 2  

2(- j’ +  m ) 2  ’ 
m  =  1 ,2 ,... ( 3 .1 1 )  

T h e r e  is a  solut ion,  s q u a r e  in teg rab le  a t infinity, E , 0  to  e q u a tio n  3 .9  if a n d  on ly  if 

th e r e  is a  solut ion,  s q u a r e  in teg rab le  a t infinity, E ,,X P m  to  e q u a tio n  3 .1 0 , wi th a  

c o r r e s p o n d e n c e  b e tween  constants g i ven  by  

1  -  cz -  =  -2&,,  
cr’?  

2 6  =  z’ (3 .1 2 )  

S o lv ing fo r  E  a n d  us ing  E  =  c/cr2 ‘yie lds 

E  -  =  
n 2 ,c2  

( 3 .1 3 )  

Th is  is th e  S o m m e r fe ld  fo r m u l a . T h e  der iva. t ion g i ven  exc ludes  th e  lowest  e n e r g y  
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state for K. < 0, whose eigenvalue was shown earlier to be E = V(K). However v/o2 

- happens to equal the righthand side of equation 3.13 if m is assigned the value 0. 

This completes the derivation of the bound state energies. 

4. Dirac Finite Basis Sets 

The unitary transformation 3.4 certainly eases the finding of the exact eigen- 

states of the Dirac Coulomb Hamiltonian. It also eases finding of variational eigen- 

states by rendering the matrix eigenvalue equation sparse. Equation 3.5 may be 

written in Hamiltonian form as h@ = c@ where @ is the vector ($(r),6(r)) and 

vbi) 
z 7 d CY 
Id+;+% 

h= 
> 

z 7 d 
> 

2Za2 
(4.1) 

cy -+;--& 
K -44 - -y 

It is convenient to define the four operators 

B(K) = 

Bt(tc) = 

v= 

( 
z a - K 

( 
z Q - K 

za” 
r 

A = -q(li) - 2v 

whereupon the operator h(K) may be simply written 

h= 

(4.2) 

(4.3) 

One now has a pair of constructions introduced by Goldman3: 
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Construction 1. Choose N distinct functions {w} to expand 0 and M 2 N + 1 

_ distinct functions {u} to expand 4, such that {B(K)w} E {u} and {B(-K;)w} E 

-{u}, and so th t f f a i a unction f is any linear combination of the functions {w}, 

then B(tc)f f 0 and B( -tc)f f 0. Then diagonalizing h in the basis 

- I 
% ( ) 0 

j = l,...,M 

(44 

j=M+l,...,M+N+l 

produces 2N legitimate eigenvectors with distinct eigenvalues E # 77. The eigen- 

states satisfy a differential equation analogous to equation 3.8, 

4= -’ B(tc)Q , 
77(K) - c 

and consequently the N functions {Bw} E { u su ce } ffi t o expand the upper com- 

ponents 4. The M - N extra functions in {u} produce spurious eigenvectors with 

eigenvalues e = V(K) and lower components 8 = 0 and are discarded.16 

Construction 2. Choose N distinct functions {w} such that for each, B(n)w # 0 

and B(-K)W f 0. Then diagonalizing h in the basis 

I 
j = l,...,N 

Qj = (4.5) 

j = N+1,...,2N 

produces 2N legitimate eigenvectors with eigenvalues E # V(K). These eigenvalues 

and eigenvectors are identical to those of Construction 1 for a common choice of 

the set (20). 
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The constructions have the following additional properties15 ‘3: (1) the legiti- 

mate eigenvectors, together if K < 0 with the lone exact state (equation 3.7), form 

a suitable variational basis which is complete in the limit N ---f co if the set of 

functions {w} then spans the lower functions 6 of the exact solutions17; (2) half 

the legitimate eigenvalues are positive and half negative; (3) the legitimate eigen- 

values for the constructions with K > 0 and K < 0 are degenerate, and pairs with 

degenerate eigenvalues have, up to a constant factor, same lower component 8: 

The first construction offers the convenience that a proper choice of the func- 

tions uj and wj renders the basis 4.4 orthogonal, and so makes it possible to solve 

an ordinary instead of a generalized matrix eigenvalue problem. A suitable set of 

functions involving the Laguerre polynomials was used by Goldman*: 

