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Abstract 

We present the Dressed Skeleton Expansion (DSE) as a method of per- 

turbative calculation in quantum field theories, without the scale ambiguity 

problem. We illustrate the application of the DSE method to the two-particle 

elastic scattering amplitude in 4: theory, and compare this method with the 

usual perturbative expansion, combined with scale setting prescriptions. 
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Perturbative calculations in quantum field theories are usually expressed as a power 

series- in a fixed coupling constant. At high transferred squared momentum, the 

fixed coupling constant must be replaced by a running coupling constant. This 

: procedure is usually referred to as the renormalization-group-improved perturba- 

tion, which leads to the absorption of the large logarithmic terms into the running 

coupling constant. In simple words, given a truncated series of a physical quantity 

expanded in powers of a coupling constant in a given scheme: 

& = Q’(P) [ro + n(p) 4.4 + . . .r&) an(p)1 , (1) 

-- 

I*--- 

the coupling scale /J must be chosen appropriately for the perturbative series to 

be useful. The unknown dependence-of the truncated series on ~1 is commonly 

referred as the coupling scale ambiguity problem. There is also another source of 

ambiguity in the perturbative expansion arising from the freedom in the choice 

of the renormalization scheme [1,2]. In our opinion, the freedom to select various 

renormalization schemes is no more than the freedom to adopt ‘meter’ or ‘foot’ as 

the basic unit of length. As long as a scheme is well defined, we can always agree 

on expressing the result in a particular scheme. (See, however, the next discussion 

about renormalization scheme invariant method.) Notice that in the process of 

translating results from one scheme to another-namely, replacing one coupling 

constant by another-unavoidably we re-encounter the problem of scale setting. 

More precisely, two coupling constants or(p) and oz(1.1) of different schemes are 

related by an equation: 

Al = Q&2) + G(PllP2) 4(c12) + C2(p1/p2) &2) +. . . . (2) 

There is clearly a scale ambiguity problem: an appropriate value of ~2 must be 

chosen for each value of ~1. In a sense, the scale ambiguity is a more fundamental 
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problem than the corresponding scheme ambiguity problem: once one has solved 

i 
the scale ambiguity problem, there is no ambiguity in how to implement different 

schemes. 

Several methods have been proposed to solve the coupling scale ambiguity. Among 

them we shall mention: 

1. Fastest Apparent Convergence (FAC) [1,3]: 

The idea behind FAC is that one should choose the coupling scale that makes 

the series look like most convergent. Operationally we will define this method 

as setting the contribution of the second order term (i.e., next to tree level) 

to be zero. -A- - - - 

2. Principle of Minimal Sensitivity (PMS)[l]: 

We define this method here as the choice of the coupling scale at the stationary 

point of the truncated series: 

(3) 

The PMS method also aims toward the choice of a renormalization scheme. 

-Beyond two-loop order, this method requires the variation of scheme param- 

eters besides the coupling scale. 

3. Automatic Scale Fixing (BLM) [4]: 

This method is inspired by QED. The philosophy is to absorb all fermionic 

vacuum polarization effects into the running coupling constant. In l-loop order 

massless &CD, it is operationally equivalent to the condition of a vanishing 
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coefficient of the nf (number of light ferrnions) term. Therefore BLM 

are formally invariant under the change of number of light flavors: 

results 

(4 

4. Renormalization Scheme Invariant Calculation (RSI) [3,5]: 

This is yet another point of view on the subject. Given a physical quantity, we 

can define an effective coupling (or effective charge) associated with it (which 

we shall call the R-scheme coupling constant): 

R = &yJIro -b-1(,4 Q(P) + . . . 1 - - 
(5) 

If R depends on a single external momentum p2, then the evolution of 

R(p2)--or equivalently crR(p2)-on p2 can be studied very nicely without the 

necessity of additional inputs, such as AQCD. This is usually claimed to be 

renormalization-scheme independent calculation, but one should bear in mind 

that implicitly one has prefered a particular scheme: the R-scheme. The R- 

scheme is, in a sense, a natural scheme for the study of the evolution proper- 

ties of a given field theory, because the coupling constant itself in this case is 

experimentally measured, and hence there is no need for other exogenous cou- 

pling constants. But this is not the end of the story; we know that in massless 

QCD the bare coupling constant is the only parameter in the theory, so ideally 

we should be able to make one single measurement and predict all other re- 

sults. For example, the total hadron decay width of heavy quarkonia possesses 

no lab controllable momentum (and thus no evolution to talk about); never- 

theless, QCD should be able to predict this value. Another problem with the 
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RSI method is a proliferation of coupling constants: effectively, one coupling 

constant is introduced for each physical process. Further, the problem of scale 

ambiguity resurges when we want to relate one effective coupling to another. 

