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INTRODUCTION 

The gauge coupling constant in N = 1 supersymmetric field theories arises as 

a chiral integral over the supersymmetric field strength W, = -aD2eSVD,eV (V 

being the vector superfield) in the following way:[l’ 
. - 

$1 J d2d.fa(o)(W*Wa)(l + hc. = -a ~(Ref,(F,,F,,), - Imfa(Ffi)o + . . .) . 
a 0 

(1) 

The index a labels different factors in the gauge group G = n, G’,. fa is aa 
arbitrary holomorphic function of the chiral superfields in the the0ry.t Eq. (1) 

identifies Refa as the field-dependent gauge couplings and Imfa as the &angle: 

1 i444 --- 
f&9 = g,2($) &2 * 

One loop corrections of the gauge coupling constant are of the generic form 

167r2 167r2 - = 
9,2(P) &UT 

%%JT + A - + b, In - 
P2 

cl, (3) 

where b, is related to the one loop p-function via Pa = b, gi/16r2. A, are the 

infrared finite one loop threshold corrections which generally arise from integrating 

out the massive modes of the theory! A field-dependent A, can be induced for 

example by field-dependent mass terms. From eqs. (1) and (2) one might expect 

A, to be the real part of a holomorphic function (harmonic) in a supersymmetric 

theory. However, non-harmonic threshold corrections were found in orbifold vacua 

of the heterotic string and in a particular class of renormalizable N = 1 supersym- 

metric field theories!’ In this talk we summarize the results of ref. 2 and report 

i Here we restrict our attention to gauge neutral functions fa. The most general f could 
transform in the adjoint representation of the gauge group!l’ 

$ As we will see later this statement is not completely correct. Massless fields can also 
contribute to A,. 
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on some of our more recent work.[3’41 We show that non-harmonic gauge couplings 

can appear if massless particles are in the spectrum and induce non-local terms in 

the effective action. 

Recently, non-harmonic gauge couplings were also discussed by Shifman and 

Vainshtein who show that they arise generically at the two loop level due to wave 

function renormalizatior? Derendinger, Ferrara, Kounnas and Zwirner reanalyzed 

eq. (1) and (2) f or the case that a linear multiplet is present in the superfield 

spectrum and found that non-harmonic gauge couplings appear naturally in this 

setting!’ (Th e results of this paper are summarized in J. P. Derendingers talk at 

this conference.) It was further noted that sigma model anomalies are intimately 
[7J31 related to the phenomenon. 

Related topics were discussed at this conference by I. Antoniadis, M. Cvetic, 

M. K. Gaillard and T. Taylor. 

NON-HARMONIC GAUGE COUPLINGS IN N= 1 SUPERSYMMETRIC FIELD THEO- 

RIES 

Let us first discuss non-harmonic gauge couplings in N = 1 supersymmetric 

field theories. In these theories the Lagrangian is specified by the Kahler potential 

I<, the superpotential W and the gauge function f which is defined in eq.(l)!” We 

focus on the following generic model (in flat space): 

where 4” denote the charged matter fields (we suppress the gauge index of 4) and 

T1 are gauge neutral scalar fields (moduli). Supersymmetry requires M to be a 

holomorphic function of T. Let us first assume that all matter fields @ are massive 

and calculate the T dependence of f induced by one loop corrections. To first order 
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Figure 1. 

