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Abstract: With reasonable definitions, optimal control is 
possr%le for both classical and quanta1 systems with new 

-approaches called PISC(Paralle1) and NISC(Neura1) from 
analogy with RISC(Reduced Instruction Set Computing). 
If control equals interaction, observation and comparison 
to some figure of merit with interaction via external fields, 
then optimization comes from varying these fields to give 
design or operating goals. Structural stability can then 
give us tolerance and design constraints. But simulations 
use simplified models, are not in real-time and assume 
fixed or stationary conditions, so optimal control goes far 
beyond convergence rates of algorithms. It is inseparable 
from design and this has many implications for colliders. 

Introduction 
Prediction is very dificult, especially abouf the future 

- Niels Bohr 
Predicting the future isn’t difficult until one demands a 

high correlation between events and their predicted times 
of occurrence. For deterministic systems having models 
with fast predictive cycles compared to their time scales, 
stable control should be possible. The choice between 
closed and open loop control then revolves around which is 
better, the model or the feedback system. Whether either 
can be done fast enough or accurately enough in real time 
depends on resources relative to problem demands. 

Figure 1: Real-Time Control in the Real World 

Problems with Complexity 
Because there are other stochastic effects beyond the 

known dynamic nonlinearities, we need both feedback and 
feedforward for optimal control. We use causal feedforward 
for the special combinat,ion that takes optimal advantage of 
the collapse of the probability distribution. External noise 
effects are shown in Fig. 1. An example is line noise in 
magnet supplies that maintain constant current via feed- 
back but leave random field errors from eddy currents and 
hysteresis. Knowing if tolerances are violated from above 
or below improves the speed and quality of correction. 

Despite books and conferences[l] relating it to entropy, 
order and information, there is still no universal measure 
of complexity. Real-time control of colliders is a good place 
to explain why. The largest machines ever are proposed to 
learn everything about the smallest distances in the least 
possible time. We consider whether this is consistent and, 
if so, at what cost and with what techniques? 

New stochastic effects are expected as the energy and 
luminosity of colliders increase associated with quantum 
effects and the growth of complexity (degrees of freedom) 
e.g. it becomes harder to define the system, its variables 
or their constraints even assuming the system is isolated. 
Further, even if the dynamics and control model are linear, 
their physical realization with measurement, roundoff or 
overflow errors can be nonlinear with chaotic regions. The 
meaning, possibility and implications of optimal real-time 
control under such circumstances are discussed. 

Figure 2 compares the growing complexities of several 
systems where the vertical axis can be thought of as the 
bits of information needed to specify the system state. 
For ring colliders this is proportional to their radius (or 
diameter for two rings) which also relates to cost. For 
single chip DRAM and Intel micros, it is the number of 
bits or transistors. The time axis gives the first available 
date of the various products - physics or chips. Thus, the 
LHC and SSC are located by the lower bounds on their 
detector dates. The vertical scale is limited above by the 
human brain with a dozen billion neurons[2] and below by 
quanta such as photons in pure helicity states with one bit 
of information classically when we know the wave vector. 
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Figure 2: The Growth of Spatial Complexity 

Excepting SSC, each class shows an exponential increase 
in spatial complexity i.e. the number of elements due to 
increases in size or density. Extrapolating, one can make 
predictions e.g. it’s hard to see how SSC can produce any 
physics before 2005. Trends within a class help us predict 
capabilities e.g. what the i586-i786 chips will provide and 
when[3]. LEP uses some 2000 micros at the i286/386 level. 
Including memory, LEP’s system approaches the human 
brain in complexity and the SSC may surpass it[2]. 

While LEP appears inefficient it provides flexibility and 
redundancy that’s applicable for LHC. To compare to SLC, 
we could, in principle, count their control program state- 
ments and calculate execution times to determine the more 
complex system assuming both were optimal. But storage 
rings don’t need a program most of the time so they must 
have lower temporal complexity. However, LEP is much 
larger or more spatially complex so the two emphasize 
complementary resources to solve the same problem. In 
either case the growth in complexity makes reliability, 
adaptability and flexibility increasingly important. 

Real-time computation, as part of real-time control, 
faces similar but easier problems. In n x n bit multipliers, 
you can interchange space-time complexity going from pure 
memory methods with as little as one memory cycle but 
n2 memory locations to serial multiplication with order n2 
machine cycles but no memory. The neural net is an ideal 
theoretical tool to study such problems e.g. we can use it 
as an associative memory or optimal parallel multiplier[3] 
or to simulate any complex process whose K-entropy is 
large or infinite. Neural nets are also practical and needed 
for complex systems such as colliders - possibly in chips 
like the i686 or i786 by the year 2000 for the LHC[3,4]. 

Comparison of Colliders 
Our ability to define our system, identify the variables 

and conditions they must satisfy in terms of a consistent 
measure of merit is itself a measure of problem complexity. 
Current linear collider (LC) designs for the same energy 
and luminosity differ wildly even before any consideration 
of how one finds or holds the optimal system state. 

