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ABSTRACT 

The spectra of linear coherent oscillations due to beam-beam interaction are 

calcula&d in the paper for two model distributions in unperturbed bunches. In both 

cases the calculations predict the splitting of coherent spectra of any multipole mode 

onto generally infinite amount of submodes with well defined ground state. Among 

other general features, the influence of Landau damping on the stability of coherent 

beam-beam oscillations is discussed. 
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1. INTRODUCTION 

Better understanding of limitations due to the interaction of colliding bunches 

seems to be of primary importance for the realization of coming B Factories. Among 

others, this manifold problem includes the analysis of the behavior of strong-strong 

bunches and, as the first step, the performance of the calculations related to collective 

stability of colliding bunches. Numerous experimental and theoretical publications 

(many references on this subject can be found, for instance, in Refs. [l-3]) indicate 

the permanent interest to this field. First of all this problem is of practical importance 

due to possible applications for the diagnostic of colliding beams and limitations on 

the position of the working point of a collider. 

The second field of interest can be considered as more theoretical and is asso- 

ciated-with the construction of the theory, describing kinetic processes in colliding 

bunches, their heating (emittance blow-up) due to beam-beam instability and as- 

sociated energy exchange between particles and coherent oscillations or fluctuations 

Ref. [4]. All th ese applications require the most comprehensive knowledge of beam- 

beam coherent spectra. 

Straightforward calculations of collective spectra for beam-beam interaction typ- 

ically meet serious mathematical difficulties. Therefore, the solvable models, which 

can provide the simplified description of the main properties of coherent beam-beam 

oscillations, becomes very desirable. There are two widely known approaches to this 

problem. One is based on the so-called rigid bunch model, when coherent oscillations 

of bunches are described by dipole momenta only (see, for instance, in Refs. [1,2] and 

references mentioned there). The other is based on the solution of one dimensional 

Vlasov equations assuming so-called water-bag distributions in colliding bunches (see, 

for instance, in Ref. [3]). In both cases simple solutions can be obtained analytically, 
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and collective spectra, containing only one line predicted. In principle, it may hap- 

pen, but usually a very strong degradation of the spectrum caused by the model itself 

is indicated. Even a brief examination of integral equations, which have to be solved, 

indicates the splitting of modes with the given multipole number into generally infi- 

nite sets of submodes Ref. [4]. S ince the perturbed part of the solution of the Vlasov 

equation is proportional to the gradient (in oscillation amplitudes) of unperturbed 

distribution functions, one can expect that coherent oscillations are mainly located 

around the bunch width, with strong decay in the core and tail regions of the bunch. 

However, if the spectrum of oscillations contains higher states, these can penetrate 

into the core, or tail regions, disturbing particles there. 

In this paper we shall consider two models, when such an analysis can be ex- 

tended far enough. 

2. General Equations 

The most general description of coherent beam-beam oscillations is provided by 

the technique based on the Vlasov equation. In this paper for the sake of simplicity 

we shall consider the cases, when only betatron coherent oscillations are excited in 

bunches. Then, if betatron oscillations of individual particles are described by the 

action-phase variables (I,, $a; Q = z, z), these equations read: 

( 
d + ;,d f(2) + c&g af(2, = 0 . x a?j > a+ ar 

(1) 

Here Lr,:! (respectively, ~52~) is the Lagrangian, describing the interaction of 

particles from the bunch 1 with fields of the counter-moving bunch 2; f(1)2) are distri- 
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bution functions of colliding bunches. For relativistic and counter-charged particles 

(eIe2 = -e2; y = E/Mc2 >> 1, E is the particle energy) one can write: 

k2 = k; + k,2 , dI- = d3pd3r, 

where Ati(r’, 6,292) = 6 - tiS, 8 = s/R 0 is the particle azimuth tiS = w,t is azimuth of 

the synchronous particle, 27rRo is the orbit perimeter, ST(~) is the periodic S-function: 

&T(d) = 2 exp(ind)/zr . 
n=-co 

As usual, to calculate both stability criteria and the spectra of small coherent 

oscillations one may linearize Eqs. (1) near the stationary state, which by the defini- 
_ 

tion is described by distribution functions, independent of phase variables: 

(3) 

fp2)(T) > j(‘y”)(r’, J, &) . 

