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ABSTRACT 

Instanton and anti-instanton configurations used in evaluating the baryon and 

lepton number violation process in the standard model are investigated. Although 

not solutions of the field equations, such configurations play a crucial role in eval- 

uating the relevant amplitudes. The streamline method, which has been employed 

for this purpose, is examined. A new method that has better features than the 

streamline method is proposed. The trajectory in configuration space that leads 

to the instanton and anti-instanton configuration is traced from vacuum using the 

new method. 
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1. Introduction 

Baryon and lepton number violation is a nonperturbative process in the stan- 

dard model. Attempts to calculate its cross sections were made in various different 
P-41 formalism; ideal-gas instanton calculus, coherent state ansatz for Sphalerony’ 

Gervais-Sakita formalism:] interacting instantonst’-lo1 and other methods.[11’121 

Among them, the first quantitative prediction at high energy was given by 

Ringwald and Espinosa, who predicted large but unitarity-violating cross sections. 

This unitarity problem was solved by analysing of the multi-instanton [‘A91 sectors. 

It was found that at TeV scale a configuration with many instantons (I) and 

anti-instantons (I), which interact among themselves, contributes an amount com- 

parable to that of the single I. It was further proven that the whole set of these 

configurations give unitary amplitudes. This, however, was a formal solution and 

only qualitative estimates were possible. There were two problems associated with 

it; (a) the I-f interaction, derived from the asymptotic region, is singular at short 

distance and causes fictitious divergences in higher order calculations, (b) contribu- 

tion of fluctuations becomes comparable to that of the background at TeV scale and 

is hard to estimate. These problems were expected to be solved by incorporating 

deformation of the original configuration. 

In the context of baryon number violation, the deformation of IT was treated 

by Arnold and [13’ Mattis, and more recently by Khoze and Ringwaldt”’ The latter 

authors constructed a candidate for separated, but deformed IT configuration by 

applying a conformal transformation on co-central I7 (with different radius). One 

essential component in their analysis is on “streamline method”, developed for 
[15-l’] 

QCD analysis. 

Streamline method uses a collective coordinate in functional space: A config- 

uration with I and f separated by an infinite distance is a solution of the field 

equations. The action is twice that of I. When they approach each other, the 

action decreases and eventually they annihilate each other, resulting in a vacuum. 

This series of configurations defines a collective coordinate, and is called a “val- 
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ley”, since it is expected that the action rises if the configuration is altered in any 

direction other than the distance between I and f. Although no configuration in 

this valley region is a solution, it is important to integrate over the valley to obtain 

relevant (baryon-number violating) amplitudes. In order to carry out the integral, 

one needs to choose the trajectory that properly follows the valley bottom and do 

Gaussian integration in the directions other than the trajectory. 

The streamline method defines a trajectory for the valley bottom. It however 

contains some undesirable features. In this paper we point out those and propose 

a new definition, which avoids them. In the next chapter, we shall review the 

Gaussian integration method around a trajectory and the streamline method. The 

difficulties of the streamline method are pointed out. The new proposal for the 

trajectory is given in the chapter 3. We shall also show difference between the 

streamline and our trajectory for a nontrivial two-dimensional model. In chapter 4 

we trace the growth of the If configuration starting from the vacuum for a double 

well quantum mechanics. Discussion and summary are given in the last chapter. 

2. The Streamline 

The streamline method was originally proposed to circumvent the danger of 

Gaussian integral over a quasi zero-mode around a given classical solution. It 

is not an exact zero-mode but has a small eigenvalue compared with the other 

nonzero modes. Indeed, the path-integral around the largely separated I and r 

suffers from the danger due to the interaction between them. That is, when ideal 

gas approximation is used, all the displacements of I and f are zero-modes, and 

thus all the coordinates of centers of I and 7 are collective coordinates. Ideal gas 

approximation, however, has limited validity. (In quantum mechanics, it can deal 

with only the shift of the ground state. In high energy physics, it leads to unitarity 

violating amplitudes.) Therefore the interaction between 1 and 1 has to be taken 

into account. This interaction makes the relative distance between them a quasi 

zero-mode. One would still want to integrate over this collective coordinate, since 
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Gaussian approximation is in no sense valid for variations of this coordinate. In 

order to do this, one needs to adopt a trajectory in the functional space that defines 

the collective coordinate and do Gaussian integrals in other directions. 

