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1. Introduction 

A precise measurement of the decay rate for 2 + bb has a number of advan- 

tages as an indirect test for physics beyond the standard model. It is well known 

that a heavy top quark gives large contributions to the 2 partial widths through its 

appearance in vacuum polarization diagrams. These corrections grow as mi, but, 

since they appear only as an overall resealing of the partial widths and a renor- 

malization of sin2 Ow, these effects are essentially universal among fermion species. 

However, the decay to bottom quarks receives an additional, unique correction, 

also proportional to m,2, arising from the direct coupling of the b to the top quark 

in vertex and external leg diagrams. This correction has been calculated by a num- 

l-3 ber of authors, who find that it results in a 1% reduction in the 2 + bb partial 

width for mt = 150 GeV, increasing to a 3% reduction as ml goes to 250 GeV. 

Measurement of the effect is thus difficult but feasible. Once the top quark mass is 

known, this effect could be used as an indirect test between the minimal standard 

model and other models which include new direct couplings to the bottom quark. 

One interesting model of this sort is the minimal supersymmetric extension of the 

standard model. In a recent paper, Djouadi et alP gave a survey of the effects of 

a variety of models of new physics on the 2 + bb partial width. In this paper, we 

will reexamine the effects of supersymmetry in somewhat more detail. 

Since we are interested in the vertex correction, we would like to consider a 

measurement which is insensitive to corrections entering indirectly via loops in the 

2 propagator. An ideal quantity would be the ratio I’(2 + bb)/I’(Z + SS); clearly 

all indirect, or oblique, corrections would be the same for both the b and the s, 

and would cancel in this ratio. Unfortunately this is not measurable in practice, 

and instead one must look at the ratio I’(2 + bb)/I’(Z + hadrons), henceforth 
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called Rb. This quantity has only a weak dependence on oblique corrections. To 

see this, following Boudjema, Djouadi, and Verzegnassif let us write the 2 + bb 

partial width as 

r(z j bb) = rr)(i + v!)+~) + i.49Ap@)), (l-1) 

where I’?) is calculated in the standard model using a small value of the top mass, 

say mt = 50 GeV. Vf)( mt ) contains the mt dependent parts of the vertex diagrams 

and behaves as: 

-$ymt) N -20a mf -- 
( > 13r M; (1.2) 

for large mt, while Apct) contains the oblique corrections from a large top mass 

and has the behavior: 

A#) N ‘YE f 
7&g 

It can then be shown that the branching ratio is given by: 

(1.3) 

r(z + bb) 
Rb = r(z + hadrons) 

= 0.2196(1 + 0.78V;)(mt) - O.O6A#)). (1.4 

We see that that for mt = 250 GeV the oblique term only gives a 0.1% cor- 

rection, which is negligible when we consider measurements at the 1% level of 

accuracy. When we add supersymmetry, we will obtain new vertex contributions 

Vfosy (mt), new oblique corrections ApSUSY, and the supersymmetric corrections 

to the branching ratio will be: 

Asus’ =0.2196[0.78(V~USY(mt) - V~usy(0)) 

+ o.34(v”USY(o) - v~usy(o)) - 0.06ApSUSY] 
(1.5) 

where Vz$sy (0) are the vertex contributions for up and down type quarks, U, d # 

t, 13. The oblique correction is, again, highly suppresed. ViUsy(0) - VfUsy(0) 
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is also a negligible quantity, so the supersymmetric contribution to the branch- 

ing ratio is determined simply by the mt dependent part of the vertex function, 

Vcusy (mt) - Vcusy (0), which will henceforth be denoted by Vfusy. 

The fact that we need only consider the mt dependent parts of vertex diagrams 

greatly simplifies our task. In the minimal supersymmetric model the top mass 

appears in only a limited number of new couplings, and the number of new diagrams 

we must evaluate is small. In particular, diagrams involving neutral particles in 

their loops need not be considered. A possible exception to this rule, the case of 

large tan 0, will be discussed in Section 4. 

This paper is organized as follows. We briefly review the standard model 

calculation, and the relevent details of the minimal supersymmetric extension. We 

then present results for diagrams containing chargino and charged Higgs loops. 

Finally, we look at the high tan ,B case and diagrams involving neutralinos and 

neutral Higgs scalars. 