(2pr)y’1e-B’L~~~2(2.ar) j = 1, . . . , N 

(4.7) 

where ,f? is an adjustable parameter. The generalized eigenvalue problem hX = 

cQX reduces to the ordinary one hX = cX. The matrix of the Hamiltonian 

is full, however, so the number of computer operations required to isolate the 

eigenvalues or eigenvectors remains N N3. Consider however the use of the second 

construction, and examine the matrix of h in an (unorthogonal) basis, equation 

4.5. The the 2N x 2N matrix equation hX = EQX may be written in simple N x N 
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blocks: 

P-8) 

where 

Mij = (wilBtBlwj) 

Aij = (WiIAlwj) (4.9) 

Uij = (WiIllWj) 

where 1 have USed the notation (flI6lf2) = Jo” fi(6f2) dr. The operator BtB is 

equal to 

1 (4.10) 

Consider the Sturmian problem 

d2 22’ 
r2 

-- 
dr2 

+ l’(l’ + 1) 

r2 --$+ 
(l/z+ 1)2 1 (Jr(r) = 0 (4.11) 

whose solutions eigenfunctions and eigenvalues are given by equation 1.6. It is an 

immediate consequence of the fact that the matrices of (l/r), (1) and (-d2/dr2 

-+I’(? + 1)/r2) in the t b asis are at most tridiagonal that the matrices A, M, and U 

will be at worst tridiagonal if the parameter 1’ is chosen equal to 7. The functions 

t and Bt depend as r + 0 as rr+l and ry, respectively, as do the exact eigen- 

states of the Dirac Coulomb Hamiltonian. By reordering the rows and columns 

of the matrix eigenvalue problem from the order Bwl, . . . , BWN, WI,. . . , WN to 

Bwl,w,..., BWN, WN one sees that the generalized eigenvalue problem AX = 

XBX has a bandwidth of at most 9. 
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For a special choice of the parameter 2’ in the [ basis one can simplify the 

matrix eigenvalue problem further. Choose the constants 

1' = 7 

(4.12) 

which makes two terms in the differential operator defining the functions [ match 

two terms appearing in the differential operator BtB. This choice of 2’ incidently 

makes the constant p in the exponential - e-b’ term of the basis match that of 

the lone state for K < 0. One then finds that the matrix of M is diagonal: 

Mij = (tlBtBl[j) 
= ,a 2 (r.1 ([ d2 I 7(7+ 1) + z2 + 227 

dr2 r2 );2 1 > T; lb) 

Note Mjj > 0 for all j and n. Thus it is possible to define a scaled basis 

(4.13) 

(4.14) 

so that M will reduce to the unit matrix. As for the Schrodinger problem the 

maximum simplification is achieved in a matrix eigenvector problem where the 

eigenvalues have been shifted. Solve then h’@ = E’@, with h’ = h +q,and c’ = c+v. 
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The form of the operator h’ is 

h’ = 

and the matrix of h’ using the functions g has the block form 

where D( 2;) is a diagonal matrix with positive non-zero entries: 

oij(zh) = (gil2VlTlj) 

(4.15) 

(4.16) 

= ci+LL 
[ 

-l/2 

1 [ Cj+LL 1 -w z 

blr+ 1 Id7+1 Yji (ti122’lrl~j) (4 17) 

= (j+ 
[ 

&*]-‘(+$i)bij, ;,j=O,1,2 ,... 

Without the shift of eigenvalue the matrix appearing in the place of D(ZA) would be 

tridiagonal. The matrix of the overlap of the basis states, Q, where Qij = (QiIQj), 

is also simple, having the block form 

&= ii T(YL) ( > 0 

(4.18) 

where T(Zb) is the N x N symmetric, positive definite, tridiagonal matrix given 

bY 

zm(Z:,) = (g--J’ x 

2(n + 7) [n + (s + 1)71-l ,n=in 

--~[T-L(TI+~~+~)]~‘~x 

[(n + (s + l)y)(n + 1 + (s + l)7)]-1’2 , 112 - ml = 1 , n = min(n,m) 

0 ) Jn-n-&l>1 
(4.19) 

where s = K/[K\. The band matrices appea.ring in the generalized eigenvalue 

problem now have a maximum bandwidth of 5. As for the Schrodinger problem 
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the eigenvalues may be found by applying in succession the Crawford, Schwartz!’ 

and the QR or QL algorithm and using - N locations in memory. The QL or QR 

algorithm will solve for the eigenvectors in N N3 time and using - N2 memory; 

it is better therefore to find the eigenvectors by inverse iteration 
19 

, which requires 

- N2 time and - N locations in memory. A sparse matrix problem suitable for 

solution by inverse iteration may be constructed by the following argument for all 

.Z’, instead of for just the special value given by equation 4.10. 