Let us first discuss the Gaussian integration, since it can be defined for a general 

collective coordinates, independent of its definition. We take a partition function, 

where N is a suitably chosen normalization factor. Here we have introduced a 

cut off (either in the configuration space or momentum space) to discretise the 

field variable 4, for brevity. We further assume that (4;) has trivial metric, g;j = 

diag(1, 1, 1, . ..). (0th erwise, we need to insert the metric factor in the appropriate 

places in the following equations, which can be done without ambiguity.) In order 

to evaluate 2 using a collective coordinate Q, we apply the Fadeev-Popov method 

by inserting the following; 

1 = J da 6 ((4; -.4(a))%(Q)) A(d(a)), (2.2) 

where &(cy) is a valley trajectory and Ri is the normalized gradient vector, 

(2.3) 

The Fadeev-Popov constraint (2.2) restricts the fluctuation space (the space of in- 

tegration) to be orthogonal to the gradient. This enables us to do the perturbative 

calculation systematically, even though, in general, a point on the trajectory is not 

a classical solution. The Fadeev-Popov determinant A(~(LY)) is given by 

Hereafter, we concentrate on the l>ading order contribution (i.e., up to the one- 

loop term). The second term in the above is irrelevant at this order and can be 
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dropped. The determinant A(c$(cY)) is th e ace lan containing cosine of the angle J b’ 

between the trajectory and (R;). By h c oosing the a to be in the direction for which 

action S increases, one obtains up to the one-loop order, 

where 21 is the one-loop integral, 

(We used the variable 4; E 4; - q$(o)). Th’ is can be formally evaluated by 

nentiating the b-function and then doing the integrals as in the following; 

= d-& 7 gexp (-iRD-‘n k2) 
-CO 

expo- 

(2.7) 

= d2~r(RD-~ R) det D’ 

The factor (RD-l R) det D is actually a determinant of Dii restricted to the space 

orthogonal to (Ri). Thus the final result is valid as long as D;i is positive definite in 

that subspace. In choosing the trajectory, one should keep in mind this constraint. 

Although the complete partition function 2 is independent of the choice of 

the trajectory $(a), it is a functional 2[45(cr)] at any given order. Therefore it is 

important to choose the trajectory to obtain a decent approximation. 

The streamline method gives a simple and intuitive prescription for choosing 
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the trajectory d(o). Their main equation is 

P-8) 

where f(a) is an arbitrary function corresponding to reparametrization invariance 

of o!. 

There are several disadvantages with this approach. One of them is the problem 

with its boundary condition: The equation (2.8) only defines a flow (a gradient line) 

and does not define where the streamline is by itself. Balitsky and Yung”“proposed 

to start from a classical solution and head toward the direction of the minimum 

curvature. (The initial direction has to be specified, since (2.8) is ill-defined at the 

solution.) There are actually two ways to do this: 

(4 

(b) 

Starting from the higher end of the valley. One needs to choose the starting 

point to be 17 configuration in order to insure that one is following the valley 

of physical significance. This IT, however, should be with infinite separation. 

This calculation thus becomes rather involved. 

