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ABSTRACT 

In heavy quark jets the quark mass acts as a regulator of collinear singu- 
larities, making the quark momentum an infra-red safe variable in pertur- 
bative &CD. This allows a direct comparison of measured heavy hadron 
momentum spectra with perturbative calculations. We exploit the fac- 
torisation of heavy quark fragmentation to derive QCD predictions for 
momentum correlations between heavy hadrons produced in e+e- anni- 
hilations. We study the practical feasibility and model sensitivity of our 
approach using Monte Carlo simulations. Higher order perturbative cor- 
rections and contributions from non-perturbative effects are found to be 
at the level of 10%. 
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1. Introduction 

The rules for applying perturbative QCD to hadron production in hard colli- 
sions are well kn0wn.r Only quantities which do not depend on small dimension- 
ful parameters of O(A QCD) may be assumed to be ‘infra-red safe’, i.e. only such 
quantities are insensitive to confinement effects. In particular, no dependence on 
light quark masses or on soft gluon momenta is allowed in a perturbatively calcu- 
lated quantity which is to be compared with experimental data. For cross-sections 
involving individual hadrons in the initial or final states, the QCD factorisation 
theorem2 shows that at leading twist, i.e. up to terms suppressed by inverse 
powers of the hard scale, all infra-red sensitive terms may be factored into uni- 
versal structure and fragmentation functions. These functions are characteristic 
of the hadrons involved, but independent of the hard process. In practice, most 
experimental tests of QCD depend on the factorisation theorem. 

In the case of heavy (charm, bottom) quark production, the mass itself acts 
as an infra-red cutoff. An explicit dependence on the quark mass mQ then is no 
longer an obstacle to the observability of a cross-section, given that TTZQ >> AQCD. 

Thus the fragmentation function of a heavy quark is calculable in perturbative 

3’4 QCD, up to power corrections in A&,D/rn&. The hadron containing the heavy 
quark should move nearly in the direction of the quark and carry most of its 
energy, leaving relatively little energy to accompanying light hadrons. This is in 
fact experimentally observed in charm and bottom quark hadronisation.5 

From a practical point-of-view, an essential difference between the phenomenol- 
ogy of heavy and light quarks is that, to a very good approximation, no heavy 
quarks are produced in non-perturbative hadronisation processes. For example, 
whereas the quarks of most final state pions were produced in soft processes, we 
may be confident that a B meson harbors a bottom quark from the hard part 
of the collision. Moreover, the strong correlation between the heavy hadron and 
quark momenta suggests that hadronisation corrections to QCD predictions of 
the quark distributions are relatively smaller for heavy quarks. Here we shall in 
fact remove most of the remaining dependence on the hadronisation process by 
means of the QCD factorisation theorem. Since the fragmentation of the heavy 
quark is universal, i.e. independent of how the heavy quark was produced, we 
can predict correlations between heavy hadron momenta which are in principle 
insensitive to the form of the hadronisation distribution. We verify that the 
momentum distributions of heavy hadrons in standard Monte Carlo programs 
agree closely with the predictions of perturbative QCD and factorisation. Hence 
model-dependent corrections are reasonably small. 

Heavy quark production in e+e- annihilation provides a particularly clean 
test of QCD. Exact matrix elements, including quark mass effects, are known 677 to 
O(crs).* From an experimental point-of-view, the abundant production of heavy 
quarks in e+e- annihilations, coupled with novel opportunities to observe directly 
the heavy hadron decays using vertex detectors and particle identification, offers 

* Currently O(cr,2) matrix elements are available for massless quarks only. 
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possibilities to reconstruct the hadron momenta with good statistics. Measuring 
single heavy hadron distributions allows a determination of the non-perturbative 
hadronisation distribution of the quark. Events in which two heavy hadrons are 
detected then provide interesting QCD tests of the angular and energy correla- 
tions of the quarks. 

