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‘Abstract 

A 2d finite element field solver has been written 
which allows quasi-periodic boundary conditions, making 
it ideal for calculating travelling waves in periodic struc- 
tures. Special elements are used at corners for improved 
accuracy. Comparisons with URMEL[l], URMEL-T[2], 
SUPERFISH[3] and analytic solutions are made, show- 
ing that this code yields better eigenvalues than the 
URMELs despite the use of a coarser mesh. 

I. Introduction 
YAP (an acronym for Yet Another Program) is a 

2d finite element field solver capable of finding TE and 
TM modes in planar structures and monopole (TM0 and 
TE,-,) modes in axisymmetric structures. The structures 
can include symmetry and periodic boundaries. YAP’s 
algebraic eigenvalue solver uses the inverse power method 
with an eigenvalue shift, which yields the mode with 
eigenvalue closest to a specified target eigenvalue. A typ- 
ical problem uses up to 1000 nodes, consuming about 
1 minute of IBM 3091 CPU time. 

Readers not interested in the details of the finite el- 
ement method (section II) or the special corner elements 
(section IV A) can skip these sections and still under- 
stand the rest of the paper. 

II. Finite Element Formulation 
The finite element formulation follows closely the 

formulation used by the PRUD-W[4] code. One case is 
presented here: the TE mode of a planar periodic struc- 
ture. 

Let the field B, be complex and have an assumed 
time dependence emiW’, and let the interior of the struc- 
ture be R (in the (+,g) plane) with three boundaries: 
r metal, rright and rid. The latter two boundaries are 
the right and left boundaries of one cell of the peri- 
odic structure, and are connected by the. rigid motion 
R : rleft --) rtight. This rigid motion may include ro- 
tation as well as translation. The fields in the periodic 
structure are decomposed into modes with phase advance 
4, in accordance with Floquet’s theorem. The phase ad- 
vance can be any real number. 

A. Strong Formulation 
The -usual statement of Maxwell’s equations is the 

strong formulation: given the phase advance 4, find the 
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eigenvalues w2/c2 and eigenmodes B, such that 

(a2+$)Bz=0 ino, (la) 
fi . VB, = 0 on rmetalr (lb) 

B,(RZ) = B,(lt)e’$ VZE rleftr (lc) 
ti. VB,(RZ) = 4. VB,(Z)eib VZE rleft. (Id) 

Equations (lc) and (Id) are the quasi-periodic boundary 
condition. 

B. Weak Formulation 

An equivalent statement of the problem is the weak 
formulation: given the phase advance 4, find the eigen- 
values w2/c2 and eigenmodes B, E V such that t/2: E U 

J Vu’ . VB, - 
W2 y*B, dR = 0 Pa) 

n 
where 

U = {U E H’(R) : v(RZ) = v(Z)e’@ VZ E rleft} (2b) 

and H’(R) is a complex Hilbert space. The weak formu- 
lation is obtained from the strong formulation by multi- 
plying equation (la) by V* and integrating by parts. 

C. Gale&in and Finite Element Formulations 
The Galerkin formulation restricts v and B, t,o a fi- 

nite dimensional subspace Vh C U. This formulation re- 
duces to an algebraic eigenvalue problem which is solved 
to yield approximate eigenvalues and eigenmodes. 

The finite element formulation is the Galerkin for- 
mulation with a particular choice of Vh. The domain 
R is partitioned into elements R,, and Vh is chosen to 
be a space of functions which are piecewise simple (e.g. 
linear or quadratic on each element) and continuous. Fig- 
ure l(a) is an example of a partition. The choice of L’* 
is where YAP and PRUD-W diverge. YAP uses g-node 
quadratic lagrange-type triangular elements and special 
corner elements while PRUD-W uses 8-node curvilinear 
quadrilateral elements. 

In_YAP, the fields are quadratic on the master ele- 
ment R shown in figure l(b), where each node represents 
a separate basis function. These fields are mapped to 
the a_ctual element R, using a quadratic transformation 
T, : R + &. This allows the sides of an element to be 
curved in order to closely follow the boundary of R. as 
seen in elements RI, 0s and 527 of figure l(a). 
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Figure 1. (a) A sphere partitioned into elements. The 
dotted line is the axis and the d?hed line is a symmetry 
plane. (b) The master element R and its 6 nodes. 

III. Analytic Tests 
YAP was tested on some analytically solvable struc- 

tures. Results for two test structures are shown in fig- 
ure 2. The cutoff TMci mode of a 1 cm length of cir- 
cular waveguide with 1 cm radius was calculated with 
YAP and URMEL. The analytic eigenvalue is w”/c” = 
5.783185964/p2, where p is the radius of the waveguide. 
Both programs converged smoothly as the mesh was re- 
fined. This allows extrapolation to an infinitely refined 
mesh, which yields an eigenvalue with significantly re- 
duced error. 