Starting from the bottom of the.valley, the vacuum. This however does not 

work due to an instability in the streamline method: This can be easily seen 

in a toy model defined by the following action with two degrees of freedom; 

s = f (64; + 4,“) , (0 < f5 < 1). w> 
In this example, the valley trajectory is trivially 42 = 0. However, solving 

the flow equation (2.8) and eliminating (u, one finds the gradient lines, 

$2 = c@” (2.10) 

where C is a an arbitrary parameter. This set of the gradient lines are 

illustrated in Fig.1. All these lines are tangent to the real valley 452 = 0 at 

the origin. Therefore, the direction does not define a particular line. In actual 

numerical calculation, even if one makes a finite step to the right direction, 

any numerical error would drive one up the valley wall. 
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For high energy problems at hand, the II configuration with short distance is im- 

portant. One such example is the analysis by Yungt18’ where the overlapping of 

the nonperturbative and perturbative piece at high energy is evaluated. (By sub- 

tracting this overlap, he obtains a milder behavior for the baryon number violating 

amplitude at high energy.) Th e case (b) thus has physical significance. 

3. New Valley Method 

The new definition we propose is the following: At every point on the trajectory 

4(o), the gradient vector is the eigenvector of the curvature with the smallest 

eigenvalue. Namely, 

d2S as dS 

a4iadj adj 
- = hninTJ&r (34 

where Xmin is the minimum eigenvalue of the matrix d2S/ddid4j (G Dij). This 

defines a trajectory, since it has one parameter Xmin, which can play the role of 0 

-except for few degenerate cases. In other words, according to (3.1)’ the gradient 

vector is orthogonal to all the eigenvectors of D except for the one with smallest 

eigenvalue. If the total number of the variables 4; is N, this gives N - 1 conditions. 

Therefore we have one degree of freedom left and thus have a trajectory. 

One property of the trajectory defined by (3.1) is that the norm of the gradient 

A is extremized under a constant S. This can be shown by applying the standard 

Lagrange multiplier method. (For that matter, A can be a gradient of any function 

of S.) It however should be noted that the variational method is not equivalent to 

(3.1)’ since it in general would have solutions with larger eigenvalues. Our valley 

trajectory in fact follows the points where the gradient is minimized along the lines 

with constant S. 

The streamline and our new trajectory generally differ. This is because if we 

substitute (2.8) into (3.1)’ we obtain 

(3.2) 
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This leads to 

Integrating the above, we find 

$ = f$ = fexp (J/ly.da) Ci, 
I 

(3.3) 

(3.4) 

where Ci is a constant. Therefore our trajectory and the streamline can coincide 

only when they are straight. Thus they are generally incompatible. 

There are several advantages of the new definition (3.1). The equation (3.1) 

is not a flow equation and gives a local definition; given a point in 4 space, one 

can determine if it belongs to the new valley or not. (For ordinary field theory, 

it yields a fourth order differential equation.) Therefore it does not need any 

boundary conditions at the end points of the trajectory. In fact, when applied to 

the toy model in the previous chapter (2.9)’ the new definition (3.1) gives, 

(3.5) 

since Xmin = e. This has a unique solution 42 = 0, unlike the streamline method. 

This toy model analysis actually applies to neighborhood of a classical vacuum or 

any other classical solution, since in that region the action is quadratic in field 

variable. Therefore we find that in general our valley trajectory approaches the 

classical solution from the direction that is exactly the direction of the eigenvector 

of D with the smallest eigenvalue at the solution. 

Note that in our prescription the problem of Gaussian approximation for small 

(or even negative) eigenvalue does not exist at any point (including the end points) 

on the trajectory. By definition (3.1) as well as the Fadeev-Popov constraint (2.2)’ 

the direction with the smallest eigenvalue is completely removed from the fluctu- 

ation space. This desirable property is not necessarily achieved in the streamline 
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method, in which the fluctuation space is orthogonal to Ri and therefore its basis 

vectors are generally different from eigenvectors of D;j. Thus the Gaussian integral 

for the streamline method may still suffer from a small eigenvalue. This may result 

in large error at a given order of perturbation in the streamline prescription. 