Some questions are: 1) What is the optimal collider for 
physics, 2) What is optimal for electrons, 3) How does one 
optimize time complexity for LC’s and 4) Have we really 
explored all the possibilities? Some of these were explored 
by Richter[5], Rubbia[G], Panofsky[7] and by Palmer[8]. 
Restating 1): Why not build a 2 TeV electron machine 
rather than a 20 TeV SSC? Also, for 2): Why not build an 
LC since rings become dominated by radiative losses? 

Cost = Fixed + Capital + Power 

x C,++C,R+C~$ + C,+2mya 

Both cost and radius scale with the square of the energy 
and the ‘optimal’ ring approaches an LC asymptotically. 
SLC and Tevatron scale linearly with length or energy. 
From Fig. 2 and the fact that the Tevatron has ten times 
the top energy of LEP[8], it is preferred as long as its cost 
or complexity per unit length is C~eV<2C~E!’ For SLC, the 
equivalent path length is less than one-fourth LEP which 
also roughly measures their relative capital costs. 

But no one can really say what C, or C, are until the 
physics is done since they depend on integrated luminosity, 
detector capabilities and how many Z’s are needed i.e. 
the underlying problem complexity. LEP, SLC and the 
Tevatron with their various detectors are different algo 
rithms for this problem. Each has produced compara- 
ble results for different costs in time and other resources. 
One can estimate the enhanced reliability (and costs) 
needed for future machines from earlier ones[4,9]. When 
reliability and temporal complexity of LC’s scale linearly, 
they are preferred and 0.5 TeV is competitive with LHC. 

One approach to these problems is via correlations: 

(’ . ’ fi* (t>fj* (t - T, . f ‘) * (* . . fi, (i)fj, (t + T> . . -) 
with ji* a state variable whose vector is f(t) = { ji(t) : 
i = 1-.-2d}, with time series {f(tjj : j = O...n} where 
tj = 1 - jr. We can predict fi(ij > i) for chaotic systems 
when n 1 2d[10] because we can measure and study the 
dimensionality di. We can also control and optimize ji and 
thus f. The correlations can be interpreted at fixed time 
as giving instantaneous envelop equations to any order. 
Similarly, from the time dependence at fixed location we 
can monitor the K-entropy which measures the average 
rate of information loss or phase space deformation i.e. the 
predictability with time. To keep all correlations bounded 
we must supply information at least as fast as it is lost 
through both design and control[ll,l2]. As K -+ oo the 
problem becomes purely statistical but still allows optimal 
prediction when we know the statistics. However, adaptive 
prediction is still only worse by log n with n the number 
of steps in advance time for LMS algorithm. 
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Figure 3: A General-Purpose, Real-Time Control System. 
It can cancel noise (w), control a plant, given the model, or 
find a model for a given plant and optimize it i.e. e^ -+ 0. 
It is useful for complex systems where u’, w, or x’ are 
variables that may influence output but aren’t controlled 
or monitored or when the system is changing and we can’t 
set tolerances or respond fast enough. Ref.[3] gives a case 
where x and u get contaminated and have to be translated 
into hardware syntax while also learning. 

Optimal, Real-Time Control 
Although independent of space-time bounds, our most 

important postulate here is that of Turing and Church[4]. 
Also, we assume that complex systems need comparable 
or greater complexity in their controllers consistent with 
Shannon’s measure of information. We can’t drop degrees 
of freedom or the highest order of a plant or subsystem. 
Lastly, we can’t have too much computing power because 
it improves the ability to adapt to and control unforeseen, 
unstable or chaotic conditions e.g. the K-entropy. 

We begin by assuming a ‘program’ can be written that 
will simulate any physical process. It is also assumed that 
for any specific problem, one can translate this program 
into ‘matched’ hardware solutions such as ASIC’s. This 
combination defines an algorithm for the problem. The 
classic example is the von Neumann computer but it can 
not be optimal because of its serial hardware and software. 

Considering the program as an equivalent description of 
the problem (or process), information theory tells us the 
efficiency of any encoding or most efficient algorithm. But 
real-time control differs from computational algorithms in 
the importance of external, asynchronous effects that can 
be more important than the calculation. For optimal so- 
lutions, we therefore assume that we must use the process 
itself even though we may not be able to produce an equiv- 
alent software procedure. The hardware, in a very real 
sense, is the optimal ‘program’ or problem algorithm that 
we need to realize in our control system. 

We still lack optimal control until we obtain the model 
and optimize it for the ezisting plant. But we know how to 
do that[12,3,4], at least in principle. Furthermore, ANN’s 

or artificial neural nets can replace computers in all ways[d] 
and don’t suffer their bottlenecks[4]. They are also the 
paradigm for the ultimate, parallel, pipelined processor 
that handles concurrent, parallel data naturally. They ap- 
ply to computers, colliders and detectors so they provide 
both the controller and model needed in Fig. 3. Some of 
these capabilities could be available in the i686 chip[3]. 

This is in direct contrast to conventional, model-based 
systems that lack any explicit reference to control. Since 
they are also used for design, we lack optimal designs as 
well as the tools to achieve them which can increase con- 
trol costs Ci, drastically. In contrast to ring colliders, the 
beam characteristics in LC’s have tighter tolerances and 
ultimately depend on source performance. Another paper 
addresses the source design from this perspective[ll]. 
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