In fact, for colliding bunches such a structure of the distribution function assumes 

that particle oscillations in the stationary state are stable and therefore the working 

point of the machine is placed outside the stopbands of the incoherent beam-beam 

instability. 

If the contributions from the stationary part of the perturbation (Lo = L[fo]) 

is included in tunes ~71,s and ,&functions of the ring, Eq.(3) yields the system of 

equations: 
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describing coherent oscillations of colliding bunches. For practical use these equa- 

tions must be supplied by formulae, describing unperturbed oscillations of particles 

and generating the canonical transformation from the variables (?, j?) to action-phase 

variables. For the sake of simplicity we shall assume here no dispersion at the inter- 

action point (IP), and that colliding bunches are rather short 011 << ,L?*, where 011 is 

the length of each bunch, ,B* is ,&function at the IP. Then betatron oscillations of 

particles are described by the formulae: 

(x7 4 = @iGcos ($ + xP)),,,t P,,, = (5) 

_ d,, = ~,,z(Jz, Jz), x’, + y, = Ro/Pa, Q = 2, z 

L,z = psJz,z/2 . 

With these suggestions one can write 

(6) 

Substituting these expressions in Eqs. (4) and using there the Fourier transformation 

f”(‘y”)(r’, tJ, 19~) = 1 f$‘“)(T, d,)esp(i&$) , 
rii 

one can rewrite (4) as follows, 



(7) 

-~T(29s)[u2,1]& . 

To find the eigensolutions of these equations following the papers Refs. [3,5] let us 

note that after the crossing the IP amplitudes f$ get the variations 

SfG (‘I = f$‘(O+) - fi’(O-) = -i(G8f0/i3i)~[Ul,2]G , 

(8) 

Here fd(O+) and f&(0-) are the amplitudes just after and before the IP. Between 

collisions particles execute free oscillations fG(tis) N ezp(-i75iGds). Hence, due to 

the periodicity of coefficients in Eq. (7) one can write for eigensolutions 

fii;(O+) = Xe2TiG’fG(O-) . (9) 

As Eq. (9) must be valid at any turn, for amplitudes f& spaced by n subsequent turns 

it obviously yields: 

fG(27rn + 0) = XneZxiGcn f&(0-). 

Therefore coherent oscillations will be stable, if all eigenvalues of the problem X satisfy 

the criterion 1x1 5 1. The integral equations for eigenfunctions f7i; will be obtained 

after the substitution of Eq. (9).in Eqs. (8): 

f(l) = he2 i(G3f,‘1’/al‘)[U~ 21~ 
Is C 1 - Xezp(2riAl) ’ 

(10) 
f(2) = Ne2 i(~~S,(2)/dT,)[U~ a]- m 

Iii C 1 - Xezp(2riG2) ’ 
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These equations indicate nontrivial behavior of solutions in the close vicinity of 

resonances (see in Refs. [ 11, [4] for details): 

r?ilzT~ - 77i2& = n , (11) 

and 

77~127~ = n, ii&& = n , n = fl, f2, . . . (12) 

Nonresonant oscillations are stable and have tunes close to unperturbed ones 

x = e-2xiu 
) VNGill7~ ) VN?i&& . 

3. Flat Colliding Bunches with Lorentz Radial Distribution 

The direct solution of the system (10) f or arbitrary stationary distributions in 

colliding bunches is still too complicated. To simplify this problem here we shall 

consider the special case, when colliding bunches move in the same ring and have 

identical intensities as well as identical stationary distribution functions: 

f(W) = qoz - Is) 
0 (2742Ioz Iox : Ix ' 

(13) 

where 0(x) = 1, if x > 0, and f?(x) = 0, if CC < 0. These distributions cannot 

be normalized and, therefore, still are singular. However, distribution functions in 

Eq. (13) describe the bunches concentrated within the region, 

This circumstance turns out to be very important for the properties of collective 

spectra. 



The strength of the beam-beam int.eraction for both coherent and incoherent 

phenomena can be specified by the value of so-called beam-beam parameters. For the 

bunches described by the distribution functions Eq. (13) these can be written in the 

form, 

To simplify the calculations, below we shall assume that the beams are flat Ioz << Is, 

and have the typical ratio between partial beam-beam parameters & >> &. As will 

be seen, this enables one to consider vertical coherent oscillations as the most dan- 

gerous and therefore, to make the calculations assuming that only vertical coherent 

oscillations of bunches are excited. 