The original matrix problem, equation 4.8, for an arbitrary set of functions 

{w} is equivalent to the following pair of matrix equations for the vectors ~1 and 

x2: 

$kfxl + Mx2 = cMxl 

Mxl + Ax2 = dJx2 (4.20) 

Because Mij = (Bwi (Bwj) is th e overlap matrix of N independent functions Bw, 

the matrix M is positive definite. Therefore MX # 0 for any vector X. At least 

one of the two vectors ~1, x2 for a solution must be non-zero. The second equation 

in 4.20 shows then that xp f 0 and the then the first that x1 # 0 and c # 7. From 

the first equation in 4.20 one then conclude that x1 and 22 are related by 

x1= - ( -1 
7-e x2 > (4.21) 

Therefore one knows an entire two-component eigenvector if one knows only its 

eigenvalue and its (suitably normalized) lower component x2. Solve then only for 

x2 by using this equation to eliminate x1 in equation 4.20. One finds that x2 
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satisfies 

- [e2(1)W+c(~)W+(02$-027(7r;1)-l)~x2=0 (4.22) 

where (6), h as been assigned the meaning, ‘the matrix of the operator 6 in the 

basis of functions w”. Note (l), # 1 if th e set of functions w is not orthogonal. All 

dependence on the sign of K has disppeared in equation 4.22, which is not surprising 

.because it is merely the matrix version of our earlier differential identity, equation 

3.9. One sees that the variational solutions with opposite signs of n, like the 

exact solutions, are degenerate in energy and have the same functions as lower 

components. This conclusion was first reached by Goldman 
3,20 

The 2N x 2N standard matrix equation 4.8, which is linear in E, has been 

deflated into the N x N matrix equation 4.22, which is nonlinear in c. A series 

of tricks will, using the tn basis and for a range of Z’, reinflate 4.22 into a sparse 

standard matrix equation which will yield the desired eigenvalues c and lower 

components x2. Equation 4.22 has the form [Ac2 + BE + C]x = 0. Shift the 

eigenvalue to S = E - co, where co is a constant to be determined. There results 

the new equation 

[Ah” + (2coA + B)6 + (AC; + Be0 + C)]X = 0 (4.23) 

which is of the same form with the substitutions 

6-c 

A’ --+ A 

B’ + 2coA + B 

C’ + AE; + BQ + C 

(4.24) 
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The form of C’ is 

( 
d2 c’=-cY2 --j-p 7(7 + 1) 2zql -- r2 (4.25) 

r 

Comparing this to equation 1.5 one sees that the matrix C’ will be diagonal in the 

& basis if co satisfies 

1 - 6; ( > Z’” 

cy2= 
(7 + II2 

Solving for ~0, one will require 

(4.26) 

eo(z’> co/l - ($g2 (4.27) 

where cr = fl is an arbitrary sign. Because the shift ‘~0 must be real C’ can be 

made diagonal only if Z’a < 7 + 1. In the [ basis one finds the matrices 

Cjj = -a2 (Cj -$cO) 6ij 

Bij = $OJ2bij + 2fTOTij 

A:i = Tij 

(4.28) 

Its convenient to define a diagonal matrix a with diagonal elements a(n) given by 

z 
44 = Glll = [n, - -Q-J 2’ 

(4.29) 

Now any matrix equation [Ac2 + Be + C]X = 0 may be rewritten if E # 0 as 

C(~/E)~ + B(l/c) + A]x = 0. If det(C) f 0 a unique dummy vector y may be 

defined for each x by Cy = (l/c)Cx. Then solving [Ac2 + Be + C]X = 0 is 
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equivalent to solving the ordinary r eigenvector problem 

