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ABSTRACT 

For NC -+ 00 the structure function of physical fermions in the Gross-Neveu 

model is of pure valence type. Nevertheless several strange form factors of u-quarks, 

including the induced magnetic moment and the a-term acquire substantial O(Ni) 

contributions from virtual ss pairs. Those arise from matrix elements which are 

off-diagonal in Fock space, i.e. they do not have a simple interpretation in terms 

of the quark distributions. It is shown that, under certain circumstances, a similar 

behavior in &CDs+1 is conceivable. 
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Recently, there has been a growing discussion about the “strangeness content” 

of the nucleon (for a review, see e.g. Ref’ ). Although ss pairs carry less than 5% of 

the nucleon momentum2 it has been suggested that they contribute significantly 

to the nucleon spin #l and almost cancel the spin carried by u and d quarks. 

Another surprising result that emerged from an analysis of the low energy r N 

forward scattering amplitude3 seems to require a large value for the strange scalar 

“charge” or a-term m, (N 1 ss 1 N) of the nucleon. 

In this note I will show that a large strange a-term together with small ss 

structure functions does not necessarily mean a contradiction. Although this will 

be demonstrated on the basis of the Gross-Neveu model4 in l+l dimensions, I will 

argue that a priori something similar might happen in QCDs+l. Based on the 

observation that ss is twist-3 whereas structure functions are measured by twist-2 

operators it has been already emphasized that such a behaviour is conceivable5 

The example to be studied here will help to understand the underlying physics 

of large, strange a-terms combined with a suppression of strange quarks in the 

structure function. 

In some simple field theories (like free fermions or QCDr+l) m, (N 1 ss 1 N) 

has a direct parton model interpretation, i.e. one can express the strange scalar 

form factor in the limit of zero momentum transfer (the scalar charge) in terms of 

the strange quark distribution functions s(zbj) and s(z+). In these theories the 

constraint equation for the left-handed fields takes the form 

(1) 

#l This interpretation of the EMCII-effect is still controversial. 
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i.e. it is linear and thus 

.?+S = SiSR + S$~L = hmsg(id+)-‘sR . (2) 

For vanishing Q+ (@ being the momentum transfered by the ss insertion), where 

pair creation is suppressed at the vertex, the matrix elements of ss become diagonal 

in Fock space yielding6 

1 
m(~jSsI~)=&irn~ J $ (s(z) + s(z)) . (3) 

0 

For these simple theories a large strange cr-term will in general imply a large strange 

#2 quark distribution function and vice versa. In most field theories the simple 

constraint equation (1) will b e replaced by more complicated relations. For example 

in gauge theories in more than two dimensions 

&i a+$- = [al - (ii31 - gAl) + Torn] T/J+ (4) 

or in Yukawa theories 

(where & = A*$ = $4 and ds/4p are scalar/pseudoscalar fields). Here $$J 

contains interaction terms (cubic in the fields) which in general implies for the 

matrix elements-even for zero p + transfer-contributions from off-diagonal terms 

in Fock space.7 This makes it rather difficult (if not impossible) to relate (N I ss I N) 

to the strange quark distribution functions. 

#2 Here possible divergences for I + 0 are neglected since, for m # 0, these do not occur in 
QCD1+1 or for free fermions. 
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As an example for the latter case (nonlinear relation between $J+ and r,!~-) we 

will consider a generalized Gross-Neveu model4 described in the Lagrangian 

L = $(i$ - mo)lC) + $ [cTw2 - (h57+)21 (6) 
C 

where V+!J is a N,-spinor in color space and a two-spinor in flavor space. For ms = 0 

this Lagrangian is invariant under #3 Uv(1) x sum x sum transformations- 

a symmetry which is, for N, + co, spontaneously broken down to Uv(2). The 

model is asymptotically free (important if we want to “measure” deep inelastic 

structure functions) and describes non-confined fermions. We will use the model 

to develop some intuitive understanding about the virtual qq cloud surrounding 

valence quarks in strong interactions. Besides being chirally symmetric one major 

advantage of the Gross-Neveu model, compared to conventional pion or kaon cloud 

models 8 , is a consistent description of meson and quark degrees of freedom. In 

meson cloud models the mesons appear as elementary particles with substructure, 

i.e. one faces the possibility of double counting in higher loop corrections. Although 

there is a pion in the Gross-Neveu model it appears as a quark-antiquark bound 

state rather than an elementary particle. Since the Gross-Neveu model can be 

formulated entirely in terms of quark degrees of freedom the problem of double 

counting is avoided. 