2. The Calculation 

In the standard model, the diagrams for the vertex correction to 2 + bb 

involving top quarks and charged bosons are shown in Figure 1. Several features 

are worth noting. Since these diagrams involve the exchange of W’s, and since 

the b mass is negligible at the scale we are considering, only the production of left 

handed b’s will be affected. However, this does not result in any significant change 

in the weak asymmetries, since the tree level amplitude overwhelmingly favored 

left handed b’s to begin withG It is also worth noting that even though the top 

mass appears in the denominators of top propagators, these diagrams grow with 
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mt. This is most easily seen in the ‘t Hooft-Feynman gauge, where mt appears in 

the Yukawa coupling of the b to a charged unphysical Goldstone bos0n.l 

Before discussing the additional corrections let us briefly review the relevent 

features of the minimal supersymmetric model. It is well known that, in super- 

symmetric models, one cannot give mass to both the top and bottom quarks with 

a single Higgs doublet. In the minimal case, two seperate Higgs doublets are re- 

quired. This has two consequences for our calculation. First, in addition to the 

unphysical Goldstone boson which arises in the standard model, there is a physical 

charged Higgs boson which will enter our diagrams in loops with the top quark. 

If Hr and Hz are the Higgs doublets giving mass to the top and bottom quarks 

respectively, the physical charged Higgs is given by: 

H+ = cos ,BHc + sin PH,f, (2.1) 

where p characterizes the relative sizes of the two vacuum expectation values, 

tanp = vr/va. The charged Goldstone boson is the state orthogonal to this. The 

minimal model predicts that H+ will have a mass MH+ which is greater than Mw.’ 

The second consequence of the two doublet structure is that relationships between 

the Yukawa couplings and the quark masses are modified. Whereas in the standard 

model the top and bottom Yukawa couplings were give by: 

XSM = 9mt XSM = gmb 
t 

&2Mw’ b &‘Mw ’ 
P-2) 

with the addition of a second doublet these become: 

gmt 
xt = fiMwsin/?’ 

gmb 
” = fiMwcos,B’ (2.3) 

It follows that H+ has a coupling to a left handed b proportional to mt cot p and 

to a right handed b proportional to rnb tan ,O. We note that values of ,6 for which 
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tan /3 >> 1 will lead to a greatly enhanced &,. This situation is analyzed in Section 

4. For now we assume tan ,6 is of order one and the bottom coupling can be 

neglected. 

The diagrams involving the charged Higgs scalar appear in Figure 2. All di- 

agrams are proportional to mf cot2 /3 and their sum is finite. As was the case for 

the standard model, only left handed b’s are affected. We give explicit formulae in 

Appendix B. These diagrams have been studied in some detail by Hollik’ in the 

context of the general two doublet model, and our results are in agreement. 

Finally we consider the effects of the supersymmetric particles themselves. Su- 

persymmetry requires that whenever we have a cubic coupling involving 2 fermions 

and a Scalar, &@bGC -l- h.C, it InUSt be part Of a larger term #aqbqC •l- &\Ir,qb •l- 

&!I!,@‘, + h.c., where qa and & are supersymmetric partners. Thus the coupling 

between the Higgs, right handed top quark and left handed bottom, proportional 

to Xt, will be accompanied by a coupling of the same strength between the bot- 

tom, higgsino and “right” stop. A more detailed description is given in Appendix 

A. The only complication is that a mixing term arises between the gauginos and 

higgsinos, and we must take as mass eigenstates charginos, designated x*, which 

are mixtures of higgsinos and winos. 

Figure 3 shows the supersymmetric diagrams contributing to I’(2 + bb). Note 

that all these diagrams are proportional to mf/ sin2 ,8, and have a finite sum. Our 

explicit result for the supersymmetric contribution is given in Appendix B. For 

the special case of unmixed squarks, this agrees with the result of Djouadi et al.: 

except that we find the opposite overall sign. We defend our choice of sign in 

Appendix B. 

In addition to tan/? and MH+, there are a number of other parameters in 
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the supersymmetric lagrangian which enter into this calculation. A coupling p 

between the two Higgs fields and a supersymmetry breaking wino mass parameter 

M enter via the chargino mass matrix. There are also squark mass terms, including 

in general mixing between the left and right squarks. This is a large number of 

free parameters, and we shall explore which regions of parameter space yield a 

significant effect. 