0 -c [ 1 -C -B [:I =j-oc +oA] [I] (4.30) 

version of the Dirac problem, 4.23, and its ma- 

trices A’, B’ and C’. The conditions so that 6 + 0 and det(C’) f 0 are discussed 

Apply this formula to the shifted 

later. One obtains 

2 [2,, $1 [:I =(c+d [a ;] [,;<I] (4.31) 

(0 where the superscript on z2 indicates the column vector z2 is in the t basis. The 

matrix 7’ (equation 1.12 with 1’ + 2’) is positive definite. The 2N x 2N matrix on 

the righthandside of this equation will therefore be positive definite if the matrix a 

is. If the 2N x 2N matrix is positive definite then equation 4.31 can be solved for 

its eigenvalues by the applying in succession the Crawford, Schwartz, and QR or 

QL algorithms in N N2 computer operations. The requirement that a be positive 

definite translates into the following bounds on 2’: 

f 0 < 2’ c (1 + 7)/u ,co < 0 

Id 
w + r> 

(1 + r)2 + (.q2 < 2’ < (1+ 7)/Q , 60 > 0 (4.32) 

These bounds I henceforth adopt.’ They are sufficient (but not perhaps necessary) 

for the construction 4.30 to be valid. 

Because one has chosen u(n) > 0 one can define a resealed basis 

g&z’) = a-1a(n)-1~2J,(Z’), n = 1,2,... (4.33) 
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wherein the matrix equation takes its simplest form: 

[ +rco -b,,,] [I] =,..o)[i T(i’)] [x;)] (4.34) 

where D( 2’) is a diagonal matrix with positive non-zero entries and and T(Z’) is 

tridiagonal: 

k&f) = $4WL 
L7@) = (7 + 1) & ( > 

2 

x 

i 

e- + r>kw-l ,n=m 

-l[n(n + 27 + I)] +lj2 [u(n)u(n + 1)]-1/2 , In - m] = 1, n = min(n,m) 

0 , /n-ml > 1 
(4.35) 

Remarkably, when one chooses 2’ equal to its earlier magic value, Zh, and sets the 

arbitrary sign CT in the definition of co to -K//K], one finds that D(Z’) + D(ZA), 

T(Z’) + T(ZL), CO -+ 7, and sn(Z’) + gn, reproducing precisely the original sparse 

matrix equations in 4.17 and 4.18. Solving 4.35 for eigenvectors by inverse iteration 

is very fast because one need solve per iteration only one N x N, tridiagonal matrix 

equation AX = Y for a vector X in terms of a vector Y. 

Having by inverse iteration solved 4.34 for an eigenvalue c and, up to a con- 

(9) stant factor, a lower component vector x2 , one is left with the task of finding a 

normalized lower vector in the t basis. One chooses a sign of K, calculates the vec- 

tor [x$“]~ = a-1u(n)-1/2[x~‘] n7 and ca,lculates both V(K) and the normalization 
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constant A(n) > 0 defined by 

[X$“lT [Cl2 (0 - q(K);) 6ij + ((q(K) - 6)” + y - ,y>j;.~) Sj] [xi”l 

(4.36) 

Note A(K) can be computed in N N operations because T has bandwidth 3. The 

‘lower and upper component function 8, and $K are given by 

(4.37) 

The normalized lower and upper components for the opposite sign of K can be 

computed by changing the sign of K everywhere in this formula and computing 

A(-K), or by using the degeneracy 4.6. of the states for opposite signs of K to get 

(4.38) 

Any pair of functions (fJ,( r), q5K(r)) ma o course be multiplied by a common y f 

overall sign whose value is a matter for convention. 
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5. Radial Integrals 

The theory presented in Sections l-4 indicates that virtual intermediate states 

may be found faster, more stably, and with greater economy of memory and with 

less roundoff error, when expanded in terms of the [ basis than any other analytic 

basis. Much of the benefit would be lost if, to calculate a matrix element connecting 

by the emission of radiation an exact state to the intermediate one, one were forced 

to expand the Laguerre polynomial Lz-:’ in the function & into its component 

powers of r and to integrate term by term. Such an expansion should be avoided. 

One also wishes to avoid any expansion in the wavenumber Ic = w/c of the emitted 

photon. Such an expansion involves the sum of many terms of opposite sign and 

will converge slowly if l/k is small compared to the spatial extent of either the the 

exact or intermediate state. Furthermore one wishes to accomodate any choice of 

the parameter 2’ which appears in the exponential of the [ basis. This can all be 

done. 