In section 2 we derive predictions for the double inclusive heavy hadron mo- 
mentum distributions in e+e- annihilations using the QCD factorisation theo- 
rem and the single inclusive hadron distributions. In Section 3 we use a Monte 
Carlo simulation to illustrate our method and to investigate the influence of 
non-perturbative, and higher order perturbative, effects on our prediction. A 
summary and conclusions are given in Section 4. 

2. Perturbative QCD Calculations 

2.1 Single Moments 

Consider, then, the production of heavy quarks in e+e- collisions according 
to QCD. 

Let us first assume that the momentum of only one of the heavy hadrons in 
the event is measured.* Integrating over the production angles we are left with 
a single variable, which we take as the energy fraction z = ~EH/EcM of the 
hadron H. According to the QCD factorisation theorem: the cross-section for 
the inclusive reaction e+e- ---$ H(z) + X is given by the production cross section 
$(e+e- + Q(z) + X) of the heavy quark with energy fraction II: = %?Q/&M, 

convoluted with the quark fragmentation function D(z/z, p), 

1 da --= 
CT dz J 

(1) 

Taking moments of the hadron energy spectrum we thus get 

DI, E J dzz”-’ if = f&pk (2) 

where Mk and Pk are, respectively, moments of the quark fragmentation and 
production distributions. These are distinguished by the momentum scales of the 
processes they include. All processes involving momentum scales larger than some 
factorisation scale ~1 are included in the production moments Pk. Conversely, all 
dependence on the soft hadronisation and harder processes up to the scale ,V 
appears in the fragmentation moments Mk. In an exact (all orders) calculation, 
the p dependences of Mk and Pk will cancel each other, making their product Dk 
independent of p. In any practical calculation, however, there will be a residual 
dependence of Dk on ,Y due to neglected orders of perturbation theory. 

* For simplicity, we consider a single type of heavy hadron only. If several types of mesons 
or baryons are detected, our analysis can be carried out separately for each hadron species. 
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The factorisation scale ~1 is thus in principle arbitrary, provided it is large 
enough for perturbation theory to be valid. In our case we could actually take 
p = mQ, the h eavy quark mass. However, the QCD calculation of the production 
moments Pk contains potentially large logarithms of the form 1og(Q2/p2), where 
Q is the scale of the hard interaction (the c.m. energy in e+e- annihilations). A 
reliable calculation at high energies then requires one to sum such logarithms to 
all orders. This can be done using the standard evolution equations’ to leading 
order in the large logarithms. The next-to-leading order resummation for heavy 
quark fragmentation is now also availableP 

Alternatively, we may choose a larger value for ~1, making a low order calcula- 
tion of the production process more reliable. This is the approach we shall adopt 
here. We take the jet measure’ yc,,t = 0.02, which at the 2’ pole corresponds 
to a b-quark-gluon invariant mass p N 13.8 GeV. With such a large value of ~1, 
our results should be relatively insensitive to higher order perturbative correc- 
tions. Correspondingly, the moments MI, that will be obtained from the data 
will determine the heavy quark fragmentation function at the rather large scale 
1”. Their dependence on p should be approximately given by the evolution equa- 
tions. Note also that for such a large value of p the ensuing calculation need 
not be restricted to heavy quarks, as the quark mass is no longer required as a 
regulator of singularities (see e.g. Ref. 10). 

The production moments Pk of Eq. (2) are obtained from the single heavy 
quark inclusive cross-section in QCD 

Pk = ‘J dxx k-1 1 d3 -- 
& dx (3) 

At O((Y~) only a single quark pair is produced in the basic processes (e+e- + 
Qg, Qgg). The cross-sections for these reactions are given in Ref. 7 for arbitrary 
quark masses TTLQ *. We took the b,c-quark mass values to be 5.0 and 1.5 GeV 
respectively, and the QCD scale parameter to lowest order, AQCD, to be 0.1 GeV. 
We denote the angle between the heavy quark momenta by +, and assume that 
it is directly measurable as the angle between the heavy hadron momenta. When 
1c, is appreciably different from x the gluon emission is hard and gives rise to a 
third jet .** 

* We verified numerically that the expressions of Nilles and of Jerzak e2 al. in Ref. 7 agree 
with each other. 