For these modes one has G = { 0, m, 0} and the substitution of distributions 

functiqns from Eq. (13) in Eq. (10) yields 

f(l) = -me2 id (I, - Ii:‘) [ul,21m,o 

& 1 - Xezp(2rimv,) ? 
PCE.2 Iox + Ix 

f(2) = -2Ne2 id (1% - 4t)) [u2,11m,o 

rii 1 - Xezp(2rimv,) > 
PCE.2 Iox + Ix 

where now, 

Um = 
J 

$Jm(kza,)Jo(kxax) /drlel-p ([-ii+!‘]) .f(~,6,~s) , (15) 

Jm(x) are Bessel functions Ref. 163 and 

a X,% = d-3 J X,% * 

Using the substitutions, 

f$‘“’ = s (I% - IO%) Wg72)(ax) ) I, = !?Jfi 
w; ’ (16) 
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and 

00 
w(1’2)(k,) = J duuJo(k,u)w(1~2)(u) ) 

0 

as well as Eq. (15) one can transform Eq. (14) into the following system of integral 

equations 

[ 1 - Xeep(27rimv,)] 20:) (k) = -476m c Mm,m) ~dk9qk. k’)W$ykf) ) 
m’ 0 

K(k, k’) = 
Ko(k)Io(k’), k 2 k’ , 

lo(k)l(o(k’), k 5 k’ , 
(19) 

Iml+Im’I=21+1, 

A4 m,m’ = *dk J ~J[ml(k)Jlmrl(k)7 bl + lm’l = 21, (20) 
0 

M 
(-l)lml-i+l 

m’m’ = [4( JmJ - 1)2 - 11 [Z2 - 1/4j 
, Iml+Im’I=21 . 

Here IO(X) and 1(0(z) are modified Bessel functions [6]. 

One can construct the functions wm b2)(k) as expansions 
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d?(k) = xC$wj(k) , a = 1,2 
j 

in eigenfunctions of the following integral equation 

Ajwj(k) = mdk’K(k, k’)wj(k’) . J 
0 

(21) 

(22) 

Simple calculations (see in Appendix) yield 

wj(k) = JZe-kLj(2K) , Aj = 1 
1+2j ’ 

00 

J dkwj(k)wjl(k) = Sj,jt ,j = O,l,. . . , 

0 

where Lj(z) are the Laguerre polynomials Ref. [6]. The substitution of expansions 

(21) in Eq. (18) yields the system of algebraic equations for coefficients Cif’ 

m’ 

[l - Xezp(2rimv,)] CEj = -47Ti<,mRj C Ibfm,mtC~~ . 
ml 

This system separates the combinations 

which satisfy the equations 

[l - ~eV(2~imb)]C~j = f4Ti(,mAj C A4m,m,C~,j . (24) 
m’ 
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Using the same arguments as in the paper Ref. [3] we may concentrate subsequent 

analysis on the r-modes, which are described by C,;Ej. Near the particular resonance 

uz 2 n/m one can write 

1 - Xezp(27rimv,) N 2G(v - ma), A = Y, - n/m 

and therefore expect that only diagonal items in Eq. (24) are important. This yields 

the dispersion equation 

4tAAmj 1 
l= (y/m)2 _ A2 ’ Amj = 2j !j- 1 m2 -l/4 . 

The requirement of real eigenfrequencies of this equation: 

_ vm,j = *(A2 + 4[AAm,j) II2 

(25) 

(26) 

yields for modes with particular numbers m and j both the positions and the widths 

of the stopbands. Since the eigennumbers Am,j decrease with j, for the oscillations 

with the given multipole number m the width of the stopband is determined by the 

ground state mode (j = 0): 

4t - <AsO . 
m2-l/4 - (27) 

In fact, the position of the upper border of the stopband must be found by combining 

Eq. (27) and the stability criterion for incoherent oscillations (see, for instance in 

Ref. [3]). Outside the stopbands coherent oscillations are stable and the measurements 

of their spectra can be used for the beam diagnostic. Equation (26) indicates (see also 

in Fig. 1). that these spectra have well defined the ground-state lines (j = 0), whereas 

the distances between higher-state lines (j > 1) d ecreases like 1/j2. Qualitatively this 
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behavior of the collective spectra for colliding buches does not contradict to the results 

of-measurements (see, for instance, in Ref. [7]). H ere the splitting of the spectrum 

near the given harmonic mv, onto the series of lines describes the dependence of the 

solution on amplitudes of radial oscillations. More generally it is specific for coherent 

oscillations of bunches with smooth distributions in amplitudes of oscillations. 