in T one needs to calculate the quantity hl( (TJ)) s d20T1W”Wa which arises via 

the following supergraph 

The coupling at the top vertex is proportional to dM/d (T’) which results in 

hI - Tr dM Mt 1 
~~~~~~~ 

MMt + O(p2) I (5) 

where p2 is some off-shell momentum but the precise form of the O(p2) is irrelevant. 

(We have also normalized the gauge group generators Ta according to TrRTaTb = 

c&ab for the representation R. ) Since all 4”s are massive A4 has no zero eigenvalue 

and MMt is invertible. Therefore we can take the limit p + 0 and obtain 

h NTr 
dM 

CR d tTIj M-l 
> 

af UT)) = 
8 PI> 

f = OCR lndetMR((T)) 
R 

(6) 

in agreement with eqs. (1) and (2). (MR is the mass matrix of the superfields in 

representation R.) 

If instead some of the charged matter fields are massless M has a subspace of 

zero eigenvalues and consequently MMt is not invertible. In this case eq. (6) has 

no reason to hold and non-harmonic gauge couplings can appear. As an example 

of such a situation consider $ry2 to be 2’7’s of Es and 43 a 27 with a mass matrix 
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of the form* 

0 0 T1 

0 0 T2 

T1 T2 0 

. - The zero eigenvalue of M corresponds to one of the 27’s remaining massless but 

which linear combination of $rj2 is the massless mode depends on TI. Evaluating 

(5) for the mass matrix (7) leads to 

( ) TI 
h* - I (T1> I2 + I (T2) I2 (8) 

which is not the derivative of any holomorphic function. This example clearly shows 

that hl is nonholomorphic due to the massless mode in the spectrum! Similarly 

one can calculate LJ and infer the gauge coupling constant and the o-angle in 

the component expansion. One finds that l/g2 is perfectly well defined but non- 

harmonic whereas 8 is ill-defined. (See ref. 2 for details.) 

One should also note that the calculation of hl was performed in superfields. 

Thus its nonholomorphicity does not indicate an anomaly in supersymmetry; at 

every step in the calculation supersymmetry was manifest. 

As always when massless particles are present one needs to make a distinction 

between two different kinds of effective actions. First, there is the generator of 

1 light particle irreducible Feynman diagrams often denoted by Sr which can be 

nonlocal if massless particles are in the theory. Its gauge coupling constant gr is 

the physical coupling constant. Second, one can define the Wilson action SW(P) 

which only incorporates the massive modes and the high momentum modes of 

the massless states and therefore includes a cutoff p. SW by definition excludes 

* EC is chosen as the gauge group to ensure gauge anomaly cancellation. 
t The reverse of this statement is not true. Massless particles do not lead necessarily to 

nonholomorphic hr. For example eq. (8) b ecomes holomorphic for T2 = 0 (say). The 
important point is that if the separation between massless and massive modes is field- 
dependent a nonholomorphic hr appears. 

5 



infrared divergences and thus is local. The difference between the two actions are 

graphs of momentump < p. (In the context of supersymmetry the exact definition 

of Sr and SW and their properties are discussed in ref. 8.) 

The above calculation of hl evaluates gr and Or. Its nonholomorphicity arises 
. - precisely in the case where massless modes are present and contribute in the loop 

of graph 1. This suggests that the h1 of the Wilson action does not suffer from 

this problem and is holomorphic. We will show that this is indeed the case by 

recalculating eq. (8) in such a way that the separation between massless and mas- 

sive modes is manifest13’ This is achieved by a holomorphic but T dependent field 

redefinition of the charged fields. Let 4” = S:(T) # such that 

STMS = m(T) 0 
( > 0 0 (9) 

where m(T) is the mass matrix of the massive subspace. This field redefinition 

introduces a nontrivial metric for the charged fields 

I- = gii(T, T)pieVj+ + . . . . (10) 

In these coordinates only massive modes run in the loop of graph 1 and in the 

coupling at the top vertex M(T) is replaced by m(T). From eq. (6) we learn 

that the contribution to hl from this graph is now holomorphic. Instead, the 

non-holomorphicity of h1 reappears through the following supergraph 

Figure 2. 



Only massless modes run in the loop (indicated by the dotted line) and the coupling 

at the top of the triangle is proportional to the Christoffel connection I’ of the 