** In the particular case of 1c, = 0 the hard gluon balances two collinear heavy quark jets. 
It would be interesting to study whether the heavy quarks hadronise independently of 
each other even in this case of coalescing jets. Two collinear quarks may act coherently 
as an effective singlet or octet colour charge. Differences in the hadronisation of different 
colour charges have been discussed in Ref. 11. Higher twist effects of O(A&o/mt) can 
break factorisation; one clear signal of this would be quarkonium formation in the II, = 0 
configuration. 
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The singularity of Eq. (3) t a x = 1 is regulated at the scale ,U by taking all 
Q&s configurations for which the gluon effective mass with one of the quarks 
is less than ~1 to be part of the two-jet cross-section (which contributes at x = 
1). Numerical values of the first few moments Pk, for the case of b- and c- 
quark production on the 2’ resonance, are given in Table 1. The fragmentation 
moments Mk may be determined from Eq. (2), once data on inclusive heavy 
hadron distributions are available. (In Section 3 we demonstrate the method 
using Monte Carlo data). 

Table 1: Values ojPk calculated from Eq. (3) to O(as) 
in perturbutive &CD for b- and c-quark production. 

Order k pk (b) 

1 1 .ooo 

2 0.925 

3 0.877 

4 0.842 

pk cc> 

1.000 

0.919 

0.869 

0.832 

2.2 Double Moments 

Assuming that the fragmentation moments Mk have thus been determined, 
consider next the case when the momenta of two heavy hadrons in the event, 
H and z, are measured. Again integrating over the orientation with respect to 
the beam direction we have three variables, which we take as the hadron energy 
fractions zr = ~EH/EcM, 22 = ~EF/J!?cM and the angle $ between the two 
momenta. Analogously to Eq. (l), the probability distribution of zr, z2 and $ is 

P(z1,za;$) = 
1 d3a 

a(HH) dzldzadcos 1c( 

= j%D ($A) j$D ($,p) P~c~(xl,xa;+) (4) 

where a( Hz) is the total heavy hadron production cross section, x1 and x2 are 
the energy fractions carried by the Q and g quarks, and PQCD(XI, x2; t,!~) is the 
(normalized) heavy quark production probability, which also depends on p. 

Multiplying Eq. (4) by z~-‘z~-’ and integrating over zr and z2 we get the 
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double moments 

1 

&I(?)) E 
J 

dzldz2zf-‘z;-‘P(zl, z2; $) = MkMlpkl(+) (5) 
0 

where, in QCD 

pkl($‘) = 
J 

dxldx2z:-‘z~-‘PQcD(z1, x2; $) (6) 

Eq. (5) is our principal result. Having determined the fragmentation moments 
&?k from the single hadron distributions Dk (2), and knowing the numerical values 
of the double moments Pkl from QCD, we have an absolute prediction for the 
measurable double heavy hadron moments Dkl for all values of k, 1 and $. 

In order to calculate the moments Pkl, we note that due to momentum con- 
servation in the Qgg final state there is at O(cyS) a kinematic relation between 
the variables x1, x2 and $: 

pQC&, 23; $) = pQCD(xl; +)s(x2 - x2(z17 +)) (7) 

x2(x1,$9 = 
(2 - x1)(2 - 2x1 + p) F 01x1 cos $J4( 1 - 21)~ - vfx:p sin2 1c, 

(2 - x.1)2 - w;x; cos2 1c, (8) 

where s = E,$M, p = 4m;/s and the quark velocity w” = 1 - p/x:. Care has to 
be taken to include all physical configurations of the QGg state in the integral 
of Eq. (6), corresponding to solutions (8) that conserve energy and momentum. 
For cos $ > 0 the full integration range is 