4. Flat Colliding Beams with Gaussian Radial Distributions 

The models, which adopt as the stationary distributions the step-like functions, 

in fact describe coherent oscillations of quasi-monochromatic beams. Once in this 

case coherent oscillations propagate along the bunch surface in its phase space 

nonlinearities of incoherent betatron oscillations only modify unperturbed tunes, but 

does not cause Landau damping of coherent modes. Here we shall consider the model, 

which enables one to incorporate into calculations the dispersion of betatron oscilla- 

tions in a more or less straightforward way and, thus, to make some predictions about 

the influence of Landau damping on coherent beam-beam oscillations. 

The model, which will be discussed in this section is based on the analysis of the 

properties of radial oscillations (z = 0) in colliding bunches, which have the following 

stationary distribution functions: 

Some important values referring to incoherent beam-beam interaction for bunches 

with such distributions can be found in Refs. [4,8]. F or instance, the incoherent tune 

shift of radial oscillations calculated within the framework of this model reads: 

AYE = $ [1 - ezp(-a2/2)], (u = a,/~ , 
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27rpcc 

Let us make now the calculations for horizontal coherent oscillations. Assuming 

the working point of the ring to be close to some particular resonance mxvx N n 

and X = ezp( -2&v), one can rewrite Eqs. (10) in the form (the subscript 2 will be 

omitted for short) 

X2’“’ = (fm + f-m)(1’2) , m  > 0 , 

(1) _ 2m2A(4t O” 
Xm - u2 - m2A2(x) J dz’z’M,(z, x’)ezp( -i2/2)# , 

0 

(2) _ 2m2A(z)t O” Xm - v2 - m2A2(x) J 
dz’z’M,(z, +zp( -x’2/2)~~) , 

0 

Mm(2,z’) = 2 
o”dk J FJm(kz)Jm(kl’) = 

(~/~‘>” , J: I 2’ , 

(d/czy ) J: 2 z’ ) (30) 
0 

A(x) = vx(z) - n/m = Aa + AY,(x) . 

As previously, the system Eq. (29) separates the modes 

and again we shall consider r-mode. It satisfies the equation 

- 2m2A(x)< O” 
xm = J dx’x’h&(x, +xp( -x’~/~)x, . ~2 - m2A2(x) 

0 

The substitution (upperscripts (-) can be omitted below) 

X m = y2 
4m2A(4E qx) 

= m2A2(x) 

(31) 

(32) 
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transforms Eq. (31) into the following integral equation: 

X 00 

X(x) = Z-m 

m J d&r?+‘Vm(x’)X(x) + 5 J d&z?-“Vm(cc’)X(x’) , (33) 
0 X 

where 

Vm(X) = 
4%% 

(v/m)2 - A2(x) e-x2’2 * 

One more substitution X = w(x)/,/- x an d b q su se uent double differentiation of Eq. (33) 

transforms it into the following differential equation: 

W” + 2Vm(X) - 
[ 

m2 - l/4 
x2 1 w(x) = 0 . (35) 

2. It is obvious that the choice of Gaussian function as the stationary distribution _ 

is not principal for these calculations. The same differential equation will describe 

horizontal coherent oscillations of any beam with the distribution function fo(x) after 

the substitution: 

exp(-x2/2) + -2df()/dx2 . 

Let us consider first some cases, when Eq. (35) h as more or less simple solutions. 