Let us next discuss a case when there is actually a zero-mode. In such a 

case, the trajectory has to be chosen along the related collective coordinate. The 

streamline method is rather singular in this case, for all the flow given by (2.8) is 

orthogonal to the flat valley bottom. Even if one starts from a point on the right 

trajectory, the right hand side of (2.8) is zero and thus one cannot trace it. (One 

has to deal with this case as a limit of a case with a small but nonzero eigenvalue.) 

In contrast, our new prescription (3.1) g ives the correct trajectory of the collective ’ 

coordinate, since. (3.1) is trivially satisfied on it. 

It is interesting to note that our choice of the trajectory (3.1) extremizes the 

tree part of (2.5) that also includes the Jacobian, which is defined by the following, 

20 [$(a~)] G J da%&(n) e-s[4(a)l. 

In order to show this, let us first rewrite 20[4(a)] as the following, 

-mm = J da ( $JW) Gb), 

F(a) E -e-S[d(a)17 G(a) zz -$. 

(3.6) 

(3.7) 

After a partial integration, we find that the variation of Zo[$(o)] is to the first 

order, 
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Using our definition of the trajectory (3.1)’ we find that 

8F dG 
’ --=-- 

d4[i d4j] fi 
RiDjlRl + [i * j] 

-- RiRj + [i t+ j] = 0. 
WY 

Thus our prescription can also be obtained from a variational principle for 20 [d(o)]. 

In actual calculations, it is more practical to use a flow equation obtained from 

the definition. For this purpose, we take the derivative of (3.1) with respect to CY 

and find that 

H, ,d$j _ d&in 8s 
13---- da da 84;’ 

where 

H = (D - Xmin * I)D + 6H7 SHij = 
d3S as 

ddid$jd4la+l* 

(3.10) 

(3.11) 

For the toy model (2.9)’ SH = 0 and Xmin = 6, a constant. Thus we find that 

(3.10) leads to 

(; p)(g)=(:)* (3.12) 

Therefore, we find that (d4i/da) (( (1’0). Th is implies that in general near a 

classical solution the flow equation (3.10) d oes not suffer from the instability, which 

plagued the streamline method. 

Except for rare cases such as the toy model (2.9)’ det H # 0 and Xmin is not 

a constant. Therefore one can invert H to obtain the vector ddi/da explicitly. In 

practice we fix the reparametrization invariance in CY which (3.10) possesses. We 

have found it most convenient to choose it so that the vector dqS/da is normalized. 
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Namely, 

da2 = Cd& (3.13) 

In such a case, we have 

4; (H-l R)i -= 
da IH-IRj a 

(3.14) 

We shall use this flow equation to trace the trajectory in the following. 

Where one already knows an approximate solution for a valley trajectory, one 

could use a perturbation theory to obtain corrections. One such a situation is 

for IT separated by a large but finite distance. In Ref.7-9 and 14, the authors 

took sum of I and 7 solutions for such a case. This sum is not a solution of the 

trajectory equation (3.1), but is expected to be close to it. In such a case, one can 

do a perturbation theory to obtain the right trajectory. Let us carry out a first 

order calculation in a general framework. Let us denote the approximate solution 

by $,‘O’(CY), so that 

(3.15) 

where D(O) E D( qi(“)), t e c, is a small quantity. (In the above example, SV = 

O(exp(-11 separation)).) W f th d e ur er enote the exact solution by 4; = $I”’ + 64;. 

Expanding (3.1) around S#i = 0, we find 

SK + H(O)S$i = SAmi, a 
a&O) - z 

On the right hand side, 6X,;, is to the first order, 

(3.16) 

(3.17) 

This can be easily checked in the representation where D(O) is diagonal. Thus we 
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find that 

Ski = -G(O)-l(D(O) _ ~~,!,) a’ 
a&O) ’ I 

where 

(3.18) 

For weak coupling, cubic derivative terms in G(O) can be ignored and we find that 

&j; = -D(O)-‘p,dS 
&$!O) ’ I 

(3.20) 

where PO E (D(O) - At/,,)-‘(D(‘) - AZ,!,) is th e projection operator to the space 

orthogonal to the eigenvector of lowest eigenvalue. This method can also be applied 

to a case with XEl!n = 0, since the projection operator takes this direction out of 

cYS/&$~~’ and makes the operation of D(‘)-l well-defined. 