Xl@1 = 0) = Jp 5 x1 I 
2-%/P+P 

2-l/F 
= Xl(V2 = 0) (9) 

with the upper (negative) sign chosen in front of the square root in (8). However, 
for cos+ < 0 one must include, in addition to the range (9), again with the upper 
sign in front of the square root, also the range 

x1(02 = 0) I Xl L 
4-JP sin’ +(4 - 4p + p2 sin2 $) 

4 - psin211, (10) 

where the upper limit is determined by the vanishing of the square root in (8). 
Furthermore, in the range (10) both the upper and lower signs in (8) give physical 
configurations, and thus contribute to the S-function of Eq. (7). In the limit of 
vanishing quark masses (p + 0) the range (10) shrinks to the point x1 = 1. 
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The expression for PQCD ( x 1; t,b) is obtained by multiplying the normalized 
cross-section &-‘d&/dxldx2 of Ref. 7 by the Jacobian dxz/dcos$. In Fig. l(a) 
we plot the first moment Pl1 in the case of b& and CC production at the 2’ 
resonance. The shape of the moment distribution, i.e. the peak at 1c, = x and 
the long tail out to low values of $, reflects the Bremsstrahlung spectrum for gluon 
emission. The calculation was not extended to the region cos$ < -.9, where two- 
jet events begin to dominate and a smearing of the analytic calculation would 
be necessary. The slight dominance of the charm quark over the bottom quark 
distribution in Fig. l(a) at smaller values of 1c, reflects the relative enhancement 
of gluon radiation for lighter quarks. For clarity of display on a linear scale we 
choose to normalise the higher (k, 1 > 1) moments by Pll; these are plotted in 
Fig. l(b). As can be seen, these normalised moments also have a significant 
dependence on $. 

The QCD prediction for the double moments &($) of the heavy hadron 
energy distribution in Eq. (5) can now be directly compared with data at all an- 
gles $, using the moments Mk determined from the single hadron inclusive data. 
As in the case of the single moments Dk of (2)) the factorisation theorem guar- 
antees that although the fragmentation moments Mk and the double moments 
Pkl depend on the factorisation scale p, the physically measurable double hadron 
moments Dkl do not. In our o(cys) calculation, however, the Pkl are evaluated at 
lowest non-vanishing order and are thus independent of p. Therefore, there will 
be a residual p-dependence in the prediction of &I due to omitted higher order 
terms. 

3. Monte Carlo Studies 

In order to gain further insight into the physical significance of the moment 
calculations we use a Monte Carlo simulation and address the following issues: 

1. The feasibility of our method from an empirical point-of-view. Within this 
context the Monte Carlo data merely represent, in an idealised way, a dataset 
from a real experiment, and the exact details of the simulation are not important. 

2. The size of presently uncalculable non-perturbative effects due to hadroni- 
sation of the quarks. In comparing any QCD prediction with experimental data 
comprising hadronic final states, it is usually necessary to correct the data for 
the effects of hadronisation, such that the comparison is valid. Those variables 
for which this correction is small are experimentally preferred, as they provide 
the most reliable and most sensitive tests of &CD. 

3. The size of higher order QCD corrections to the O(crys) calculations pre- 
sented here. We estimate these using a Monte Carlo model that incorporates 
O(oz) matrix elements for massless quarks, as well as an all-order leading loga- 
rit hm approximation (LLA)-type calculation. 

We emphasise, however, that the results presented in Section 2 are model- 
independent. 

