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ABSTRACT 
A beam line transfer map diagnostic is described which 

uses induced betatron oscillations to search for focusing errors 
and geometric aberrations. A grid is produced graphically in 
normalized phase space coordinates with the beta match 
quantified from this grid. Application to the SLC electron 
damping Ring-To-Linac (RTL) transport line is presented. 

I.DATAACQUISITION 
Two horizontal (or vertical) dipole corrector magnets are 

scanned in nested loop fashion to induce cosine-like and sine- 
like betatron oscillations in the RTL. Beam Position 
Monitors (BPM) of the RTL are sampled for each corrector 
setting and this data is saved to disk. BPM readings are 
averaged over 5 beam pulses to reduce noise levels. The 
corrector scan range is selected to produce oscillations which 
explore -8 times the monochromatic RMS beam size. 

II. ANALYSIS 
The linear transformation used to obtain normalized phase 

space coordinates from a pair of BPMs is 

where R(t:a is the 2x2 transfer matrix from BPM- 1 to BPM-2, 
al and 8, are design Twiss parameters at BPM-1, e is the 
nominal RTL beam emittance (6800 pm+rad), ul.vl are the 
desired normalized phase space coordinates at BPM- 1, and xl, 
x2 are the position readings from a BPM pair. These BPMs are 
separated by one to optimize phase advance (Pig 1). The mean 
of all trajectories is subtracted to produce difference trajectories. 

v1 is plotted versus u1 to form a grid of points. The grid 
construction is repeated for each BPM pair in the beam line. 

The transfer matrices are taken from the SLC Data Base 
after an on-line COMFORT [l] run. The Twiss parameters 
used are the propagation of some chosen initial Twiss 
parameters, a, and /Jo through the modelled transfer matrix 
elements. lsl iI\ R:l -2Ul1Rl2 RA Bo 

al = 41R21 

Yl Rz: -2R2lR22 R& II 1 1+2Rd21 -Rd?zr a0 

P (2) 
Here the R matrix transports from some chosen initial 

fixed point, BPM-0 in Fig 1, to the first BPM of the current 
pair of interest (BPM-1). The initial Twiss parameters are 
chosen so that the fust BPM pair produces a square grid (see 
section III). The choice of correctors is then less restricted. It 
is only necessary that they sufficiently span the space (Ay f 
nn). A linear grid is fitted to the tmnsformed data points using 
the known corrector kick angles e1 and S, as a parametrization. 

w(r) = a&(t) + b&W 

w(t) = c&(0 + d&4> (3) 
The fit coefficients (a, b, c, and d) are used only to 

evaluate a fitted IQ and v1 at each of the grid points, therefore 
the absolute scale of the kick angles is irrelevant. The 
transformed data points and the fitted points are then 
superimposed on the same plot. The fitted points are 
connected by lines to form the grid, and the transformed raw 
BPM data points are represented as dots (Fig 2). 

CORRECTORS BPM-1 BPM-2 
:ig 1. Corrector/BPM relationship (the first BPM in the system, 
PM-O, and an &biuary BPM pair is shown as an example - xl, x2) 

Including the emittance in the normalization conveniently 
scales the u,v coordinates to units of nominal RMS beam size. 
This transformation is applied to each point per BPM pair and 
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Fig 2. Normalized phase space grid for an RTL BPM pair. Points 

are BPM data to which the grid is fitted, and linearity is clear. 
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The -area of the grid is calculated (section III) and 
normalized to the area at BPM-0. With no acceleration or X-Y 
coupling, the case for this data, the area should remain 
constant and the grid will rotate but remain square as different 
BPM pairs are selected down the beam line. A focusing error 
in the line will linearly distort the grid from its initially square 
orientation with no area change (quantified in section III). 

An example of a geometric aberration which is clearly 
distinguished is shown in Fig 3. The data is from a horizontal 
grid scan across the damping ring extraction septum. 
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Fig 3. Horizontal grid scan across the damping ring extraction 
septum showing geometric aberration (fitted to second order). 

III. CONCEPT 
If we start with the initial transformation from xl, x2 to x1, 

x1’ (=dx/ds) already applied and begin in these phase space 
coordinates, then the normalized phase space transformation is 
straight forward, with the exception of the initial grid 
‘squaring’ at BPM-0. Normalized phase space at BPM-0 is 
obtained as in (1) by the transformation 

For ease of graphic interpretation it is convenient to 
choose the Twiss parameters at BPM-0 in order to produce a 
square grid there. The Twiss parameters of the beam may also 
be used, however, depending on the correctors used, the grid 
will then not be square initially so that downstream optical 
distortions, when they occur, will be more difficult to discern. 

The initial Twiss parameters are chosen by finding the 
transformation matrix M, from x0, x0’ which ‘squares’ the 
initial grid while maintaining its area. The left side of Fig 4 
suggests the three equations 

~&=a[ i]; M&=.[: ]; det(M)=l. (5) 

Here (I is a scale factor adjusted so that the area is unchanged, 
and the vectors p. and q. (Fig 4) are extracted from the data at 
BPM-0. The transformation M is calculated as 

The grid area So is calculated as the cross product magnitude 

Substituting M for A0 into (4) provides a square grid with 
unchanged area (except for the factor of c) at BPM-0. 
However, M is not necessarily lower triangular and therefore 
identification of the elements of M as the chosen Twiss 
parameters is difficult. To convert M into a lower triangular 
matrix, we simply rotate it through the angle 8 (Fig 4) with 
the orthogonal matrix 0 (equivalent to defining the initial 
beta&on phase advance). 