It should be emphasized that the term “color” in the Gross-Neveu model has 

a priori little to do with the color in &CD. In particular, the l/NC expansion used 

here might give rise to results which are totally different in a l/NC expansion in 

&CD. Here we consider the l/NC-expansion only as an ordering principle for the 

perturbation series. The term “color” is used only for convenience. 

#3 In addition to the SUv(N,) symmetry. 
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In the following we will label the two flavor states up (u) and strange (s); i.e. 

for the sake of simplicity, down quarks will be omitted from the discussion. An 

extension of the model to three or more flavors is possible and straightforward4 

though this would require the ‘t Hooft determinantal interaction’ to break UA(~). 

Furthermore u and s quarks will be assumed to be degenerate. The main conclusion 

in this work, which are anyway qualitative, would be the same in a scenario with 

explicitly broken flavor symmetry and/or more flavors. 

All observables will be computed in the framework of a l/NC-expansion up to 

the first nontrivial contributions from s-quarks. 

Let us consider the structure function of a physical (= dressed) up quark. At 

O(Nz) the only modifications of the quark propagator arise from tadpole graphs. 

(Fig. 1). Those diagrams do not give any contribution to structure functions for 

Xbj # 0, Since in Pa&VillarS regdariZatiOn 
10 

J dp- ’ p2-m2= 0 (PS # 0) . 

Thus the physical structure functions of an up quark read to O(Ni) 

u(x) = S(x - 1) 

s(x) = s(x) = u(x) = 0 . 

(7) 

(8) 

To order N;l the fermions are dressed by chains of bubbles (Fig. 2). Canonical 

quantization on a 2+ = const. surface (i.e. so-called light-cone or light-front 
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_ quantization) yields to O(Nrl) (=l ea m re d’ g d er in N;l) for the structure functions 

1-z 

s(x) = NC 
J 

4 l~s&~ y)12 
0 

1-Y 

s(y) = Nc J dx I&&, y)12 
0 

(9) 

where 

4(q2) (1 - ;> (; + &q) - w12> (1+ $) (f - i&q) 

l-$+-l l-x-y 
(10) 

is the wave function of the ssu-states. Here 

2 (1 - d2 q2=-A4F x (11) 

#4 where MF is the physical fermion mass. The functions D, and D, act like form 

factors in the pseudoscalar and scalar channel. They arise from summing up the 

infinite chain of qtj bubbles and can be interpreted as effective meson propagators. 

Explicitly one finds4 

1 1 

D,‘(q2) = p; J dz 
1 

2 dz J 1 

0 
itI; - Z(1 - +?j - q o iv; - z(1 - z)q2 (12) 

1 1 

D,l(q2) = pi J 1 
dz 

1 
MS -. z( 1 - 

0 
2,/A; + (4M; - q2) J dz At; - z(1 - z)q2 * (13) 

0 

Here p. is the physical mass of the pseudoscalar Us meson (which is, besides MF, 

#4 Note that we have already made use of the fact that s(z) and S(z) are independent of the 
total p+ of the fermion when we expressed the results in terms of wavefunctions which have 
total p+ = 1. 
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_ the only free parameter in the renormalized theory). Note that (for pi > 0) there 

is no bound state in the scalar channel. 

The other type of observables we are interested in are the various strange form 

factors 
11 

($1 sy’ls lp) = u(p’) [+-yS(q2) + & oyvq”Fp((12)] U(P) (14) 

f-k (P’l 3s I P) = U(P’> U(P) F,““(q2) , (15) 

where 6, is the current quark mass defined via qh,6~zypy~~ = #5 
-2%s&zy5$J. 