The form of the Dirac radial integrals required to calculate with manifest gauge 

invariance the emission of radiation was worked out by Grant 21. He wrote his 

solution to the Dirac radial equation in a central field as 
22 

which shows his functions P and Q are the same as the functions f and g used 

by Goldman (equation 3.2) except for an extra phase factor -i. To calculate the 

matrix element for the emission of a. photon of multipolarity L from a pair of states 
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cr, p he found it sufficient to calculate the set of three integrals 
21 

.where j, is a spherical Bessel function. 

Consider replacing one of these exact states (say p) by a variational state. Then 

Pp and Qp are each a linear combination via 3.4 of tn and B&. The operator B 

contains the derivitive d/dr but using the relation’ 

gL;(x) = -L;:;(x) (5.3) 

both tn and B& may be written as the sum of a few terms each of which have the 

form of a leading power of r times an exponential times a Laguerre polynomial. The 

exact states Pa and &a have the form of a leading power of r times a polynomial 

in r times an exponential. The degree of the polynomial of the exact state will 

be small if the state cr lies low on the ladder of bound states of given K~. So the 

contribution of the vector & to the radial integral is the sum of a small number of 

terms of the form 

J e-Arr-hrna jL( k~)e+~~r~~L$( Xr) dr (5.4) 
0 

Here A is the constant in the exponential in the exact state, rYa represents the 

lowest power of I‘ multiplying the exact wavefunction, ma represents an additional 

integer power of r arising from the expansion of the polynomial of the exact state, X 
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is the constant 22’/(7,g + 1) which appears in the t basis, rY@ is the lowest possible 

- leading power of r arising from the result of operating on & with B, and n’ is an 

-integer in general different than n and Q is a positive number in general different 

than 2yP + 1. 

One starts by using the relation’ 

jL(X) = (-x)L ;g 
( > 

L 

job) (5.5) 

and repeated integrations by parts to transform equation 5.4 into an integration 

over jo instead of Jo. If a function f(y) d ecreases exponentially at infinity and is 

no more singular as r + 0 than T~-‘+~, where 6 > 0, then 

00 

J f(+i~k>dr = 

0 

7 [ (-+;)LrLf(4] jo@+- (5.6) 

0 

The integrand in equation 5.4 satisfies the needed conditions. The factor e-(A+x/2)r 

guarantees the correct behavior as r goes to infinity. Conservation of angular 

momentum enforces L 2 j, + j, and because +ya,p = J(L,p + w2 - (.w2 

the factor rYa+T@ guarantees the correct behavior as r goes to zero. Integrating 

equation 5.4 by parts and again using 5.3 to eliminate the derivitives of a Laguerre 

polynomial which appear, one now is left with a sum of integrals of the form 

co 

J e-(A+X/2)r,bjo (kr) L$ ( XT) dr 

0 

(5.7) 

where Q” and n” have been in general modified again. If j, = l/2 and j, = l/2 

and i = 1, as (2~)~ t l- one can have b + -l+, so some of the integrals needed 
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may have (integrable) singularities as r -+ 0. One now substitutes for the Laguerre 

- polynomial a confluent hypergeometric function using the indentity5’23 

L;(t) = 
r(a + 1+ n) 
n! ~(CY + 1) 

F(-n,a + l,t) (5.8) 

The resulting integral one can evaluate in terms of a hypergeometric function of a 

complex variable using the formula 

00 

J e -(A+x12)rvajo(kr)F( -n, c, r) dr = 

0 

(f)-” F (-n, b; c; z)] (5.9) 

where the number z is given by 

x z= x (5.10) 
h+-+k 

Formula 5.9 is valid (at least) for the range of parameters A , b, k, c , and X all 

real with A > 0, X > 0, and b > -1. This formula may be established by using the 

contour integral representations in the complex t plane 23 

F(-n, c, z) = (,,,,,, $ Jt-n-l(l _ t)c+n-lezt dt 
c n 7ra 

c 

F (-n, p; c; z) = 
( -l)nl?(c) n! 
l?(c+n) 5Z J t -n-1(l - ,)c+n-l(, _ =t)-p & 

c 

(5.11) 

which are simultaneously valid if n is an integer 2 0, if the common contour C is 

a path which circles the origin anticlockwise without including the points t = 1 or 

t = l/z, if larg(l-z)I < X, if (1-zt)-p = 1 when z = 0, and if c f 0, -1,. . . , -n+l. 