For our purposes we use the Lund Monte Carlo for e+e- annihilation, JET- 
SET 6.3.12 This program combines perturbative QCD calculations of partonic 
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states with a phenomenological hadronisation scheme, to give hadron-level final 
states which may thus be compared with real hadronic final states produced at 
e+e- colliders. Furthermore, this model is known l3 to provide an excellent de- 
scription of the experimental data at c.m. energies across the whole range spanned 
by the PETRA/PEP, TRISTAN and SLC/LEP colliders, namely between 14 and 
91 GeV. Other Monte Carlo event generators (see e.g. Ref. 14) also provide good 
descriptions of the experimental data and could have been included in our study. 
However, the particular advantage of JETSET is that it includes different op- 
tions for the perturbative QCD calculation of the partonic states, namely matrix 
elements to O(cr,) or O(crz), or a LLA + O(o,) ‘parton shower’. The O(cr,) 
matrix element option allows us to compare directly our analytic calculations of 
the single and double moments at this order with the moments calculated from 
the Monte Carlo events, thereby illustrating the feasibility of the method and 
providing an estimate of the size of non-perturbative hadronisation corrections. 
The 0(az) matrix element and LLA + O(os) pt o ions enable us to estimate the 
influence of higher order corrections to our O(cys) calculations. 

3.1 0( crS) Calcdations 

We first generate heavy flavour events using the cross-sections6 implemented 

in JETSET to O(oys) in &CD, t a a cm. energy of 91.18 GeV, equal15 to the Z” 
mass.* We set the b-quark mass to.5.0 GeV; the QCD scale parameter, 11~~0, to 
0.1 GeV and yCUt to 0.02 to match the values used in the analytic calculation; all 

other parameters in the Monte Carlo were left at their default values. I2 Roughly 
500 000 events of the type e+e- + bb were then generated. The moments Dk 
(Eq. (2)) were evaluated for the two cases: a) using the z values of the b-quarks, 
b) using the z values of the b-hadrons ** produced after parton fragmentation 
according to the Lund string model. These moments were then compared with 
our calculated values for Pk to obtain the fragmentation moments Mk; the results 
are given in Table 2. 

* Quark mass effects are fully taken into account for the direct channel photon contribution, 
but only approximately for Z” exchange.16 Therefore, for the purposes of comparison, 
we ran the Monte Carlo program in ‘QED-mode’, and repeated the analytic moment 
calculations for QED only. From a practical point-of-view, the neglect of the electroweak 
terms is not an important issue for the normalized cross sections we consider here, and 
affects the numerical values of the single moments Pk (Table 1) at the fourth (fifth) decimal 
place for b (c)-quarks respectively. This approximation does not affect our conclusions at 
all. 

** We consider all b-hadrons inclusively and do not distinguish between species of mesons 
or baryons. 
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Table 2: Single moment values: The quantity Dk (Eq. (2)) was calculated at both 
the quark and hudron levels from the Monte Carlo data for b and c events. This 
quantity was then compared with the &CD-calculated production moment Pk to 
obtain the fragmentation moment MI;. 

I b-events I c-events 

Order k Miuark (M.C.) h4Ladfon (M.C.) Miuark (M.C.) Miadron (M.C.) 

2 1.002 0.810 1.004 0.729 

3 1.004 0.676 1.007 0.558 

4 1.006 0.575 1.009 0.441 

We choose the normalisation such that the first order moments (k = 1) are 
unity. The second column in Table 2 shows that the moments determined at the 
quark level from the Monte Carlo agree with the analytic QCD values Pk to better 
than 0.6%. The third column shows that effects below the scale p on the single 
moment distribution are large, as expected. In JETSET such effects are due 
entirely to the phenomenological hadronisation scheme. However, in principle all 
of this hadronisation information is absorbed into the values of Mk, which can 
now be substituted into Eq. (5) to test the double moment QCD prediction. 

We repeated this analysis for the case of charmed quarks, using the value 
1.5 GeV for the quark mass in both analytic and Monte Carlo calculations. For 
the sake of completeness we give the results in Table 2. They are qualitatively 
very similar to the b-quark case, but we note that the hadronisation effects are 
somewhat larger ( i.e. Mkadron is numerically smaller), as one would have naively 
expected since the c-quark typically carries a lower fraction of the beam energy 
than the b-quark. 