The usual impression is that as long as the coupling scale ,u~ is chosen near the 

typical scale Q2 of a given process, the perturbation series would give a reasonable 

result. We should notice, however, that due to dimensional transmutation (i.e., 

the presence of hQco) the correct scale might in some cases not be proportional 

to Q2, but rather to some other power of Q2, or in an even more complicated 

form. So the naive form of assigning coupling scale to typical physical scales runs 
-rc- - - - 

the danger of being too simplistic. Also, for processes involving many scales, in 

general it is not clear how a “typical scale” can be defined. 

For multi-scale processes, .the usual way of assigning a uniform coupling 

throughout all the vertices becomes questionable. Consider for instance the exclu- 

sive process e+e- -+ p+/~-y (fig. 1). In QED the vertices a and b should have 

I.--- a coupling strength N o1j2 (Q2), whereas the vertex involving the raidated photon 

should have a strength N 01i2(0) = l/m. 

This observation and controversy on the various scale setting procedures in- 

duce us to use the Dressed Skeleton Expansion (DSE) [6], instead of the conven- 

tional power series expansion. To illustrate this calculation procedure, we shall 

consider $3 theory in six dimensions, which is infrared safe and asymptotically 

free. To avoid the extra complication coming from mass renormalization, let us 

assume that the physical mass is negligibly small (the meaning of this will become 

more precise later). The basic idea of skeleton type calculation is rather simple: 
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(1) The basic vertex functions are calculated by using renormalization group 

equation. 

(2) Any other Green’s function is expanded in skeleton graphs of the basic 

vertices. 

One property of this calculational procedure is that it is automatically scale 

ambiguity free, because there is no exogenous coupling constant. This resembles 

BLM’s observation of the automatic scale setting procedure for QED. Another 

observation is that results in DSE calculations are not a simple power series in a 

coupling constant. In general the results in DSE calculations are expressed directly 
- 

in terms of functions that invol%?a scale analogous to AQcoThis should not come 

as a surprise. In fact, the concept of coupling constant is also lost in conventional 

perturbation theory with scale fixing procedure. In QCD, after scale fixing, the 

- results are directly expressed in term of f&D. In this sense, the coupling constant 

merely serves as an intermediate device and is discarded after scale fixing (analyze 

for example, eq. (20) ). 

As a simple example, let us apply this idea to two-particle elastic scatter- 

ing amplitude in 4: theory. We shall perform our calculation within dimensional 

regularization [7]. In the following we use d = 6 + 2c and X, is the MS scheme [8] 

dimensionless coupling constant: 

(6) 
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1. The propagator to l-loop order (fig. 2a) in the massless limit is given by: 

A(p2) = z(p2) ; 

qp2j = i + 

On mass-shell, we can no longer neglect the mass of the particles, and the 

on-shell wave function renormalization can be shown to be: 

20s = Z(m2) = 1+ Xi [;+log&) -51 . 
12(4~)~ (8) 

This will be the only place where mph cannot be taken to be zero. 

Notice that we have placed all-rznormalization effects into Z(p2) and 20s. That - - 
is, the propagator retains its bare form. The effects of Z(p2) and 20s enter in the 

renormalization group equation for the S-point function, In other words, there is no 

.- renormalization group equation for the two-point function [9]. In the massive case, 

the same idea applies, that is, the renormalized propagator is to be kept in the bare 

form, with the bare mass replaced by the physical mass, and all renormalization 

effects of the self-energy are to be absorbed into the wave function renormalization 

constant. 

2. The unrenormalized three-point function with one off-shell leg (fig. 2a) in 

the massless limit to l-loop order is given by: 

r = -ix0 (1-A [f+log(-$--ir) -3]} . 

The corresponding renormalized vertex function is: 

rR = Zo$zY2(p2) r 3 -i.+p2) 

(9) 

=-iio{l+24z$3 [-;+;+210g($) -I,,,(-$ic)]} . 

7 



The renormalization group equation to this order is an algebraic equation that 

simply expresses the fact that X0 is unique: 

1 1 
: q = X2($) + 12(:11)3 [ 

-2 
9+;+2 log (3) -11 log (-+>I . 

Its solution is given by: 

X2(p2) = 12(4~)~ 
11 log( +/A;, - ic) ’ (11) 

where ADS (DS=Dressed Skeleton) mimics the role of AQCD, and is a quantity 

to be fixed by experiment. ‘I’& concludes our renormalization program of the - - 

fundamental vertices. 

The 2-particle scattering amplitude to tree skeleton level (fig. 2b), and to l- 
-- 

- loop renormalization in the fundamental vertices is given by: 

*.--- 

iMtree = [-ix(s)]2 ; + [-d(t)]2 f + [-ix(u)]2 % 

= i +f (4793 [ 
s (log ls/.lb,I - in) + t log il/*&j + 

i 

I u 1% b&I * 
(12) 

The squared scattering amplitude in the DSE approach to the first skeleton 

loop is given by: 

lM12 = IMtree12 . (13) 

Notice that in the DSE method, no scale setting procedure has to be employed. 