One also needs the identity’js(x) = sin(x)/x and the integral formula24 

co 

J C(b) 
eWprr*-’ sin(kr) = 2 [(p + ik)-b - (p _ ;k)-6] 

0 

which is valid for Re (b) > 0 and Re (p) > IIm ItI. 
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One now considers the evaluation of the hypergeometric function appearing 

- First, note that the function need be evaluated only in the disk in the complex 

plane Iz - 11 < 1. Consider the scaled variables L = X/A and Ii’ = k/A. Then 

L(l + L/2) 
z = x + iy = (1 + L/2)2 + I(2 -t q1 + L$ + IP 

(5.13) 

whence 

(5.14) 

which describes a circle radius L/(L + 2) centered at (x,y) = (L/(L + 2),0). As 

the scale parameter X runs from zero -to infinity the circle expands from the origin 

through the disk IZ - 1 I < 1. For fixed X, as k runs from zero to infinity the point 

z travels along the circle anticlockwise from the circle’s intercept with the positive 

real axis to the origin. 

Second note the leading argument of the hypergeometric is a negative integer, 

-n. The power series expansion about z = 0 in the complex plane terminates, so 

the hypergeometric reduces to a simple polynomial in Z. Explicitly23 

n (b)’ 
F(-n,b;c;z) =2(-l)’ j Gz’ 

j=O 0 

where the Pochhammer symbol (b)j is defined by23 

, j=O 

(b)i= { i(b+1)(6+2)...(b+j-1) ,j 21 

(5.15) 

(5.16) 

The first two polynomials have the simple forms 

F. = F(0, b; c; z) = 1 

b 
Fl = F(-1, b; c; z) = 1 - --z 

C 

(5.17) 

where I have introduced the shorthand F, - F (-n, b; c; z). Except for small n the 
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series expansion 5.15 for the hypergeometric is not useful for computation, because 

- the combinatorials in the sum are large and the final small result involves a delicate 

cancellation between terms of great magnitude and opposite sign. Instead one may 

use the following Gauss recursion relation 23 

+ (c - b)z 
n+c +(1-z) Fn- ] (%) (1 -z)Fn-1 (5.18) 

to calculate Fn for large n starting from the simple seed values in equation 5.17 

for n = 0 and n = 1. 

A problem with all linear, three-term recursion relations such as equation 5.18 

is that they have have not one but two solutions, and the existence of the second 

may make the recursion numerically unstable 12 
. One can model this phenomenon 

using the simpler recursion 

Sk+l = (u + b)& - ubSk-l (5.19) 

which for constants a, b has the explicit solutions uc and bk. Suppose Ial < 1 and 

initial conditions for So and Sr select precisely the solution a k. Any round-off error 

in the propagation of the recurrance will mix in some of the spurious solution bk. 

.If lb\ > 1 the spurious solution grows so fa.st that both the absolute and relative 

error in the numbers generated by the recurrance will deteriorate exponentially. If 

lul < lb1 < 1 th e a so u e error remains small but the relative error still deteriorates b 1 t 

exponentially; for (bl < Ial both the absolute and the relative error remain small. 

If Ial < 1 and Ibl < 1 and the initial conditions call for a mix of the solutions uk 

and bk, the relative error for large k depends on the degree to which the initial 

conditions determine numerically the coefficient of the slowest falling solution. 
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The more complicated recursion, 5.18, may be analysed similarly. For the 

- hypergeometrics needed for radial integrals it is always the case that b > 0, c > 0, 

and Iz - 1 I < 1 so I will consider only these ranges of values. For large n one finds 

by straight substitution that the two solutions F(1) and F(2) to the recurrance 

vary asymtotically with large n as F(1) N O(n-*) and F(2) w O(nc-*(l - z)~). 