_ So far we have treated only a trivial example, (2.9). Let us now deal with a 

nontrivial but simple example and demonstrate the formalism we presented so far. 

The action we choose is 

s = ; ($2 - f(m2 + e g(&). (3.21) 

In this action, for E = 0 there exists exact zero-mode, or collective coordinate 

$2 = f(h). (3.22) 

We will choose f and g to satisfy 

f(O) = 0, (ford < 1)’ (3.23) 

so that the our valley trajectory always passes the origin. (Near the origin this 

action reduces that of the toy model (2.9).) The c-term is introduced to give 

nonzero gradient on the valley bottom. 
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Our trajectory can be obtained as follows. Instead of solving (3.1) itself, we 

can require that Z.h.s. is parallel to the gradient vector aS/a4;. For this purpose, 

we calculate 

(3.24) 

and look for solution(s) of K(d) = 0 that h as the smaller eigenvalue of D. For 

6 = 0, we find that 

W) = ($2 - f)3f”f’7 (f - -g, &.) (3.25) 

There are three solution to this equation: For the solution f” = 0, the eigenvalues 

of D are 0 and f12 + 1. The gradient vector as/&$ is an eigenvector of the larger 

eigenvalue. Therefore this is not a solution of (3.1). For the second solution f’ = 0, 

one can also see that as/a4 is the eigenvector with larger eigenvalue near the origin. 

Therefore even if it gives a solution of (3.1), the trajectory does not pass the origin 

and is irrelevant. Thus we are left with the right solution (3.22). 

For E .> 0, we can either solve for 1< = 0 numerically or do perturbation with 

respect to E around (3.22) (if E << 1). We find that 

(3.26) 

The O(C) term agrees with the general result (3.20). 

One can also start from the origin and use the flow equation (3.14). Since this 

is a nontrivial model, det H # 0 and Xmin # constant. Thus we can use the explicit 

form of the normalized tangent vector (3.14) instead of (3.10). 

For actual calculation, we have chosen 

f= 

1 - cos 41 
2 7 g=4(1-cos$). (3.27) 

This way, the trajectory is not straight and we should be able to see difference 

between the streamline and our trajectory. The function g is chosen so that we 
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have a saddle point P at the point (27r, 0). S ince P is a classical solution, both 

the streamline and our trajectory pass the point P. This enables to start the 

streamline from P. (The point P is thus an analog of the higher end of the valley, 

IT at infinite separation.) 

The streamline and the new trajectory are plotted in Fig.2, together with the 

contour lines for 6 = 0.5. In this figure one can see the predicted features of 

the trajectories. They differ when they are curved. The new trajectory is not 

perpendicular to the contour. They approach the classical solutions (origin and 

the saddle point) from the direction of smallest eigenvalue. 

4. Instanton and Anti-instanton 

In this chapter, we shall take a one-dimensional quantum mechanics with a 

double-well potential and examine the trajectory that results from our new pre- 

scription (3.1). Th e q uestion is whether our local definition (3.1) does really give 

the trajectory that approaches the configuration with If for large separation. If 

this were’not the case, our valley method would be of no use for the instanton 

calculus. 

The Euclidean action we take is 

This has an instanton solution, 

d(r) = i (1 + tanh 5) 7 

(4.1) 

(4.2) 

with action S (0 = l/6. 