The angle 8 is solved using the lower triangular condition 
(OM)12 = 0, and the initial Twiss parameters follow. 

~~sJ!12. ( b M22, Bo=(OM)T:; m== 
( 1 OM 11 (9) 

Propagating these Twiss parameters to the other BPMs 
then reduces to application of (2). The transformation to 
normalized phase space at a downstream BPM pair follows as 
in (4) with subscript 0 replaced by 1. Now express phase 
space at BPM-1 in terms of that at BPM-0 as 

and decompose the design transfer matrix R into initial and 
final design Twiss parameters and a rotation matrix Y 
(hetatron phase advance). 

R(‘:‘) = Ai’I”ol A; 

The design Twiss matrices Ai and A,, are as defined in (4). and 
Ayol. implicit in Yol, is the design betatron phase advance 
from BPM-0 to BPM- 1. 

A focusing error between BPM-O and BPM- 1, will change 
the final Twiss parameters and the phase advance between these 



points. The effect of a focusing error on the transfer matrix is The l/2 is introduced so the matched case will result in c= 1, 
written as and the beam matrix, cr, is introduced, which follows from 

AA’= 1s -aldL 

where the ‘hatted (perturbed) matrices are introduced to 1 -a 7J &* cm 
distinguish them from the design. Combining (4). (lo), and 

. . 

(12) 
The ‘hatted’ quantities in (19) represent the perturbed beam 

(A:+oI; . 

parameters, while those without the ‘hats’ represent the design. 

(13) 
From (15). (18). and (19). the beta beat amplitude, c, at BPM- 
1 of each BPM pair (indicated at the bottom of the grid in Fig 

From (13) it is clear that with no focusing errors (A* =AI) the 
grid at BPM-1 is simply a clockwise rotation of the grid at 
BPM-O through Ayol >o. Furthermore, since the determinants 
of all matrices in (13) are unity, the grid area is invariant and 
independent of the choice of initial Twiss parameters. 

The quality of the beta match is indicated in the ‘squareness’ 
of the grid. Much like a matched beam remaining circular in 
normalized phase space, the grid should remain square for a 
perfect lattice. The ‘squareness’ of each grid is defined as the 
sum of the squares of the lengths of the grid spanning vectors 
hl and kl at BPM-1 (as is shown for BPM-0 in Fig 4) which 
are taken from the grid fit to the data. Writing the grid as a 
2x2 matrix of these two vectors, the ‘squareness’ can then be 
conveniently written as the trace of HI times itself transposed. 

(14) 

t@-hHT) =Kd2+1;;11' (15) 
Since ho, kc, are simply two identically scaled orthonotmal 
vectors rotated through 6, & can be defined as 

. .a Ho+, ;a]= ~~ck(Go)l 0 

Transformation from Ho to HI is the same as transformation 
from uc to u1 in (13) 

HI =(A:A^I~oIHo = FlHo , (17) 
where the definition of F1 is here implicit. Rewriting (15) 
using (16) and (17) gives the ‘squareness’ in terms of F1. 

tr(HlH:)= tr(FlHoHiFT) =Ickt(Go~ tr(FlF:) (18) 
Substituting Al and its perturbed counterpart into the 
definition of F1 produces a beta match parame,ter, c, in terms 
of the Twiss parameters at BPM-1 of the current pair, which is 
invariant until a second focusing error is encountered. 

2), is a direct result of the fitted grid vectors hi and kl. 

(21) 

A short proof of the invariance of c is shown by calculating 5;: 
at a point farther downstream, if we~transport both the design 
beam, o, and the perturbed beam, o, to point-i through the 
same design R and use common matrix properties. 

ci = kV( (RGR’)-‘(RGRT)) = 

:I((R-~ R~cJ+-~ R)GJ = $I( CS%) = l (22) 

As a final point, note that although the choice of initial 
Twiss parameters at BPM-0 does not affect the invariance of { 
or of grid area, this choice does however affect the step size of 
4’ when a focusing error is encountered. Therefore, the Twiss 
parameters of the beam itself should be used at BPM-0 (rather 
than the grid squaring parameters used in Fig 2) if a directly 
qualitative beta matching study is of prime interest. 

IV. CONCLUSIONS 
The grid technique has advantages over simply comparing a 

measured oscillation with a model. The oscillation 
comparison does not assume an area preserving map and, for 
example, may confuse a BPM calibration error with a focusing 
error. Furthermore, since the grid scan does not force linearity, 
the technique will reveal nonlinearities over the scan range and 
therefore is useful for qualitatively evaluating geometric 
effects. 

Application to the SLC RTL beam line shows only some 
small focusing errors along the RTL with no measurable 
geometric aberrations downstream of the extraction septum. 
This scheme helped eliminate one potential source for a 
suspected RMS emittance growth within the RTL itself. 
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