Because both F(1) and F(2) tend to zero as n + 00 the absolute error in the 

.numbers‘ generated by the recurrance will always be small. To determine the 

relative error one needs to know how much of the slower dying F(1) is in the 

asymtotic form of the desired solution Fn. This asymtotic form can be extracted 

from the generating function for the polynomials F,. This function G(t) is defined 

by23 

O” tn 
G(t) = (1 -t)*-’ [l - (1 - z)tlmb = 1 -Jo F (-n, b; c; 2) 

0 * 
(5.20) 

The singularities of G(t) in the complex t plane can be used, following a theorem 

of Darboux, to find the asymtotic form for large n of the coefficients a, in the 

power series expansion expansion G(t) = C untn and hence the asymtotic form of 

the Fn2’. The nature of the singularities depends on the values of b and c, and so 

one has the following asymtotic forms: 

b r(c) 

Fn - 

(nz)- r(c-b) , c-b#O,-l,-2 ,... 

b-c 
(5.21) 

(1 -T 7 c - b = 0, -1, -2,. . . 

which are valid for b > 0, c > 0, Iz - 11 < 1. Thus the hypergeometric contains a 

large component of F( 1) unless c - b nearly zero or nearly a negative integer, and 
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the relative precision will be preserved by the recurrance. If c - b is exactly zero 

- or a negative integer the relative precision will deteriorate exponentially. 

Some simple examples may illustrate this general result. For b = c one has 

F(1) = 1 and F(2) = (1 - z)~. B ecause c - b = 0 the function F, should have no 

component of F(1) as n + CCL One finds in this special case that F, is exactly 

(1 -z)~ and the result holds trivially. For b = 1 and c = 2 one has F( 1) = l/( k+ 1) 

.and F(2) = (1 - .z)k/(k + 1). B ecause c - b is not a negative integer or zero F, 

should contain a large component of F( 1). The form for Fn in this case, 

Fn= (n:l)z 
[l - (1 - .)n+‘] (5.22) 

shows that it does and that its asymtotic form follows the estimate in equation 

5.21. 

The case where c - b a negative integer can occur readily for Schrodinger 

problems where both b and c are restricted to positive integers, and for Dirac 

problems where the two states in a matrix element happen to have the same value 

of 1~1. The hypergeometric Fn fortunately reduces when Ic - bl is an integer to 

analytically simple closed forms which may easily be evaluated to high relative 

precision. For c - b equal to a positive integer these forms make it easy to check 

the correct functioning of the recurrance. First if b = c one notes the special case 26 

F(u;b; b; z) = (1 - z)--~ (5.23) 

so one has a simple result if b = c. Then if b > c one can repeatedly use the 

recursion relation 
26 

’ F(u, b; c; z) = - 
1-Z 

F(a,b-l;+)+ ‘-’ 
c(1 - 2) 

F(u, b; c + 1; z) (5.24) 
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to lower the difference between b and c until 5.23 may be applied. Should in 

lowering b a value b = 0 be encountered one has at once 

F(u, 0; c; z) = 1 (5.25) 

Next if c = b + 1 an integral form for the hypergeometric26 

F(u, b; c; z) = w4 l 
r(b)rp - b) J t*-‘(1 - t)c-b-l(l - tz)-” dt (5.26) 

0 

which is valid for Re(c) > Re(b) > 0 and for larg(1 - z) I < 7r, applies and the 

integral reduces to 

1 

F(u,b;b+l;z) = b J +‘-I(1 -ttz)-+dt, b > 0, larg(1 - z) < ~1 (5.27) 

0 

which can be integrated exactly by parts. Then if c > b + 1 one uses repeatedly 

the recursion 
26 

F(u, b; c; z) = 
-b 

c-b-l 
F(u, b + 1; c; z) + c-;-lF(u,b;c-l;z) (5.28) 

until c = b + 1, and then applies 5.27. One finds by these methods for example 

that 

F(-n, 2; 4; z) = 3 x 
2 - (1 - ~)~+l(2 + 2(1 + n)z + (1 + n)(2 + n)z2 

(1 + n)(2 + n)(3 + n)z3 

F(-n, 3; 4; z) = 6 x 
-2 + z(n + 3) + (1 - 4n+q2 + %(?I + 1)) 

(1 + n)(2 + n)(3 + n)z3 (5.29) 

F(-n,4;4;z) = (1 - z)~ 

F(-n,5;4;z) = (1 - z)~-’ 
( (?)A) 

1 - 

which expressions, unlike the series expansion, are readily evaluated numerically 

for all n if z f 0. The restriction to z f 0 is unimportant because that point is only 

achieved in the unphysical limit where the photon wavenumber k goes to infinity. 
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6. Numerical Tests and Discussion 