In order to follow the growth of the IT configuration starting from a classical 

vacuum 4 = 0, we restrict the time to be from 0 to L and impose a boundary 
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condition 4(O) = $(L) = 0. We then expand the q5( 7) field by the normalized 

eigenmodes around q5 = 0 as in the following, 

d(T) = 5 4. fisin(A.7)’ X, = (2n L l)r. (4.3) 
n=l 

Since C& are coefficients of the normalized fluctuations, their metric in the func- 

tional space is trivial and enables us to apply the analysis in the chapter 3. 

In (4.3), we have restricted ourselves only to the sector that is symmetric in 

T + L - T. The anti-symmetric sector decouples from our calculation and is 

irrelevant. This is because of the following: Starting from vacuum, the trajectory 

first heads to the 41 direction, since it has the smallest eigenvalue. Any anti- 

symmetric mode $(*I couples to the symmetric modes c$(‘) as q5(*)$(*)~$(~) or 

&9 &$$S) &S). Th ere ore f substituting this into Hij defined in (3.11)’ we find 

that when the index i is in symmetric sector and j is in anti-symmetric sector 

all the terms in Hij contain at least one power of c$(*). Thus if the flow has no 

component in the anti-symmetric sector initially, it never does. 

In carrying out the actual calculation, it is important that (a) L is large enough 

to contain well-separated I and r, and (b) N * 1 g is ar e enough so that the instanton 

shape is well described. For (a), in order to obtain instanton tail to the accuracy 

of O(E), we need to have a time span for each I to AT N 21 lnc:) and the total 

length L N 2A7. By choosing c = 0.01, we find that we need AT N 9.2. In actual 

calculation we have chosen L = 20. As for (b), th e F ourier analysis of the instanton 

(4.2) shows that the Fourier coefficient is e -*k. Thus in order to reproduce the 

coefficients to O(E’), we need to satisfy 

Running Mathematics on a NEWS workstation, this constraint is easy to satisfy 

for L = 20. We have calculated the action in terms of 4; for N = 8 analytically (it 
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contains 221 terms). Since our definition (3.1) is fourth order algebraic equation 

of 8 variables, it does not allow an analytical solution. Thus we followed the 

trajectory numerically, using the flow equation (3.14) starting from the vacuum. 

This calculation corresponds to accuracy of 6’ = 3.2 x 10m4. 

The calculation is done by starting from the origin and continuing the trajec- 

tory in the direction (3.14) by finite steps da = 0.01. The shape of 4(r) at various 

points on the trajectory is shown in Fig.3. One can see that the lowest eigen- 

value mode first grows to an II-like configuration with half-width N 5. It is worth 

mentioning that this width is independent of the value of L. (We have observed 

this for L = 10 and 40.) Th is d evelopment of a definite width is one characteris- 

tic feature of II deformation in our prescription. The action density of the same 

4(r)‘s are shown in the Fig.4. From these, one sees that in fact the well-separated 

II configuration has been obtained toward the end of the trajectory. The action 

along the trajectory is given in Fig.5. From this we confirm that I and 7 are well 

separated at the end. For cx = 3.1, I and 7 are almost at the far opposite ends of 

the -r-space. Thus if one continues along the trajectory further, one sees another 

nontrivia deformation of II. The .action then begins to rise again. 

If one traces the trajectory starting from the vacuum and in the -41 direc- 

tion’ one merely sees monotonically rising action. One has then two choices for 

integrating over the $1 < 0 half-space: (a) apply the trajectory method for the 

$1 > 0 space and do the ordinary perturbation in the ~$1 < 0 space. (b) apply the 

trajectory method even for $1 < 0 space. Since no nonperturbative configurations 

are expected for 41 < 0, these two methods do not yield any differences. 

For L + co, there is an exact zero mode, that corresponds to motion of the 

center of I and 7. This mode however is anti-symmetric and did not appear in our 

calculation. This implies necessity for extension of our valley trajectory to higher 

dimension, which we shall discuss in the next chapter. 
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5. Discussion 

In this paper we have proposed a new prescription (3.1) to choose the valley 

trajectory. It gives results different from the streamline method. It satisfies two 

variational principles, one for the gradient and the other for the tree-level partition 

function. We summarize the desirable features of the new trajectory below. 