Using the Monte Carlo datasets, the double moments &l(G) (Eq. (5)) were 
calculated both at the quark and hadron levels. The values of Mk shown in 
Table 2 were used to derive the quantities P~~a’k($), PLFdron(lC,). First we com- 

pare Pir”‘k(+) with th e analytic results for PI;[($) of Fig. 1. As an example, 
ph~ark ($) 

11 is shown in Fig. la and is in excellent agreement with PII for 
b-quarks.* The agreement for all moments (1 2 k, 1 2 3) is found to be similarly 
good. 

Next we study the effects of hadronisation on the factorisation relation (5) 
by calculating the ratio P~~“‘k(+)/P/~d’On ($). This quantity turns out to be 
qualitatively similar for all moments. We plot it for (k,l) = (1,l) in Fig. 2(a); 
deviations from unity are seen at the level of lo-15%, and vary smoothly with 

* As the theoretical curve was calculated with full electroweak effects and the Monte Carlo 
data were generated with QED effects only we expect the two to differ by about l%, 
which cannot be distinguished from the logarithmic plot in Fig. la. 
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$. It can be seen that hadronisation tends to shift the heavy hadrons to a 
more back-to-back configuration than was the case for the quarks. This may be 
understood simply as a consequence of the Lund string hadronisation scheme, 
in which particles are Lorentz-boosted towards the gluon jet in a qqg event; 
this ‘string effect’ is well-known experimentally.” In the transformation from 
heavy quarks to heavy hadrons, such changes in the angle 1c, are not absorbed 
into the fragmentation moments Mk, which are constructed to take into account 
energy changes only. Hence we are not surprised that, within the context of this 
particular Monte Carlo model, the prediction (5) is violated by up to 15%. 

We now investigate the normalised moments &($)/PI~($) (Fig. l(b)) and 
calculate the double ratios: 

To the extent that [p*Uark expect the ratios (11) ki 
o 

b(+~l~~~d'"n(d)l is the same for all V, one would 
e c ose to unity across the whole range of $. This is 

illustrated in Fig. 2(b,c) for the two cases (Ic, r) = (2,l) and (3,3): the (2,l) ratio 
is indeed consistent with unity to better than a few per cent for all +; the (3,3) 
ratio deviation is of the order of 5%. 

The normalised moments thus appear to be somewhat less sensitive to non- 
perturbative effects, which may make them more useful as quantities for testing 
perturbative &CD. In particular the normalised (2,l) and (3,l) moments show 
hadronisation effects smaller than 3%. This degree of insensitivity to hadroni- 
sation is certainly comparable with other commonly used variables such as jet 
ratios 

18 19 
or energy-energy correlations. 

3.2 Estimation of Higher Order Effects 

It has been known for many years that at PETRA/PEP c.m. energies, ,/Z N 
30 GeV, effects are observable which can only be described by QCD when higher 
order terms beyond O(crS) in perturbation theory are taken into account. The 

most striking example is the observation 2o of events containing four (or more) 
hadronic jets, a topology which, by definition, is not predicted at O((Y~). At the 
much higher SLC/LEP, and eventually LEP-2, energies, a QCD calculation to 
O(CY~) will provide an even less satisfactory description of jet rates and event 
topologies. It is therefore interesting to consider the influence of higher order 
corrections to the O(a,) QCD calculations of the moments presented in Section 
2. 

In the absence of higher order calculations including quark mass effects, we 
utilise existing O(c$) and LLA + O(os) calculations for massless quarks. Fur- 
thermore, we make use of the fact that these calculations are implemented in the 
JETSET Monte Carlo, which we use to generate events at the parton level. Hence 
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the values of the QCD moments Pk and Pkl($) of Eqs. (3), (6) can be obtained 
from the Monte Carlo. Since we wish to study only the influence of higher orders 
on the moment calculations, we should, for the sake of consistency, set the quark 
masses to zero in the O(crs) matrix elements in the Monte Carlo* and repeat the 
calculations of the previous section. As we perform the O(cr,) calculation down 
to the scale p N 13.8 GeV, well above the b and c-quark masses, we do not expect 
a significant difference between the massive and massless cases. We verified that 
this indeed is the case. 