We shall only comment about higher order skeleton diagrams. Diagrams like 

the box diagram in fig. 2c are to be calculated by inserting the renormalized vertex 
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functions in the momentum integrals. Notice that the propagators in the graph 

keep their bare form. For the box diagram shown in fig. 25 we have the expression: 

i&f::: = J 
d6k X(k;, 36:) X(k;, k;) X(k;, k;) X(k& k;) - 

. (2.~)~ (kf +‘ir) (kg + 2) (ki + ic) (kz + ic) ’ (14) 

where X(p2, q2) is the 3-point vertex function with two off-shell legs, obtained in a 

similar fashion as X(p2). In the massless limit ( ]p2], ]q2] >> m$): 

p2 log (-p2/h& - ;c> - fJ2 log (-92/A& - ;c> 

P2 - !12 \ 

-log (-5 -if) -log (-& -ic)}-’ . (15) 

-A- - - ., 

Notice that when jp21 >> jq2 1, we recover the one off-shell leg vertex; that is, 

-- ,p$~*2,xP2i92) = X(P2) * (16) 

*.--. 

Observe that the expression of the box diagram eq. (14) contains no undetermined 

momentum scales. That is, higher order skeleton diagrams in general are also scale 

ambiguity free. 

Let us now return to FAC and PMS methods of scale fixing in MS. The 

running coupling constant to l-loop order is 

x; 4 
Qx&) = (4n)3 = 3 log Iri,*ml . (17) 

The squared renormalized scattering amplitudes to l-loop order (fig. 3) results in 

the expression [lo] 

[Ml2 = (4~)6~~o(S+f+t)2{l+~(p)[~ log&; H(s,t,,,A2)]}, 
MS 

(18) 
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where 

i 
;i = A exp 

: 
H(s,t+,ii2) = 

+ + (logi;/ -; log21~~+ ; logl;llogl;l) 

+f ( I I lo!?; -11 12 log2/;l + +f logIjlog/tl)} 

The cr& term in eq. (18) comes from the interference of the l-loop diagrams with 

the tree diagrams. 
-rc- - - - 

We now apply the usual scale setting prescriptions. To this order in MS, the 

two methods-FAC and PMS-predict the same result: 

IMl2,,,-,A, = (W (E)” (f + f + t,’ H2(s, :, u A2) * (20) , 
Moreover, it can be easily shown that RSI calculation (the effective charge method) 

leads also to the same result, provided that A2 is measured at a physical point by 

through the formula (20). . 

To compare the result of PMS-FAC with DSE, we need to know the relation- 

ship-between A and ADS. Let us take ADS as our unit of momentum: ADS = 1, 

and express all other momentums in unit of ADS. We take the physical point 

s = 2ltl = 2IuI = lo6 as the matching point. This leads to 

;i = 0.7167 . (21) 

In fig. 4 we show the s dependence of IMILsE and IM($,s-,Ac for the “sym- 

metrical point” s = 2ltl = 2I4, assuming that ADS = 1. In fig. 5 we show the 
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t dependence for a fixed value of s. We see from these figures that the DSE has 

no qualitative discrepancy with results obtained by usual scale setting procedures. 

The difference in the lower momentum region is within the expectation of higher 

: order contributions [ 111: 

To summarize, we have presented the Dressed Skeleton Expansion (DSE) as 

an alternative perturbative calculation method, which has the advantage of being 

scale ambiguity free and has the property of assigning different coupling strength 

at different vertices. We have illustrated the usage of the DSE with the two- 

particle scattering amplitude~in massless 4: theory, and compared it with standard 

perturbative calculation with scale setting prescriptions. Evidently, one drawback 

of the DSE method is that calcul%tion beyond the tree skeleton level becomes very 

complicated. However, for many-scale processes, the DSE method in tree skeleton 

level provides simple but concrete way of obtaining results without scale ambiguity 

- problem. Applications of the DSE method to field theory models in 1 + 1 dimension 

and to QCD are discussed in forthcoming papers. 

We thank Prof. Stanley Brodsky for motivation of the scale setting problem 

and helpful discussions. 
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Figure captions 

i Fig. 1. A typical QED process, where the coupling strength at vertices a and b is 

expected to be stronger than the coupling strength at c. 
: 

Fig. 2. Diagrams involved in the skeleton calculation of two particle scattering 

amplitude. 

Fig. 3. Diagrams involved in the usual perturbative calculation. 

Fig. 4. The s dependence of the probability amplitude along the “symmetric” line 

s = -2t = -2u. 

Fig. 5. The t dependence of the probability amplitude of a fixed value of s = 106. 
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