For instance, if j’s(x) is the step function fo N 0(x2 - l), one can write: 

Vm(X) = +6(r - 1) 7 (l/Am) = v24~~2~~fx1 
m 

and Eq. (35) yields the following eigenfunctions and eigenvalues: 

x1/2+m ,xll 
w(x) = A, = l/m 

x1i2--m )X > 1 - 

(36) 

(37) 
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as well as the dispersion equation (see also in Ref. [3]) 

1 = 4A(lK/m 
(v/m)2 - A2(l) ’ ’ K ’ ’ 

Another example presents the histogram distribution 

fO(x> = fj 7 "j-1 5 X 5 Xj , j = 1, 2, . . . , Q, X0 = 0 , (38) 

corresponding to 

Vm(X) = 5 VmjS(X - Xj)/Xj, Vmj = 

k=l 
(V/j$jF A; (fj - fj-1) ’ 

In this case solutions of Eq. (35) can be written in the form 

Wj(X) = BjX 1’2+m + CjX1’2-m , Xj-1 5 X 5 Xj . 

Using the boundary conditions _ 

wj(xj> = "j+l(Xj) 9 (Wi+l - Wj) 1x=x1= 
2vmj 
- w.i+l(Xj) 

xj 

one can find the recurrence equations for coefficients Bj and Cj 

Cj = Cj+l I-- - - 
( ) 

vmj vm.i B, xtC+m 
m m I+1 3 T 

(39) 

(40) 

(41) 

Bj = Bj+l + (Cj+l - Cj)Xi2” 

with obvious initial conditions 

Cl = B,+1 = 0, c,+1 = 1 . 

This enables one to find all coefficients Bj, Cj as well as the dispersion equation 

kCcj+l - Cj) = 1 = C m(Cj+l + B3+1X3m) 

’ Vmj 
,  

(42) 

j=l j=l 

but results in cumbersome expressions, which can be useful probably only for numer- 

ical analysis. However, these expressions indicate a very important general result. If 
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for the sake of simplicity we shall neglect. the tune spread in Eq. (42), and introduce 

the values 

l/A, = w 
(~/rn)~ - A2 ’ 

one can see that Eq. (42) is a polynomial of l/A, of the q-th order which therefore has 

exactly q roots. In the contrast with single step distribution function the spectrum 

of beam with histogram distribution Eq. (38) will consist of q lines. With some care 

such histogram distributions can be used for simulation of oscillations in bunches with 

smooth distribution functions. 

3. The direct solution of Eq. (35) with smooth distributions fa still is very 

difficult. However, many general properties of eigenfunctions and spectra can be 

predicted using the analogy of Eq. (35) and the Schrodinger equation in the quantum 

mechanic, which is written for a particle with zero energy moving in effective potential 

well 

m2 - l/4 
ueff(x) = ,9 - 3Gr&) (43) 

Let us again start with the discussion of properties of solutions for monochro- 

matic beams (A(X) + As). Defining as previously 

l/A, = 2Aot 
(v/m)2 - Ai ’ 

we shall rewrite Eq. (35) in the form 

UJ” - Ueff(Z)w(2) = 0 , (45) 

(Jeff@) = +x2/2 _ m2 i21/4 . 

m 
(46) 

Equation (45) may have nontrivial solutions corresponding to the discrete, nonde- 

generate spectrum, if in some regions of z the function U,ff becomes negative (see, 
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for instance, in Fig. 2). Adopting this for minimum value of U,ff and replacing the 

function 222e-x2/2 by its maximum value 4/e, one can estimate A, for the ground 

state mode at least by 

A, < ,2 
41” 
- l/4 * (47) 

Qualitatively, th is b h e aviour can be illustrated by Figs. 2-4. If j = O,l,. . . marks the 

normal modes of Eq. (45), one may expect that Amj decreases at least like 1/j2, when 

j increases, (this circumstance can be verified, for instance, by the direct calculation 

of the sum 
00 

c 
Amj = ’ 

j=O 
m ’ 

which can be done using Eq. (33). Since solutions of Eq. (45) have asymptotes 

_ 

44 + 

i 

x1/2+m 
7 X-+0 

7 
x1/2-m 

9 x-+m 

they are mainly concentrated between roots of Ueff(x), which correspond to stop- 

points of the mechanical problem 

Ueff(x1,2) = 0 7 or 2 (x2e-x2i2)1,2 = Amj(m2 - l/4) . (48) 