We generated approximately 500 000 e+e- --+ b6 events and performed the 
moment calculations from the parton-level Monte Carlo data for each of the 
following cases: 

(i) O(crys) matrix element, taking the quarks to be massless. 

(ii) O(cyt) matrix element**. 

(ii;) LLA + O(crys) ‘parton shower’.** 
AQCD was fixed at 0.1 GeV in all cases; yCZLt was fixed at 0.02 for (i) and (ii); for 

(iii) the parton virtuality cutoff Qo12 was set to 1.0 GeV, which corresponds to 
~1 21 5.0 GeV. The results for the single moments Pk are shown in Table 3. 

Table 3: Values of Pk (Eq. (3)) for b-quarks derived from 
Monte Carlo perturbative &CD calculations for massless quarks. 

Order k w4 Qb3 LLA + O(a,) 

2 0.924 0.916 0.841 

3 0.877 0.864 0.748 

4 0.842 0.826 0.684 

From Table 3 one sees a tendency for the Pk to decrease as the order of 
the QCD calculation increases, which simply reflects the softening of the heavy 
quark momentum spectrum due to gluon emission. The relatively small difference 
between 0( os) and S(oz) results is due to the fact that with ycUt = 0.02 (cl N 
13.8 GeV), a second gluon is hard enough to be resolved in only 3% of events. By 
contrast, the LLA + O(CX~) ca cu a ion evolves down to ,Y N 5.0 GeV and results 1 1 t 
in an average of 2.9 soft partons per event, so the Pk’s are considerably lower. 

In Fig. 3 we show the QCD moment PII( calculated using the Monte 
Carlo program at O(c$), divided by the same moment at O(Q~). The higher 
order corrections tend to make the quark configuration less back-to-back. This is 

* A parameter is provided for this purpose in the JETSET program. 
** In these calculations a secondary pair of heavy quarks can be produced from the splitting 

of a massive gluon. For b-quarks we find this to occur in less than 0.1% of events and we 
do not include these secondary quarks in our moment calculations. 
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expected, as the two gluons at O((Y~) tend t o b e radiated in the same hemisphere 

because of coherence21 Also given is the same ratio using the all-order leading 
logarithm Monte Carlo, which shows a somewhat larger correction (but at a 
smaller value of the factorisation scale p N 5 GeV). For both of these cases we 
repeated the investigation of hadronisation effects, by calculating the moments 
at both quark and hadron levels, and found results similar to those in Section 3.1 
for the O(os) matrix elements. Overall, the higher order corrections thus tend 
to be of similar magnitude (lo-20%) as the hadronisation effects. 

We also investigated the dependence of the double moment predictions on the 
value of AQCD. In the O(oz) case we varied Am from 0.1 to 0.5 GeV and found, 
for Pll, an increase of 35% in the region -0.9 5 1c, 5 0.8, which is considerably 
larger than the O(Q~) corrections themselves. Thus os can be determined from 
the shape of the double moment distributions. Such measurements of oys in heavy 
flavour events would be particularly useful as a test of the independence of the 
strong coupling on the quark flavour, for which there is currently little direct 

22 
experimental evidence. 

4. Summary afid Conclusions 

We proposed and studied QCD predictions for heavy hadron momentum cor- 
relations in e+e- annihilations. As is true also of other QCD tests, such a study 
of the heavy quark sector is important, as it might reveal effects which are washed 
out when summing over all flavours. Using the factorisation between the heavy 
quark production and fragmentation distributions, and assuming that no heavy 
quarks are produced in the soft hadronisation process, we calculated the double 
inclusive heavy hadron distributions from the single inclusive ones and QCD per- 
turbation theory. These predictions are model independent, and can be used as 
a test of &CD. 