Table 1 shows the result of solving using FORTRAN for the eigenvalues and 

eigenvectors of the Dirac Hamiltonian, using 4.36 and the values 2 = 2’ = 92, 

Q = l/137.036, K = 1, and N = 200. The eigenvalues were found in Double preci- 

sion using the NAG27 implementations of the Crawford (FOlBUF and FOlBVF), 

Schwartz (FOIBWF). amd QR (F02AVF) algorithms. These eigenvalues served as 

.the seed values for an inverse iteration routine which gave eigenvalues and nor- 

malized eigenvectors in quadruple precision. The degeneracy of the eigenvalues for 

different signs of ~0, and the proportionality (4.6) between the lower component 

vectors in the [ basis were reproduced to parts in N 1013 for double precision and 

parts in N 102’ for quadruple precision for all 400 eigenstates. 

As a test of the numerical stability of the method for large N, the double 

precision matrix diagonalization was repeated for 2 = 92, 2’ = ZL, and N = 2400 

(which means for a 4800 x 4800 matrix). The degeneracy of the eigenvalues c 

for opposite signs of IC was maintained for all 4800 eigenvalues to parts in 1013. 

The eigenvalues from one sign of K could be isolated in about 10 minutes on an 

IBM 370. 

As a test of the recursion relation for the hypergeometric, equation 5.18 was 

-used in double precision to generate Fsooo for b = 1, c = 2, and for a range of z 

in the disk 11 - zI < 1. The results agreed to parts in 1013 with the result of the 

exact formula 5.22 for this special case. 
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1. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

. . . 

196. 

197 

198 

199 

200 

9.33041968794953-01 

9.71292550467083-01 

9.84277120405033-01 

9.90122662600623-01 

9.93232091769433-01 

9.95077402975133-01 

9.962603960609fjE-01 

9.97063537386493-01 

9.97633462298363-01 

9.98052373015313-01 

9.9836922962711E-01 

9.98614658311693-01 

9.988086085995&E-01 

9.98964525216433-01 

9.99091736333743-01 

. . . . . . . . . . . . . . . . . . . . . 

8.200974656866fjE+OO 

9.88264174220653+00 

1.2485488417102E+Ol 

1.70963218587823+01 

2.7892987982837E+Ol 

Table 1 

9.33041968794953-01 

9.71292550467083-01 

9.84277120405023-01 

9.90122662600623-01 

9.93232091769423-01 

9.95077402975113-01 

9.96260396060943-01 

9.97063537386473-01 

9.97633462298343-01 

9.98052373015363-01 

9.98369229627163-01 

9.9861465831168E-01 

9.9880860859953E-01 

9.98964525216423-01 

9.99091736333743-01 

. . . . . . . . . . . . . . . . . . . . . 

8.20097465686673+00 

9.88264174220653+00 

1.2485488417102E+Ol 

1.7096321858788E+Ol 

.2.7892987982842E+Ol 

4.33-17 1.73-33 

2.73-15 2.93-33 

7.63-15 -6.23-33 

2.83-15 -1 .OE-32 

6.53-15 -l.lE-32 

1.3E-14 -1.33-32 

1.6E-14 -1.43-32 

1.4E-14 -1.8E-32 

1.2E-14 -2.03-32 

l.lE-14 3.33-30 

l.lE-14 1.93-24 

9.OE-15 l.lE-19 

7.43-15 9.1E-16 

6.73-15 1.6E-12 

6.33-15 6.5E-10 

. . . . . . . . . . . . . . . 

1 .OE-14 

3.63-15 

1.5E-14 

7.63-14 

1.6E-13 

Table 1 Column 1 shows the positive energy eigenvalues from a solution in double precision of 4.36 for 
Z = Z’ = 92, o = l/137.036, K = 1 and N = 200. Column 2 shows the eigenvalues from an inverse 
iteration routine written in quadruple precision and are taken as a standard; the underlined digits in 
Column 1 are the first in error. Column 3 shows the fractional error between the double and quadruple 
precision results. Column 4 shows the fractional error between the quadruple precision eigenvalues for 
bound states and the corresponding Sommerfeld values; a positive error means the variational eigenvalue 
lies (correctly) above the Sommerfeld. Some values are negative because of roundoff error. 
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