
.- SLAC-PUB-5511 
May 1991 
(A) 

DESIGN OF VAX SOFTWARE FOR A GENERALIZED FEEDBACK SYSTEM* 
F. Rouse,(“) S. Castillo,(‘) T. H’ uuel, B. Sass, and H. Shoaee 

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA 

Abstract - 
Fast feedback in the Stanford Linear Collider (SLC) 

not only works, but is necessary. We have several examples 
of.currently running systems that have greatly improved 
the nerformance of the accelerator. In order to increase 
the iumber of feedback loops, it has become necessary to 
redesign the system to allow a database description of any 
feedback loop. We use digital control theory to formally 
describe each feedback loop in terms of a matrix equa- 
tion. Then a new feedback loop requires only an update to 
the database, and perhaps the installation of a inter-micro 
communications link. This paper details the design of the 
VAX software required to implement the new system. 

KISNET 
INTER-MICRO 

Communications + 
I Da%L INTRODUCTION 

The SLAC Linear Collider (SLC) is a novel accelera- 
tor designed to produce e+e’ collisions at center-of-mass 
energies up to 100 GeV, i.e., around the mass of the neu- 
tral intermediate vector boson Z”. The collisions occur 
between electrons and positrons produced on every cross- 
ing as opposed to being stored for an extended time, as 
in electron-positron storage rings. Currently, the SLC has 
feedback loops that stabilize the energy of the machine, the 
orbit through a set of collimators near the end of the linear 
accelerator, and one that maintains the beams in collision. 
These feedbackloops are essential to the operation of the 
SLC. The software for these feedback loops resides on both 
a VAX 8800 and a series of INTEL 80386 microprocessors. 
The 80386 processors actually control the devices that ac- 
celerate and control the beam. 

We have designed a new system that replaces the cur- 
rent software with generic, database-driven software. We 
rely on the SLC database to specify each different loop. 
This is possible because the action of any feedback loop 
can be cast into a series of matrix equations in the formal- 
ism of digital control theory [l]. 

The problem of closed-loop feedback can be described 
by a series of matrix equations. We therefore use the term 
vector to refer to the vectors of measurements, state vari- 
ables, and control elements used in the feedback loop. We 
use the term matrix to refer to the matrices that connect 
the vectors together into an equation [l]. 

The SLC database specifies the matrices and describes 
the vectors the matrices act on. The database also contains 
the complete description of what needs to be measured 
and how to affect the actuators (usually magnets) to carry 
out the changes required to stabilize the loop. We design 
the matrices and specify the loop in the database, add the 
hardware for the network linking the different micros in 
the loop, and reboot the micros to start up a new feedback 
loop in this new system. 

* Work supported by Department of Energy contract 
DE-ACO3-76SF00515. 

(a) Present address: University of California at Davis. 
(b) Present address: Apple Computer Corporation 

I Control 
Rogram 

VAX8800 

SLCNET LINAC MICROS 4.9, Ma-/AI 

Figure 1. Overview of the components for one feedback loop. 

Figure 1 shows the basic components needed for one 
loop. Matrix design is done offline [l]. The VAX or- 
chestrates how each and every feedback loop works. The 
INTEL 80386 microprocessors actually do the work of 
the feedback loop: measure, compute the corrections for 
and control the hardware devices for the beam. The mi- 
croprocessors communicate among themselves via a new 
network called KISNet [2]. 

Primarily, the VAX orchestrates the new feedback 
by providing the initialization of all microfeedback jobs, 
the user interface for analysis and operator diagnostics, 
and the management of the feedback database. 

ELEMENTS OF THE VAX SYSTEM 
The new feedback system is first and foremost a 

database driven system. We built a linked-list system that 
classifies relevant information together. The objects cho- 
sen are shown in Figs. 2 and 3. The feedback structure is 
the highest ranking linked list. Each linked list consists of 
pointers to the lower ranking lists, along with the name 
(used as a key) and other pertinent information. The mi- 
crostructure mainly points to descriptors associated with 
each micro attached to the loop. There are also plotting 
and analysis structures used by the user interface. 

. 

The model hierarchy shown in Fig. 3 stores the infor- 
mation associated with the vectors and the matrices. Ring 
buffers store pulse-by-pulse data from the microprocessors. 
Data mainly consists of vectors and the status of each vec- 
tor element. We store information describing each element 
in the vector and the matrices used by the feedback loop. 

We separated the design of the hierarchy of the feed- 
back loop and the interaction with the SLC database 
from application code. This allows changes in the pre- 
cise representation of the feedback hierarchy or changes 

Presented at the IEEl3 Pa&j& Accelerator Conference, San Francjsco, CA, May 6-9, 1991 



I . 

Figure 2. Diagram of feedback hierarchy. 

Element Element 
kbels for labels for 
measurement state 
vector vector 

Element 

E%El:” 
vector 

Element 
labels for 
reference 
vector 

in the SLC database without having to change the 
application code. The feedback code is layered as 
shown in Fig. 4. The outermost layer is the SCP 
layer. This layer manages all user interfaces. We 
request actions via touch panels or terminals, the 
SLC’s standard interface devices. Actions include 
loop control and calibration, diagnostic interven- 
tions, display of recent feedback data (measure- 
ments, states or actuator settings) as a function 
of time, and listing of pertinent loop information. 
Displays are shown on a color graphics monitor. 