Ll It is a local definition. It needs no boundary conditions. Thus one does 

not have to follow the valley from far away region to obtain points on the 

trajectory. 

u It removes the most dangerous eigenvalue from the Gaussian integral com- 

pletely’ making the one-loop result reliable. 

cl A case with an exact zero eigenvalue can be treated without any special 

precautions, while in order to apply the streamline method one has to define 

it as a limit of a model with a quasi zero-mode. 

-0 The flow equation obtained from it has no instability near the vacuum. This 

allows us to trace the trajectory from the lower end, a classical vacuum. 

We have demonstrated these features for simple models. For a double-well quan- 

tum mechanics we have successfully traced the trajectory starting from a classical 

vacuum and reaching an isolated II configuration, as is seen in Fig.3-5. 

In order to deal with the cases with multiple collective coordinates, we need to 

extend the valley method to multi-dimensional valley “membrane”. This is implied 

by the problem with c.m.s. coordinate as was mentioned in the previous chapter, 

as well as multi-pair configuration, (If)n f or n > 1. We can define a d-dimensional 

membrane so that at every point on it aS/a$i 1’ res in the subspace spanned by the 

lowest d eigenvalues of D. In addition, The Fadeev-Popov constraint should also 

be modified to the following, 

(5.1) 
p=l 
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where {CY} = {cq 7 . ..cud}. are the collective coordinates and Vi (PI * 1s the pth lowest 

eigenvector of D. This prescription divides the whole degrees of freedom in the 

path-integral into two categories; one is the fluctuation at a given point on the 

valley membrane and the other is the collective coordinates. Note that the direction 

of gradient is removed from the fluctuation space and thus Gaussian approximation 

can be done straightforwardly. 

It should be noted that this definition leads to membrane without any bound- 

ary. At first sight, this seems strange, since the membrane should have natural 

boundary made from configurations with fewer collective coordinates. (By pair- 

annihilating I and 1, one can obtain (II)(+ This however is of no problem, 

since although the membrane would extend beyond the natural boundary the extra 

region is simply made of perturbative piece. This is exactly what happens if one 

chooses to include the trajectory in the qS1 < 0 region in the previous chapter. 

In the double-well model the (Ij)2 configuration would have the four-dimensional 

membrane, which converges toward the vacuum form the subspace spanned by 

$1, $2 and the two directions of smallest eigenvalues in the asymmetric sector. 

Detailed treatment of this issue will be presented elsewhere. 

There are other areas where our method could readily be applied. One of them 

is an instanton itself in the electroweak theory. In this theory, there is no finite-size 

isolated instanton solution. Any finite-size finite-action configuration is unstable 

against shrinkage to a point. In order to deal with this, Affleck introduced an idea 

of constrained instanton.[lgl For obtaining a finite-size object, he first introduces 

a constraint to keep it from shrinking and then integrates over the parameter in 

the constraint (i.e., radius) to recover the whole functional space. Our new valley 

method should also be useful for defining the finite-size instanton, following the 

trajectory that winds down toward the point-like instanton. 
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FIGURE CAPTIONS 

1) The gradient lines (2.10) near the origin for the free action (2.9). The contour 

lines correspond to constant values of the action; the darker the shading, the 

larger the action. 

2) The streamline (dashed line) and our trajectory (solid line) for the action 

(3.21) with (3.27). 

3) The shapes of b(r) g iven by the new prescription (3.1). These are taken at 

points separated by distance 6a = 0.31 along the trajectory up to CI = 3.1. 

4) The action density S(r) of the 4(r) given in Fig.3. 

5) The behavior of the action along the trajectory, divided by 2S(I). The hori- 

zontal axis is the distance (Y along the trajectory defined by (3.13). 
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