3. Results 

Now let us consider the size of the effects. Figure 4 is a plot of & versus top 

mass, for sample values of parameters which are chosen to show a maximal effect. 

Results are shown for the minimal standard model (MSM), the two-doublet model, 

and the minimal supersymmetric standard model (MSSM). 

We see from Fig. 4 that in the standard model the branching ratio is decreased 

from the tree level expectation. Adding a second Higgs enhances the effect. How- 

ever adding the supersymmetric particles increases the width I’(2 --+ bb), canceling 

out to some degree the contribution of the H+ and the MSM radiative corrections. 

The fact that supersymmetric contribution is positive unfortunately makes the de- 

tection of such effects more difficult. However, the fact that this sign is unique 

to the supersymmetric contribution would, if observed, provide a clear distinc- 

tion between this and a non-supersymmetric two-doublet ,model. We note that 

for different parameter values, the MSSM result could be anywhere between the 

two-doublet and MSSM curves of Fig. 4, and for some parameters the H+ and 

chargino contributions could cancel, leaving the MSM prediction unchanged. 

Numerical results for the H+ diagrams can be found in Hollik’s paper on the 

two doublet model.8 For reference we include a plot of ViHt) as a function of MHt 
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(Figure 5). We note that while it can be quite large for tan@ = 1, it falls off as 

tanm2 /? and is negligible for tan ,0 > 2. 

Now let us examine the dependence of supersymmetric diagrams on parameter 

space. This is difficult to plot as the number of parameters is large. The dependence 

on mt however, coming only from Yukawa couplings, is simply quadratic, so we 

shall take mt = 150 GeV. For different values of mt our results simply scale as 

(mt/150)2. The effects of tan p, M, and ~1 are more subtle as they become mixed up 

both in the masses of the charginos and in the mixing angles defining the chargino 

couplings. Perhaps most useful are plots describing the effects of these 3 variables. 

Raising llizt lowers the magnitude of the effect but changes the dependences on 

the other parameters very little. For the moment we assume there is no mixing 

between right and left squarks. 

In Figures 6 and 7 we plot contours for VP’) as a function of M and p, for 

tan ,B = 1 and tan /I = 10 respectively. For reference, we have also plotted the limits 

in parameter space coming from past and future direct searches for supersymmetry. 

The fact that supersymmetric particles have not been observed in 2 decay allows 

us to exclude regions in the M, p plane which give chargino masses below 45 GeV. 

This is shown by the first set of dashed lines. Neutralino masses depend on another 

supersymmetry breaking parameter, the U(1) gaugino mass M’, as well as M and 

p. If we assume our model is embedded in a grand unified theory, we may relate 

M’ to My and then put a stronger limit by asserting that the 2 lightest neutralinos 

must have a total mass greater than 90 GeV. This is shown by the dotted lines. 

The second set of dashed and dotted lines show what these same limits will be if 

supersymmetric particles are not observed directly at LEP2, assuming a center of 

mass energy of 180 GeV. 

8 



From Fig. 6, taking into account the factor of 0.78 appearing in (1.5), we see 

the maximal chargino contribution to & is about 1.2% for mt = 150 GeV. This is 

a significant effect, slightly larger than the standard model correction. However, 

this large contribution occurs for values of M and p along the edge of the region 

allowed by current chargino mass limits. For these parameters, charginos would 

soon be directly observable. Perhaps it is more useful to consider how large the 

effect could be in regions of parameter space which will not be accesible to LEP2. 

From Fig. 6 we see that the maximum contribution above the second set of limits 

would be approximately 0.6%. This could still be significant, especially for a top 

mass somewhat higher than 150 GeV, however we must not forget that it will be 

partially canceled by the H+ contribution. In fact, from Fig. 5 we see that a 0.6% 

chargino contribution would be almost completely canceled for MHt N 100 GeV. 

For tan,B = 10, we see from Fig. 7 that the maximum chargino contribution 

to & would be 0.5%. Th’ is is somewhat smaller than the tan/3 = 1 case, mostly 

because of the sin-’ p d e en ence of top Yukawa coupling. In the region inaccesible p d 

to LEP2, the maximum is 0.3%, which is unmeasurably small. For a 250 GeV top 

quark, however, this grows to a 0.7% effect, none of which will be cancelled since 

the H+ contribution is negligible for large tan ,B. These results change very little 

with tan ,B for tan /? > 3. 