The next layer is called the application util- 
ity layer. This layer buffers calls from the appli- 
cation code layer to the kernel layer. The most 
important layer is the kernel. Here the feedback 
hierarchy is stored. The particular representation 
of the hierarchy is a series of linked lists. 

The user interface in the new system allows 
for arbitrary numbers of feedback loops, micros, 
and plots. Additionally, the user interface handles 
all common interface functions, such as changing 
the state of a feedback loop; turning on or off a 
particular device; listing the status of a feedback 
loop; analysis and histograms; and listing the feed- 
back loops, micros, plots, or ring buffer elements. 

SLC DATABASE 
The information in the database for the feed- 

back system consists of two classes: feedback loop 
information and display information. Feedback 
loop information includes a loop name, descrip- 
tions of the micros carrying out the measurement, 
controller and actuator tasks of the loop and the 
communication links between them, the feedback 
matrices, and the vectors the matrices act upon. 
We also specify the state vector that the controller 
uses to compute the actuator settings. The display 
information consists of the plot names, windowing 
for specified plots, and variables. We key off of the 
feedback loop name for all information pertaining 
to the loop. 

The matrices are generated offline by model- 
ing the action of the feedback loop along with the 
model of the accelerator. The matrices are then 
loaded into the SLC database by the offline pro- 
gram. They are stored in a sparse format. 

The vectors must have specific device in- 
formation, since the measurement and actuation 
drivers need CAMAC control words and locations 
in order to read out or set their respective devices. 
Typically, feedback routines only need a pointer to 
specific device information. The device informa- 
tion is already in the database to allow control of 
the accelerator by preexisting applications. Each 
vector element has a corresponding label that in- 
cludes the keywords required for unique database 
access. Finally, the database also describes physi- 
cal and display units, tolerances, axis labels, etc., 
for each vector element 

I MODEL 
MATRKXS I 

0 
matrix 
data 

l- 
metrix 
data 

Figure 3. Diagram of model hierarchy. 

&z 

2 

OBJECTS 
The basis of the categorization system is the 

linked list. Each linked list contains different in- 
formation, but movement from node to node along 



The Link List Object 

I I I I 
_------- _--v--w-- 

AU 
LAYER 

KERNAL 

c91 
-4 Q SLCNt I 0 

Figure 4. Layering of the VAX feedback code 

the link list is a common action. Additionally, the major 
user interface is through programmable CRT touch panels. 
Often we do not- know how many buttons will be required 
on the panel. The action initiated by pushing any one 
button may, of course, be different. The action of pushing 
a feedback loop button is different than pushing a button 
that describes the element in a vector. Yet the act of selec- 
tion or deselection of a button, or the printing of a screen 
can be described by common code. 

The use of “objects” [3] can elegantly represent our 
problem. We allow our objects to inherit instance variables 
and internal methods to give a slightly different behaviour 
to our various linked lists and button actions [3]. 

Let us consider our linked list class in particular. 
We have linked lists of feedback loops, micros, plots and 
plotting variables within a feedback loop (see Fig. 2). 
This linked-list class is an example of a container class 
[3]. The class handles movement from node to node along 
the list, listing each node in the class, adding nodes to and 
removing nodes from the list, and creation and deletion of 
the entire linked list. Each subclass implements its own 
particular behavior. 

Internal information 
Size of instance variables 
Size of methods 
Pointer to instance variable 
Pointer to methods 

name name 
lat+ 
g;t;;p link list info 

prev link 

Information 
4.m in link list - cl 
Figure 5. The structure of an object. This example shows 
the linked list object. The instance variables are also shown. 
The methods are the common actions for all linked lists. 

The actual structure of the linked list object that we 
implemented is shown in Fig. 5. The description of the ob- 
ject is only required in a fully objective system, though we 
use the SIZEOF fields to create copies (new instances) of 
objects. The important part of the object are the pointers 
to the instance variables and to the methods. 

CONCLUSIONS 
We have described the VAX code used by a general- 

ized feedback system at the Stanford Linear Collider. The 
system categorizes various classes of information by the 
use of linked lists. The lists use a primitive form of an 
objective-C object in which a container class describes all 
linked lists. This allows us to have an arbitrary number of 
feedback loops whose behaviour can be globally modified 
by changing common code. 

ACKNOWLEDGMENTS 
We thank John Zicker for his early work on this prob- 

lem. We also thank Lee Patmore, Phyllis Grossberg and 
Bob Hall for their efforts on the VAX code. 

REFERENCES 
[l] T. Himel et al., “Use of Digital Control Theory State Space 

Formalism for Feedback at the SLC,” Proc. 1991 IEEE 
Particle Accelerator Conf., San Francisco, CA, 1991. 

[2] K. Krauter and D. Nelson, “SLC’s Adaptation of the ALS 
High Performance Serial Link,” ibid. 

[3] B. Cox, “Object Oriented Programming, The Evolutionary 
Approach,” (Addison-Wesley, 1986.) 