metric g defined in eq. (10). (r~j = g~‘glj,l). We find the contribution of graph 2 

to h1 to be 

. - 
h N trrI (11) 

where the trace runs over the massless subsector of the connection l?. In evaluating 

the graph 2 we have used a regulator which preserves the gauge symmetry. The 

graph corresponds to an anomalous contribution of a mixed anomaly between the 

gauge group and the auxiliary connection I’.‘“’ In which current the mixed anomaly 

appears depends on the regulator chosen. Here we have chosen a regulator which 

manifestly preserves the gauge symmetry. 

It is straightforward to show that for the example (7) eq. (8) is exactly recovered 

by eq. (11). Furth ermore, one can show generically that the appearance of a non- 

holomorphic hl can always be understood via eqs. (9)-(11):’ This identifies the 

appearance of non-harmonic gauge couplings as an infrared phenomenon. The 

graph 2 can also be evaluated with the general metric coupling of eq. (10) as the 

external leg. This introduces a non-local term in Sr which is of the form PO1 

. (12) 

(jR denotes the metric of the massless subsector of the matter fields p in the 

representation R.) When expanded to first order in T1 eq. (12) reduces to the local 

chiral integral considered above with hI given by (11). The component expansion of 

(12) contains the local term CR FpyFpv lndet @R but no local terms proportional 

to Fp. Thus we recover exactly the situation described below eq. (8). The gauge 

coupling constant is well defined and the contribution of the massless fields to 

the one loop threshold correction are proportional to lndet i and therefore non- 
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harmonic. The generic expression for the threshold corrections of Sr reads* 

A = 167r2 RefnooP - c 2 CR lndet jR (13) 
R 

where RefnooP is induced by the massive modes of the theory via eq. (6). However, 
- 

W “O”P is ambiguous since eqs. (12),( 13) h s ow that holomorphic redefinitions of 

the massless charged fields shift the f-term by a holomorphic piece. This is the 

supersymmetric version of the well known ambiguity in the O-angle if massless 

fermions are in the spectrum!“] 

Now it is clear that the threshold corrections of the Wilson action are just 

given by RefuooP in eq. (13). Th e contribution of the graph 2 has to be excluded 

from SW. The precise form of Ref llooP does depend on the regulator chosen. 

Let us summarize what we have learned in this section. Non-harmonic gauge 

couplings can appear at the one loop level in Sr due to massless particles generating 

a non-local term of the form (12). The W i 1 son action SW which by definition cannot 

include a term like (12) h as au g g e couplings gw which are harmonic, 19w is well 

defined and fw = l/g& - i6w/87rp is holomorphic. 

The distinction between gr and gw was recently stressed in an important 

paper by Shifman and Vainshtein! They make the observation that at two loops 

gr is generically non-harmonic due to wave function renormalization. Again, if 

one introduces the Wilson action, then fw can be shown to be holomorphic. In 

fact, Shifman and Vainshtein argue that fw receives no contributions beyond the 

one loop level whereas higher loop corrections of gr arise entirely due to infrared 

contributions. A similar observation was made by Nilles in the context of string 

t heory!12’ His argument relied heavily on the holomorphic nature of f. From 

the discussion of this section and the observations by Shifman and Vainshtein it 

appears that fw does satisfy this property and the argument outlined in ref. 12 

should apply to fw. 

* If the theory has a field dependent f at the tree level this formula is modified. Such a 
situation is discussed in the next section. 
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The nonlocal term (12) can be transformed into a local term (with similar prop- 

~4 erties) if a linear multiplet is in the theory. (See J. P. D erendinger’s talk at this 

conference.) The same paper also noted the intimate connection of nonharmonic 

gauge couplings with sigma-model anomalies. 

. - 
MODULIDEPENDENCEOFTHEGAUGECOUPLINGCONSTANTFORN = 1 ORB- 

IFOLDS 

In this section we summarize our knowledge about the gauge couplings in 

superstring theory. At the string tree level the form of fa is well known to be[13-17’ 

ftree = k,S (14) 