Finally, let us consider the effect of squark masses and mixings on these results. 

The above results all assumed that there was no mixing between in and in, and 

that in, which couples to the left handed b, has a mass of 100 GeV. In Figure 8 

we show the dependence of the chargino graphs on the mass of the right handed 

squark, for sample values of M, ~1. The chargino contribution falls off rapidly with 

the squark mass, decreasing by 33y o as fit is increased to 150 GeV, and by 50% 
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when it is increased to 200 GeV. In the case of mixed L and R squarks, we will 

have mass eigenstates 

t”l = cos 6t; + sin et;, 

22 = - sin et; + cos f3f~. 
(3.1) 

In Figure 9 we assume fr to have a mass of 100 GeV, and show the dependence 

of VP+) on ~722 and 8 as r?i2 is varied from 100 to 300 GeV. Obviously, mixing 

is irrelevent when the two masses are degenerate or nearly so. When there is a 

large mass difference, the maximum effect occurs when 8 is close to zero (actually 

N 100), so the effect of mixing is in general to decrease the size of the contribution 

from the unmixed case. 

4. Large Tar@ 

In the case where tan p >> 1, a number of interesting new effects arise. The 

bottom Yukawa coupling constant Xb 0: ma/ cos ,L? 21 mb tan p becomes large, and 

indeed surpasses Xt at tan@ = mt/mb, and so we may in principle get sizeable 

contributions from graphs proportional to the bottom coupling, which we ignored 

before. These include loops with neutral gauginos/higgsinos and neutral Higgs 

scalars. Also, whereas for low tan ,B all radiative corrections were to the production 

of left handed b’s, for high tan ,B the production of right handed b’s can be enhanced, 

and may have an observable effect on the weak asymmetries. We will present 

corrections to the bottom left-right asymmetry, 

AiR = 
a(2 --+ b&) - a(2 + b&) 
a(2 + bLbR) + a(2 -+ b&) > ’ (44 

as well as to &. AiR can be most easily observed in the polarized forward- 
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backward asymmetry for bb production: 

&,pol. = 
( 

a(e, + BF) - a(e, + BB) - a(e, + BF) + a(e, + BL~) 

a(e, + BF) + a(ei + BB) + a(ei + BF) + a(ei + BII) > (4.2) 
=;AiR(l - 2x) 

where x is the parameter of B - B mixing. We will present results for tan ,B = 70; 

for different large values of tan ,B simply scale these results as tan2 ,B. 

First, we note that the chargino graphs considered earlier have right-handed 

components proportional to &. Figure 10 shows their contributions to AiR and 

VP’). We notice that the contribution to VP’) is negative, opposite to that from 

the chargino’s left handed contribution, and of a smaller magnitude, and would 

therefore decrease the net chargino contribution to &,. The high tan /? contribution 

to AiR would be more significant, being up to .Ol in the currently allowed region 

and .003 in the region outside of LEP2 range. 

Secondly, neutralinos, neutral -gauginos and higgsinos which mix as described 

in Appendix A, have both left and right handed couplings to the b proportional to 

&,. The relevent diagrams are shown in Fig. 11. . Figures 12 and 13 show contours 

for VP”) and for the neutralino contribution to AiR. We see that there is a region 

along the edge of the currently allowed parameter space where the contribution to 

Rb would be quite large, and in this region it would be positive and enhance the 

chargino contribution. Unfortunately, the neutralino contribution falls off rapidly 

away from this region and is negligible outside the LEP2 boundary. Thus it would 

only have a significant effect in the case where supersymmetric particles would 

soon be directly observable anyway. 