Most surprisingly the Paub and scalar form factors have nonzero O(N,O) con- 

tributions 

Fp(q2) = 2M; D,(q2) (16) 
1 

MF F,““(q2) = p; 2 J dx 
1 

M; - ~(1 - X)/L; 
&(q2) = % D,‘(O) Dg(q2) . (17) 

0 

There are no contributions to Fl(q2) from ss pairs to this order in N;’ 

(18) 

Note that F2 and F, have a nonzero O(Nz) contribution even for q2 = 2q+q- = 0. 

Thus, even though ss pairs are not present in the structure function to O(Ni) (see 

eqs.(9)(10)), neither the strange a-term nor the induced ap,-coupling show this 

l/NC-suppression. 

#5 Note that the matrix elements of d+ as well as those of $y51c, are cutoff dependent as is &, . 
The leading cutoff dependence of & and &54 are the same. Since the matrix elements of 
&S&ty5$ are by definition finite, the same will be true for the matrix elements of 6$&j. 
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In order to understand the different powers of l/NC we will evaluate the NC- 

dependence of form factors and structure functions in ordinary perturbation theory 

(Fig. 3). A measurement of the quark distribution always involves only such 

operators which are diagonal in Fock space (no pair creation at the insertion of 

the external probe = “cross”). Thus the ss pair in Fig. 3a cannot be annihilated 

by the measurement but only through a subsequent interaction. Therefore S(X) 

and s(x) are of order o2 . NC (the f ac or t NC arises from the quark loop) where 

cz = CJ~/N,;#~ i.e. or order l/N,. 

Form factor measurements are quite different in this respect. If the operator 

is inserted with q+ # 0 (which is necessary in l+l dimensions if one wants to 

have q2 = 2q+q- # 0) t erms diagonal and off-diagonal in Fock space contribute 

(Fig.Sb). Although the latter usually vanish for Fl for q+ + 0 in general they do 

12 not vanish for F; or F, because these involve so-called bad currents. 

The diagonal terms (Fig. 3c) are also of order l/NC (like the quark distribution) 

but the off-diagonal terms do not need another interaction to create the ss pair (it is 

created at the insertion). Thus the form factors are (only the leading contribution 

is considered) of the order Q. NC, i.e. of O(N,O). 

One can express this result also in a different way. The ss component of a 

u-quark wave function is of the order l/N,. Thus operators which are diagonal 

in Fock space and measure the &-content will be of the order NCl+ssU12 N l/NC 

(there is always an extra NC multiplying the matrix element because of the sum 

over the colors of the s-quarks). In contrast off-diagonal operators are linear in 

#6 In perturbation theory one chooses g independent of NC, in order to have finite qq scattering 
amplitudes for NC + co. 
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- $ssu, i.e. of the order NC . +,gU N 1.f7 

The main question arising at this point is whether there is a similar effect 

possible in #’ QCDs+r. The answer is in principle yes although the importance of 

such an effect is not obvious. A light-cone expansion of the matrix elements of 

the operator SS, very similar to the expansion of the matrix element of 92(x) in 

Ref.13 , will (even for q + = 0) contain operator products of the form b,d,a+ (Fig. 

4) which annihilate a ss pair at the ss insertion and replace it by a gluon. Now 

let us imagine a situation where there is a large gluonic admixture to the proton 

wavefunction but a small ss admixture #9 

In this case the main contributions to gS = Gs (N I ss I N) will come from the 

off-diagonal terms, i.e. 

(20) 

The explicit Fock space expansion of these matrix elements is quite lengthy, since 

this involves twist three operators and will be omitted here. It could be obtained 

by differentiating the light-cone Hamiltonian of QCD.14 The typical structure of 

such an expansion would be similar to the expansion of 92(x) in Ref. 13. 

#7 A quite similar pattern emerges in QCDi+r(N, ---f oo) where to O(Ni) the structure func- 
tion of mesons is pure valence Qq while form factors are nevertheless modified by “vector 
meson dominance”-type corrections of order N, . Or0 Intuitively one attributes such kinds of 
corrections with a qq-cloud around the valence quark which is in this case a questionable 
interpretation. However, there are no flavor mixing effects to leading order l/NC in QCDr+r . 