where S is the (complex) dilaton superfield and k, denotes the level of the Kac- 

Moody algebra of the gauge group. (For simplicity we will put k, = 1 henceforth.) 

At the string loop level, ref. 18 verified eq. (3) and derived an expression for 

.A, as an integral over the fundamental domain I’ on the worldsheet 

Aa = J $(&(T, ?) -‘b,) 
r 

B, = [VI4 c (-)s1+s2$& 11 R-3 
T~s~(Q~(--)~~~q~--12Q 8)int . 

evens 

Without delving into the details of the definition of B, the reader should merely 

note that B, encodes information about the full string spectrum. A, differs from 

the A, in eq. (3) by a universal piece Y which is independent of the gauge group 

and which was not calculated in ref. 18. (A, = & + Y.) In deriving eq. (15) a 

choice of the unification scale MGUT had to’be made. It seems natural to define 

MGUT to be proportional to the string scale CY’: A4&T - l/a’. This definition 

has the merit that MGUT does not depend on any vacuum expectation value (vev) 

of scalar fields in the theory. Thus, all field dependence of l/g: induced by string 

loop corrections will appear in A,. 

t The models we considered in this section do not contain a linear multiplet. 
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In light of the discussion in the last section one should note that eq. (15) 

calculates the physical threshold corrections which appear in Sr. The string graph 

used to derive (15) d oes not allow for the separation between massless and massive 

modes. 

. - N = 1 supersymmetric orbifolds are examples of string vacua where the full 

spectrum is known and eq. (15) can be evaluated. Ref. 2 calculates the dependence 

of Ai, on the untwisted moduli T1 of N = 1 orbifolds. It was found that a nontrivial 

moduli dependence arises if and only if the orbifold point group G contains a 

subgroup G’ that by itself would produce an orbifold with N = 2 space-time 

supersymmetry. This is equivalent to requiring that G’ leaves one two-torus (or 

one complex plane) untwisted. (As an example consider the orbifold 24 generated 

by the twist 0 = (i,;, -1) acting on the three tori. In this case G’ is the 22 

generated by 0’ 1 (-l,-1,l) = 0 2 which leaves the third torus untwisted.) For 

each of the three tori there can be two complex moduli - one corresponding to 

deformations of the complex structure and one to the Kahler class. We will denote 

them collectively by T1 since both types of moduli enter A, in a symmetric way. 

Ref. 2 also assumed that the (auxiliary) N = 2 orbifold associated with G’, can be 

obtained as a toroidal compactification of a vacuum with N = 1 supersymmetry 

in six space-time dimensions.* 

Without presenting the details of the calculation we quote the result:[21t 

& = - c “,llG”’ (ln(l~(;T’)14) + 1nReTI) + 
I IGI 

constant P-9 

where 77 is the Dedekind q-function and IGI is the order of G. T1 are the untwisted 

moduli of the particular torus left untwisted by G”. (There can be different G”s for 

different tori.) b’,’ denotes the one loop p-function of the auxiliary N = 2 orbifold 

* Not all N = 2 vacua satisfy this criterion. 
t In order to make contact with standard supergravity notation we have changed the defi- 

nition of T compared with that in ref. 2 by interchanging the real and imaginary parts of 
T. 
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generated by G’. Generally it does not coincide with the p-function of the N = 1 

orbifold generated by G for which eq. (16) d escribes the threshold corrections. 

Aa is not the real part of a holomorphic function (non-harmonic) due to the 

term proportional to InReT I. In analogy with the previous section we will now 
. - show that the appearance of the InReT term can be understood as an infrared 

phenomenon and recalculate it entirely from the massless spectrum of the orbifold 

vacua. To do so we have to evaluate the graph 2 using the tree level effective 

supergravity action for the orbifold vacua. Supergravity introduces additional cou- 

plings compared to the previous calculation. In addition to the metric coupling of 

eq. (10) also couplings of the Kahler potential and Kahler connection have to be 

included. From ref. 1 or 19 we collect the terms which contribute to A,(T). They 

are most easily displayed in components where the moduli T1 couple through the 

covariant derivatives of the (Weyl) fermions. 

(17) 