Finally, we must consider contributions from the neutral Higgs scalars, and 

from the right handed couplings of the charged Higgs scalar considered earlier. In 
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the minimal supersymmetric model, there is one physical pseudoscalar, 

A0 = cos ,BIm( Hy) + sin ,BIm( Hi), (4.3) 

and two neutral scalars, 

Ho = sin oRe(Hf ) + cos crRe(Hg) (44 

ho = cos oRe(Hf ) - sin oRe(Hi). (4.5) 

Ho and ho have Yukawa couplings to b proportional to &, cos a and Xb sin (Y re- 

spectively, and k” has a coupling porportional to Xb sin,&y5 , so the diagrams in 

Figure 14 give contributions proportional to rni tan2 p. These diagrams are stud- 

ied in some detail in a recent paper by Denner et al. on the non-supersymmetric 

two-doublet mode1.l’ The MSSM gives tree level relations between the masses of 

these particles,’ which are rather simple in the limit of large tan ,B: 

M;, = M& + M;o (4.6) 

MHO = max{Mz, MAO} Mho = min{Mz, MAO} P-7) 

with 

-0 =-$, MA0 < Mz; 
cY= 

0, MAO > Mz. 
(4.8) 

In Figure 15 we plot VkH), which includes the effects both charged and neutral 

Higgs scalars, and the scalar contribution to AiR, as a function of MAO, using 

these tree level relations. For a pseudoscalar mass near 45 GeV there would be a 
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large positive contribution to Rb which would enhance the chargino and neutralino 

contributions, while for larger MAO it would be smaller and negative. The scalar 

contribution to AiR would be positive and would add constructively with the 

chargino contribution. 

5. Conclusion 

In the minimal supersymmetric standard model, radiative corrections to the 

ratio I(2 -+ bb)/F(Z + hadrons) could result in an increase in this quantity over 

the standard model expectation. However, this effect would be detectable at the 1% 

level of experimental accuracy only in a limited region of supersymmetry parameter 

space, much of which will be ruled out if supersymmetric particles are not observed 

directly at LEP2. The usefulness of this process as a complement to direct searches 

for supersymmetry ultimately depends on the top mass; for mt N 150 GeV its 

usefulness would be rather limited, while if the top mass were surprisingly large, 

say rnt 21 250 GeV, it might still provide a significant opportunity. 

The authors thank M. Peskin for suggesting this topic and for many useful 

conversations. 

APPENDIX A 

For reference, we give the parts of the supersymmetric lagrangian relevent to 

this calculation. For a more complete treatment, see for example Gunion and 

Haber.ll We borrow much of our notation from Haber and Kane.’ 

The supersymmetric particles entering this calculation are the following: the 

13 



gauginos, 

iv* = +pl gv2), cv3, B, (A-1) 
the higgsinos, 

(A-2) 

and the squarks, ,?L, in and by, bR. Fermions are represented here by two compo- 

nent left-handed Weyl spinors. The Higgs and higgsinos are taken to be members 

of the conjugate representation of sum. The squarks are chosen to have the 

conventional quantum numbers of their spin l/2 partners. 

Let b, t represent the left handed components of quark fields, and 6, t the right 

handed components, all in the left handed Weyl representation. The Higgs-quark 

couplings and their supersymmetric counterparts are then: 

/&H = - x,{H,cl+Qi) + zt,($‘)Qi) + &(@“t)} 

- X,{H,(2)(bQi) + i&(ii~2'&i) + &i(fi,!2'b)} + h.c., 
(A-3) 

where &1,2 = t, b. Here, for two spinors 1c, and x, ($x) = cffp$pxn. 

The higgsinos and winos have the mass term: 

fiMw sin ,8 -iT;i/+ 

p )( > 
fi+ - (A-4) 

The mass eigenstates form two Dirac fermions: 

xi= xt 
( > io2(x;)* 

i= 1,2 (A-5) 

where $t2 = -ir?/ *, &*. Explicit expresions for Vii, Uij, and the mass eigenvalues 
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Mi can be found in Ref. 9. The neutralino mass term is: 

J& = -;($“)TMo+o 

M’ 0 -MwsinP($) Mwcosp($) 

M” = 
0 M Mw sin /3 -Mw cos p 

-Mw sin p( $, Mw sin ,B 0 -P 

Mwcos/3($) -Mwcosp -P 0 

The mass eigenstates are the four Majorana fermions: 

0 
xQ = xi 

c > ia2xP’ 
i= 1,4 

(A-7) 

(A.9) 

x; = Nij$,o (A.lO) 

The Nij must be calculated numerically. The squark mass matrix is conventionally 

parameterized as: 