The lowest TMeie mode of a sphere with 1 cm 
radius was calculated with YAP, URMEL, URMEL-T 
and SUPERFISH. The analytic eigenvalue is w2/c2 = 
7.527929583/1’2, where r is the radius of the sphere. 
URMEL and URMEL-T do not converge smoothly as 
the mesh is refined, making extrapolation difficult. SU- 
PERFISH and YAP converge smoothly. 
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Figure 2. Relative error versus mesh size. The solid lines 
are tests on a sphere (r = 1.0 cm) and the dashed lines 
are tests on a circular waveguide (p = 1.0 cm). 

The eigenvalues returned by YAP are good, even 
for coarse meshes. The coarsest sphere test used the 
mesh of figure l(a) consisting of only 7 elements and 
gives an eigenvalue with less than 0.1% error. This is 
much better than SUPERFISH or the URMELs using a 
coarse mesh. Also, YAP converges faster as the mesh is 

refined. For these tests the error dependence on element 
size, h, is 0(h4) for YAP. while for SUPERFISH and 
the URMELs it is O(h2). This is the expected behavior, 
but unfortunately it deteriorates when the structure has 
sharp corners. 

IV. Corners 
Consider a sharp corner as shown in figure 3(a). The 

field w (for example, B, in a planar TE mode) near the 
corner has the form 

w(p, 4) = a0 + a1 cos(dlP)PT’p 

+ a2 cos(27rqqf?)p2”‘~ + . . . (3) 

where p is the distance from the corner, p is the corner 
angle and 4 is the angle, 0 5 4 6 p. Some fields may 
use sin instead of cos and have ac = 0 in order to satisfy 
boundary conditions at the metal wall. In either case, the 
field is not approximated well by the quadratic elements, 
so a special 7-node corner element[5] is used instead. 

A. Details of the Special Corner Element 

Figure 3 contains a diagram of the special corner 
element. Node 3 is the corner node. The basis functions 
on the master corner element fl are: 

where Q = r/P and 

t6=r+s r = 21(1- V) 
v = s/(r + s) s = uv. 

(4 

(5) 

The transformation T, : fi + s2, is the standard 
quadratic one. The global basis functions are continu- 
ous provided the elements are properly assembled. 

(4 ’ (b) ’ 
Figure 3. A corner (a), and the nodes (b) and (u, v) 
coordinates (c) of the master corner element 6. 
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B. Test% on a Ridged Waveguide 
Figure 4 shows test results of URMEL and YAP on 

the lowest TE mode of a ridged waveguide. The wave- 
guide dimensions are 1 cm by 0.5 cm with a 0.5 cm by 
0.25 cm ridge. Extrapolation to an infinitely refined mesh 
yields w2/c2 = 5.06016 cm-‘. 
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Figure 4. Relative error versus mesh size for-a ridged 
waveguide. 

For this structure URMEL and YAP without special 
corners are similar. The error dependence on the mesh 
size is O(h4i3)for both programs. This agrees with the 
theoretical eigenvalue error, O(h’“lfl), where ,0 > R is the 
sharpest corner in the structure. Without special corner 
elements, YAP’s error is only a factor of two better than 
URMEL for a given mesh size. 

The special corner elements give YAP significantly 
improved accuracy and improve the error dependence 
to O(h’), but this is still short of the behavior seen in 
smooth structures. 

V. Quasi-Periodic Boundary Conditions 
The quasi-periodic boundary conditions are helpful 

and sometimes necessary when modelling periodic struc- 
tures. Only a single period of the structure is modelled, 
yielding the travelling wave solution for any desired phase 
advance. If only metal and symmetry boundaries are 
available, many periods of the structure must be mod- 
elled in order to obtain an equivalent standing wave so 
lution for only a few phase advances. Furthermore, only 
symmetric periodic structures can be modelled this way. 
No such restriction applies when quasi-periodic boundary 
conditions are used. 

Figure 5 is an example of the use of quasi-periodic 
boundaries to generate a dispersion curve. Generating 
the same data using metal and symmetry boundary con- 
ditions would require modelling at least six periods and 
consume more computer time or yield less accurate re- 
sults. Identifying the phase advance of each mode would 
also be required. 
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Figure 5. Dispersion curves obtained with quasi-periodic 
boundaries on a single period of a cross-field amplifier 
structure. 

VI. Conclusion 
The finite element method employed by YAP is more 

accurate than URMEL, URMEL-T and SUPERFISH. 
The special corner elements help significantly for 

structures with sharp corners, but their performance does 
not match the performance seen with smooth structures. 
This indicates that the computational effort spent on cor- 
ner regions is still inadequate compared to other regions 
where the field is smooth. This can be remedied by ei- 
ther an improved special corner element or a technique 
like adaptive mesh refinement. 

The quasi-periodic boundary condition is an impor- 
tant part of a field solver because it allows asymmetric 
periodic structures to be modelled and saves time and 
effort for both the computer and the user. 

I would like to thank Juwen Wang for running SU- 
PERFISH tests on a sphere. 
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