#S Here we neither assume N, 4 00 nor do we associate N, in &CDs+1 with the value of N, 
in the Gross-Neveu model above. 

#9 This picture is probable not too far from reality. 
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In the above discussion we concentrated on the scalar form factor (15). In 

the Gross-Neveu model similar results and conclusion hold for the magnetic form 

factor Fp (Eq. (14)). H owever, for the magnetic moment of quarks in QCDs+r 

such contributions from off-diagonal Fock space seem to vanish for q+ + 0 if one 

+ insertion, i.e. a good current 
12 

uses a y , to measure F2. 

From the example studied here one should learn several lessons. First of all the 

question “is there a lot of strangeness in the proton” is a priori not well posed. The 

operator used to measure the content of strangeness might be crucial. Although 

our N, -+ 00 limit is somewhat extreme, a similar behavior is certainly possible 

in QCDs+r. Secondly, although many operators simplify in the light-cone analysis 

for q+ t 0 there can still be a complicated operator left over in this limit. In 

particular, pair creation and/or many-body effects might be important.-or even 

dominant. It is however not yet clear how important such effects are in QCDs+r. 

If they are important this would mean that many intuitive pictures, like the o- 

term of a hadron originating from an intrinsic admixture of ss pairs, have to be 

modified. 

Acknowledgements 

I would like to acknowledge Brian Warr and Stan Brodsky for many helpful 

discussions. 

REFERENCES 

1. R. L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990). 

2. H. Abramowicz et al., Z. Phys. m, 19 (1982). 

3. R. Koch, Z. Phys. m, 161 (1982). 

10 



.- 

4. D. J. Gross and A. Neveu, Phys. Rev. m, 3235 (1974); for an excellent 

review, see e.g. B. Rosenstein, B. J. Warr and S. H. Park, submitted to Phys. 

Rept., SLAC-PUB-5349 (1990). 

5. V. Bernard, R. L. Jaffe and U.-G. Meissner, Nucl. Phys. B308, 753 (1988). 

6. M. Burkardt, Ph.D. Thesis, Erlangen (1989). 

7. J. F. Donoghue and C. R. Nappi, Phys. Lett. 168B, 105 (1986). 

8. A. I. Signal and A. W. Thomas, Phys. Lett. 191B,205 (1987); A. W. Thomas, 

Nucl. Phys. A518, 186 (1990). 

9. G. ‘t Hooft, Phys. Rev. Lett. 37, 8 (1976). 

10. T.-M. Yan, Phys.Rev. &1780(1973). 

11. D. B. Kaplan and A. Manohar, Nucl. Phys. B310, 527 (1988); R. D. McKe- 

own, Phys. Lett. 219B, 140 (1989); R. L. Jaffe, Phys. Lett. 229B, 275 (1989); 

E. J. Beise and R. D. McKeown, OAP-707 (1990). 

12. S. D. Drell, D. J. Levy and T.-M. Yan, Phys. Rev. 187 2159 (1969); Phys. 

Rev. Dl, 1035 (1970). 

13. L. Mankiewicz and Z. Ryzak, Phys. Rev. I&& 733 (1991). 

14. S. J. Brodsky, Invited Lectures presented at the “Stellenbosch Advanced 

Course in Theoretical Physics”, 1985, SLAC-PUB-3747. 

11 



.- 

Figure Caption 

Fig.1 Typical S(Nz) contributions to the propagator of a u-quark. 

Fig.2 Typical O(N;l) contribution to the u-quark propagator. 

Fig.3 Perturbative (light-cone time ordered) diagrams contributing to a.) the 

strange structure function (only the contribution to the S-distribution is 

shown), and b.), c.) the formfactors. In c.) the external photon could 

also be attached to the s-quark. 

Fig.4 Typical diagram yielding a contribution to the strange sigma term in a nu- 

cleon via terms which are off-diagonal in Fock-space. 
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