($ $J 

L2 - 2 m +mf Ahrnt 
7 

Atimt R2 - 2 m +mf 
(A.ll) 

The mass eigenstates are t”; = TijJj where 41,~ = ~L,R. An explicit expression for 

Tij can be found in Ref 9. 
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In four component notation, the quark fields are 

The coupling of the charged Higgs scalar to the bottom is: 

H+f(mt cot ~PL + rnb tan PPR)b + h.c., 

(A.12) 

(A.13) 

where PL = i(l - r5) and PR = i( 1 + r5). The couplings of the b quark to 

supersymmetric particles are: 

1 Y’ + -(-NT1 - gN;*,)“b;(z;PLb) - XbN;*qi;(&‘Lb) + kc. 
Jz3 

(A.14) 

(A.15) 

where we have included gaugino couplings as well as higgsino couplings. Feyn- 

man rules for the quark-squark-guagino/higgsino vertices follow readily from this 

expression. This lagrangian uses the convention DD, = aP - ig?. tip. 
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APPENDIX B 

We give here explicit formulae for the vertex functions. 

In the limit of vanishing bottom mass, the effect of the vertex diagrams can be 

written as a change in the effective left and right handed couplings between the 2 

and the b: 

vi =vL + 
a 

47r sin2 0~ 
F~(p~,mt) 

?Jk =VR + 
a 

47r sin2 0~ 
FR(P2,mt), 

where 

1 1 1 
vL=-z+3 - sin2 0~ v~ = 3 sin2 0~. 

ow 

(B-2) 

The functions FL,R are related to the function Vb by: 

Va= a ~VLFL(M~,~~)+~VRFR(M~,~~) 

47r sin2 0~ v; + vi 
P.3) 

The functions for the Higgs contribution are: 

- co(MH+, mt, mt)]vt!L 

m,2 
-I ~c2(MHtrmr.mt)V~~R}X~,~ 

W) 

Fpk =cg(mt MHt MHt)(l - sin2 Ow)Ai R7 9 7 , 2 

where 

VP’ = 1 - 2 sin2 0~ 
2 3 

vg) = -i sin2 Ow, P-5) 

mb tan p 

xL = &Mztanp XR = &Mw ’ 
w-3 

and PR is the mass scale which arises in dimensional regularization. Note that mb 
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may be taken as zero except in those places where it is enhanced by l/ cos ,L?. 

The chargino contributions are: 

Fifa = C C bl(ji2j, M;, mi)vL,R[AfiR12 
i=1,2 j=1,2 

42 = c c c ( 
id,2 j=1,2 k=1,2 

CO MI,, hi, tij)( J sin2 OwSij - iT$Tjl)AkRA:k9R 

ihk, Mi, Mj) - f - co(fik, Mi, Mi)]O,ff’L 
(B.7) 

i=1,2 j=l,2 k-=1,2 

where 

A$ = - mb 

&‘Mw cos ,B > 
T;luj2, 

Mi are the chargino masses, O$, 04 are defined by 

Ok = - COS2 OWSij + ~U:,U,2 

0: = - COS2 OWSij + kKzVj>, 

(B.8) 

and Tij is the squark mixing matrix defined in Appendix A. These expressions 

should be subtracted at mt = ma/ cos ,B = 0 when used to calculate the branching 

ratio Rb. 

These expressions disagree with those appearing previously in the literature4 

by an overall minus sign. The overall sign can be checked by considering those 

diagrams involving b self energy corrections. If we increase the b mass until it 

exceeds the sum of the stop and chargino masses, the b will aquire a width into 
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these particles, and this width will be related to the imaginary part of the b self 

energy, I%$>, as 

I’(b + t”x-) = -2 ImII(mb). (B.lO) 

The imaginary part of II must therefore be negative in this case, and this 

provides a check on the overall sign of our expression. Once the sign of the external 

leg diagrams has been established, the signs of the other diagrams are fixed by the 

cancelation of divergences. 