x” denotes the charged fermions, X represents the gauginos. The details of the 

calculation of the graph 2 can be found in ref. 4 (similar calculations also appear 

in ref. 6,20). We linearize the gravitational background and find to lowest order in 

the gravitational field the non-local term 

J&1 = 1 l 816*2 J d40WaW, ; D2 cv I( $ c CR [2 lndet gR - K] + h.c. . 
R > 

(18) 
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Thus eq. (13) is replaced by 

A = 16~~ RefllooP - cvI- - c CR (2 ln det gR - I() . (19) 
R 

- (We dropped the ‘hat’ on g.) So far formulas (18) and (19) are quite general. 

Even though we only gave the couplings of the moduli T in eq. (17) they are easily 

generalized for other fields in the spectrum. One exception is the dilaton field S 

which has the unique property that it couples to the gauge sector at the tree level 

via eq. (14). Without presenting any details let us state that due to these extra 

couplings A, receives a contribution proportional to the dilaton which is of the 

form b, ln( S + S). I n t erms of the string calculation this dilaton dependence can 

be understood as a redefinition of MGUT from l/a to Mpl (M$ - (S + 3)/o’). 

The standard N = 1 supergravity Lagrangian whose couplings we used above 

is written in terms of Mp1 whereas the string calculation used the string scale CY’. 

Thus the dilaton dependent piece is perfectly consistent with the string calculation. 

To m.ake contact with eq. (16) we have to evaluate eq. (19) for the orbifolds 

considered in ref. 2. This can be done with the help of ref. 21 where the dependence 

of I< and g on the untwisted moduli is calculated. For simplicity we will discuss 

only the orbifolds of gauge group ~‘$3 @ & @ U( 1)2.* Their Kahler potential reads 

I( = c -ln(T + T)I + c g;(T, T)qSiev$ + 0((+$)2) + . . . (20) 
I i 

where 

g;(T’, T’) = TI + T’ -” 1 . 

I (21) 

The exponents 4; depend on the particular matter field CJ? as well as on the modulus 

T1 in question and are calculated in ref. 21. Inserting eqs. (20),(21) into (18) and 

* It is a straightforward extension to treat (2,2) orbifolds such as 2s and 24 which have larger 
gauge groups than U(1)2.[11 
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(19) we find 

#&I =I l 8ii&~ a: / 
a I 

d40(Wa Wa)a b D2 ln(T + 5?)I + h.c. 

(22) 
A,(T,T) = 16~~ Ref$OOP - c cyi ln(T + 5?)I 

- I 

where 

CyfL = -(CV)a - C (Ci(2g! - 1)) . 
i 

a (23) 

This result differs from the Aa calculated in eq. (16) by the universal piece Y. The 

T dependence of the non-harmonic piece is identical which requires the coefficients 

cy to satisfy 

So far we have no direct proof of this equation but all examples we checked satisfied 

eq. (24). It has to hold in order for the two calculations to be consistent. 

For the gauge group Es one can simplify eq. (23) by using the fact that string 

theory is (gauge) anomaly free. In particular it has no mixed Es @ U(1)2 anomaly. 

The vanishing of the mixed anomaly constrains the sum of the U(1) charges of the 

27 and 27 which are related to the qf in way specified in ref. 21. This constraint 

allows us to rewrite’*’ 

“i6 = -CV - CF - 2 - 2pg=2) (25) 

where N2yZ2 denotes the number of 27’s in the N = 2 sectors of the orbifold and 

it is being summed over all N = 2 sectors. x is the Euler number of the orbifold. 

To summarize, in this section we have outlined how the non-harmonic piece in 

eq. (16) can be recalculated from the massless spectrum and its couplings alone. 

Furthermore, we also have inferred the non-harmonic dependence of the universal 

piece Y. 
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MODULAR INVARIANCE 

Eq. (16) is invariant under target space modular transformations belonging to 

SL(2, Z), which are of the form 

T’ + 
aTI - ib 
icTI+ d ’ 

ad-bc=l , a,b,c,d E Z . P-3 
This symmetry property of eq. (16) is expected since it is manifest in the string 

amplitude.[22’ It also agrees with the fact that the physical gauge coupling constant 

is modular invariant. The contribution of the massless modes we just calculated 

can be understood as an anomaly in modular transformations. The canonically 

normalized fermions of the theory transform under modular transformations ac- 

cording to 

where 

F=~F’=~ln(icT’+d) . 
I I 

(28) 

Note that this is a local phase transformation of the fermions even though the 

transformation of T (eq. (26)) is d iscrete. The connections I? and I<, in eq. (17) 