Corrections to our results can arise from higher orders in perturbation theory 
as well as from hadronisation effects, which are power suppressed in the hard 
scale. At the present time, full QCD calculations including quark mass effects 
are available only at O(CY~). I n p rinciple, the hard scale may be chosen to be the 
mass of the heavy quark. At SLC/LEP energies, logarithms of the large ratio 
&,/mQ can then make higher order terms significant. To avoid this we chose a 
relatively large factorisation scale ~1 N 14 GeV. 

We investigated the practical feasibility of our approach, as well as the mag- 
nitude of the corrections, using a QCD Monte Carlo program. The experimental 
difficulties in reconstructing the heavy hadron momenta were not addressed, as 
they are detector dependent. An accurate (10%) test of the correlations in all 
momentum configurations requires on the order of lo5 heavy hadron events. Con- 
figurations in which the heavy hadrons are more nearly back-to-back are more 
frequent, however, and can be studied with less statistics. 

We found deviations from the predicted momentum correlations at the level of 
lo-15% in the Monte Carlo heavy hadron ‘data’. Since the program used the same 
O(Q~) matrix element as in the perturbation theory calculation, this deviation 
was found to be due to hadronisation effects, i.e. to the Lund string fragmentation 
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model employed. We note, however, that normalising by the lowest order moment 
reduces the sensitivity to these effects, which practically vanish completely in the 
case of the normalised (2,l) and (3,l) moments, making these quantities especially 
reliable for testing our predictions. We also studied higher order perturbative 
effects by using an O(c$) matrix element Monte Carlo, as well as an all-order 
shower program. These simulations were restricted to massless quarks, but at the 
relatively high factorisation scale we used the mass effect is not very important. 
For the double moments we found the higher order perturbative corrections to be 
at the level of 10%. The shape of the double moment distributions is also sensitive 
to the value of AQCD and could therefore be used to measure cr, experimentally. 

In conclusion, we note that the method presented for testing QCD in heavy 
quark production seems to be practical, assuming that a sufficient number of 
heavy hadron pair momenta can be reconstructed in the data. The influence of 
higher order perturbative and non-perturbative corrections appears moderate, on 
a par with those encountered, e.g. in energy-energy correlations. Higher order 
perturbative calculations, including quark mass effects, would make the predic- 
tions more accurate. 
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FIGURE CAPTIONS 

Fig. 1: (a) The O(os) p er ur a ive QCD calculation of the double moment &I($) t b t 
for b-quarks (solid curve) and c-quarks (dashed curve). Also shown (dotted 
histogram) is the quark-level JETSET Monte Carlo calculation to O(oys) for 
massive b-quarks. 
(b) The O(os) perturbative QCD calculations of the normalised double mo- 
ments Ji&Wh(+) @, j > 1) for b-q uarks (solid curve) and c-quarks (dashed 
curve). 

Fig. 2: JETSET Monte C ar o 1 calculations to O(CY~) for massive b-quarks comparing 
results at the quark and hadron levels. The ratios shown would equal unity 
if the factorisation relation (5) were exactly valid. 
(a) Solid histogram: the ratio of double moments ~~l(~)*Uark/~~l(~)hadron. 
(b) Dashed h is o t g ram: the ratio of normalised double moments 

Fww31(+>1 Q""'kl[P21(~)lql(~)lhadrola. 
(c) Dotted histogram: the ratio of normalised double moments 

[~33hwM~)1 """'kl[P33(~)l~~1(~)lhadron. 
Fig. 3: Monte Carlo QCD calculations of higher order corrections to the O(cr,) pre- 

dictions for the double moments Prr($); all calculations are for massless 
quarks. Solid curve: ratio of O(CY~) to O(os) calculations. Dashed curve: 
ratio of LLA + O(os) to O(cr,) calculations. 
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