Finally, we give expressions for the neutralino diagrams: 

Fita = 1 C bl(l’izj, M;, m~)vL,RIA~~R12 
i=1,4 j=1,2 

F&=C-C c ( 
i=1,2 j=l,2 k1,4 

CO Mk7 ki7 hj)(iBrlBjl - 5 sin2 OW6ij)AkRA3ff7R 

c6 Cik, Mi, Mj) - f - cO(jFk, Mi, Mj)]OtTL ( 
i=1,4 j=1,4 k=1,2 

+ y~z(fik, Mi, Mj)O~?R}A~~RA;~PR 

where 

A$ = -$i tan OwNj; - NTz)Bir - 
( 

mb 
JzMw cos p 

> 
N;‘,Biz, 

1/;z AC = - tan OWN;1 Bi2 - mb 
3 ( &‘Mw cos ,0 > 

Ni4Bil) 

and 

0; = f (Ni4 Nj4 - Ni+3 Nj3) 

0$-o;. 

(B.11) 

(B.12) 

(B.13) 

Here &i are the bottom squark masses and Bii is the bottom squark mixing matrix 

defined analogously to Tij. 
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The b’s and c’s here are reduced Passarino-Veltman functionsf2 defined by 

[bo, h, bz, b](ml, m2, q2) = 
J 

dx log[-q2x(1 - X) + xrnf + (1 - z)ml - ie]/&) 

0 

x 11, x7 (1 - 4,+ - 41 
(B.14) 

[co, cl](w, ma, m3) = 
J 

dxdydzb(a: + y + z - 1) log(A/&)[l, z] 

Cc2, c3, c4, c5, c6, c7](ml, m2, m3) = 
J 

dxdydzb(z + y + z - 1)(&A) 

x [L *, z2, z3, z, “Yl 
(B.15) 

where 

A = zrnf + xrni + yrni - ~(1 - z)mi - zyP2 - k. (B.16) 

For the reader’s convenience we give expressions for the functions used here in 

terms of the conventional Passarino-Veltman functions 
13 

: 

bl(ml, m2) =Bl(m, ml> + :(A - lw& 

cO(ml, m2, ma) = - Z24(m2, ml, m3) + - In&) 
(B.17) 

c2(ml, m2, m3) =&C0(m2, ml,m3) 

Cg(ml, m2, m3) = - pi [c23 + cll] (m2, ml, m3), 

where A = l/(2 - d/2) - y - 1 nr is the divergence which arises in dimensional 

regularization. 
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FIGURE CAPTIONS 

1) Standard model diagrams contributing to 2 -+ bb in unitary gauge. In 

renormalizable gauges these are accompanied by diagrams with unphysical 

charged Goldstone bosons. 

2) Charged Higgs diagrams contributing to 2 + bb. 

3) Chargino diagrams contributing to 2 + bb. 

4) & as a function of top mass for 1) the minimal standard model (MSM), 

2) the standard model with a second Higgs doublet (2HD), 3) the minimal 

supersymmetric standard model (MSSM), assuming tan p = 1, M = 50 GeV, 

p = 30 GeV, fit = MHt = 100 GeV. 

5) ViH+) as a function of MHt , assuming mt = 150 GeV. 

(x+1 6) Contours for V, x 100 as a function of M and ,Y. for tan@ = 1 and 

+Fit = 100 GeV. Lowest dashed lines show limits set from current bounds 

on chargino masses, as explained in the text. Higher set of dashed lines 

shows the the corresponding limits which would be set by LEP2. Dotted 

lines show corresponding limits set by neutralino masses. 

7) Contours for V, (“) x 100 for tan ,B = 10, fit = 100 GeV. 

8) VP+) as a function of fit for tanp = 1 and a) M, p = 50,30 GeV, b) 

M, p = 80, -80 GeV. 

9) Contours for Vpt) x 100 as function of mixing angle and heavier squark 

mass, for tan ,B = 1 and M, p = 50,30 GeV. 

10) Contours showing chargino contribution to AiR x 100, assuming tanp = 70 

(x+1 and fit = 100 GeV. The right-handed contribution to V, can be obtained 

by multiplying by -l/2. 
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11) Neutralino diagrams contributing to 2 + bb. 

12) Contours for VP’) x 100 for tan@ = 70 and a squark mass of 100 GeV. 

13) Contours showing neutralino contribution to AiR x 100. 

14) Neutral scalar diagrams contributing to 2 + bb. 

15) Contributions to VkH) and AkR from charged and neutral scalars for tan p = 

70. 
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