gauge the modular transformations (27) of the fermions. The ‘modular anomaly’ 

is obtained by variation of &I in eq. (22) under the transformations (26). One 

finds 

&cc,1 = 1 l ,,ccq d20(W”Wa),F’(T) + h.c. . 
a I 

This variation can be canceled by the counterterm 

(29) 

‘ct = i CJd’flfa (W”Wa)a + h.c. 

-; 
fa = g c oi lnq2(iT1) 

I 

(30) 

where we have used the transformation q2(iT’) + q2(iT1)eF1. The contribution 

14 



of LCt to A, is of course equivalent to the first term in eq. (16) (including the uni- 

versal piece Y). Thus we have completely recovered eq. (16) by using the massless 

spectrum, its couplings and a ‘stringy’ symmetry (modular transformations). In 

terms of the distinction between the two gauge coupling constants outlined above 

. - we conclude that the one loop contribution to fw coincides with the fa given in 

eq. (30). 

The calculation just presented opens up the exciting possibility of calculating 

A, for other compactifications or its dependence on different moduli of the orbifold 

without doing a full-fledged string calculation. 

GAUGINO CONDENSATION 

Finally, let us apply these considerations to the mechanism of gaugino con- 

densation. For simplicity we will confine ourselves to the case of condensation in 

a hidden sector which is a pure Yang-Mills gauge sector, e.g. the unbroken & of 

the orbifold vacua. Shifman and .Vainshtein point out that there are two differ- 

ent gaugino ‘51 condensates. First, there is the physical condensate which can be 

estimated by an RG invariant scale A, 

(XX), - Ac = M3exP(cv~~~~))’ (31) 

lxx> r is real and modular invariant. However, the quantity which appears in a 

non-perturbative superpotential of N = 1 supergravity and is chiral is 

U N M3exp( -8r2 fw 

cv > * (32) 

Indeed, eq. (32) can be understood in terms of an effective superpotential Wnp(U) 

of the composite chiral superfield U(= WaWa) d escribing the dynamics of gaugino 
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condensation [23,25,71 

wnp =p U fw(S,T) + 5 lnm 
> 

. - fw(S,T) = S + 5 xlnq2(iTJ) - 
I 

(33) 

ww satifies all anomalous Ward identities. Under modular transformation Wnp 

has to transform equivalently to the tree level superpotential W --+ WeBF. This 

determines the transformation law of U to be of the same form U + UemF as 

can be seen from the first term in eq. (33). (The dilaton does not transform 

under modular transformation.) The variation of the term proportional to 1nU 

gives precisely the modular anomaly of the massless modes (eq. (29)) and Ufw 

is the counterterm given in eq. (30).* Th e solution of the minimization condition 

q = 0 is eq. (32). 

The relationship between the two gauge coupling constants depends on the 

scale at which they are compared., At the Planck scale one finds 

167r2 

s;(MPl) = 
167r2Refw + cv xln(T + T)I + 3cvln(S + S) (34) 

I 

which used (22) and the dilaton dependent piece discussed above. This translates 

into the following relationship between the condensates (at Mpl) 

(ReS) (XX), = IUI P’2- . (35) 

The relationship between l/g; and fw and the appropriate condensates at the 

two loop level is discussed in ref. 5. 

* Note that cyl = -CV holds for E s. This was observed in ref. 24 by using the large radius 
behavior of A. 
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Eq. (33) was previously derived in refs. 25,7 for the overall radius modulus. 

(See talks given by M. K. Gaillard and T. Taylor.) By inserting eq. (32) into (33) 

one arrives at the nonperturbative superpotential given in refs. 26,27. (See talk 

given by M. Cvetic.) These papers derived WnP by demanding modular covariance 

of the superpotential. Here we have stressed the connection with the modular . - 
anomaly discussed in the previous section and showed that both approaches are 

essentially identical when applied to gaugino condensation. We have also clarified 

the relationship with the string threshold corrections (16) obtained in ref. 2. The 

calculation of the modular anomaly and deducing its counterterm generalizes in 

some sense the approach of refs. 26,25,27,7 in that it can be discussed for all gauge 

groups and without referring to a gaugino condensation mechanism. 

Hidden sectors including matter fields can similarly be discussed in the spirit 

of this Ii41 section. 
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