The behaviour of U,ff, which is shown in Fig. 1 indicates that while the localization 

of the ground state mode only slightly moves outside the bunch, when m increases, 

the higher modes (j > 1) can .penetrate inside bunches (~1 + 0, Amj + 0). The 

total amount of modes, corresponding to the given value of A, can be estimated by 

the phase space volume of the potential well 

(49) 
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4. The sensitivity of eigensolutions to the tune spread due to beam-beam inter- 

action can be studied in a similar way. The direct inspection of the effective potential 

curves, calculated for v = fi6 (see in Figs. (5-8) definitely indicates the existence of 

eigenmodes within the stopbands, which are slightly displaced but have roughly the 

same widths as the corresponding stopbands for monochromatic bunches. Analogous 

stopbands can be found out by the inspection of corresponding curves for quadrupole 

(m = f2), sextupole (m = f3) and other oscillations. Such influence of Landau 

damping on coherent beam-beam instability could be expected beforehand (see in 

Ref. [9]) - for resonant coherent instabilities the nonlinearity of betatron oscillations 

rather helps to form buckets in the phase space, than to damp the oscillations. 

As Eq. (35) p resents the particular case of more general Sturm-Liouville equa- 

tion, its spectra can be estimated using the general relationships. For instance, exact 

solutions W(X) = wj(x) minimize the integral 

m2 - 
x2 v4w2 - 2Vmw2 . 1 

This yields the normalization condition for the eigensolutions 

w; = 2 , 1 
and the dispersion equation of the problem: 

00 
J dxlwj12 4Nx)t (v,m)2 _ A2(L)e-22i2 = 1 , Imv > 0 . 

0 

(50) 

(51) 

If the eigenfunctions wj are not known, both they and spectra can be found using the 

minimization routines starting from more or less suitable set of probe functions w(x). 
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Appendix 

Integral equation (22) 

k 

Aw(k) = 1(0(k) 
J 

dk’Io(k’)w(k’) + IO(k) mdk’Ko(k’)w(k’) 
s 

(A4 
_ 

0 k 

can be solved by transformation into a differential equation. After double differenti- 

ation over k Eq. (A.l) gets the form 

Aw”(k) = 1<;(k) jdie’lo(ic’)u;(k’) + 

il 

(A4 

I;(k) mdk’ICo(k’)w(lc’) + w(k)(K;Io - I;Ko) 
J 

. 

k 

Using here the differential equation for modified Bessel functions of the 0-th order 

Ref. [6]: 

IC; = K. - IC;/k , I; = IO - IA/k 

and 

I; = I~ ,I(; = -K1 , KIIo + IlICo = l/k , 
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one can transform Eq. (A.2) into 

W’ 1 
w”+x+ z-1 w=o . [ 1 

Then the substitution 

z = 2k , w = exp(-z/2)v(z) 

yields the following equation for D(Z) 

1-A 
v” + (1 - z)?J’ + -yp = 0 . 

Solution of this equation will coincide with Laguerre polynomials Ref. [6] 

V(Z) = CjLj(Z) 

and, therefore, w will decay, when z --+ 00, provided 

l/A - 1 = 2j, j = 0, 1, . . . 

The normalization condition 

(A.31 

(A4 

(A.5) 

00 00 

J 
dkwj(k)wjl(k) = 6,j’J$ 

J 
I9 I2 dzexp( -z)LB(z) = 6jjfT = 1 

0 0 

yields eigenfunctions Eq. (23). 
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F igu res  

Fig. 1 . S c h e m a tic d e p e n d e n c e  o f col lect ive r e s p o n s e  o f b u n c h e s  o n  th e  d imens ion -  

less f requency  o f th e  excitat ion, th e  d a m p ing  ra tes  in  th e s e  ca lcu lat ions w e r e  a s s u m e d  

th e  s a m e  (S j  =  .l) fo r  al l  m o d e s ; arb i t rary  units. 

Fig. 2 . E ffect ive p o te n tia l  fo r  d i po le  ( m  =  z!zl) osci l lat ions; f rom to p  to  b o tto m  

A m  =  2 , .5 , .2 . 

Fig. 3 . E ffect ive p o te n tia l  fo r  q u a d r u p o l e  ( m  =  & 2 )  osci l lat ions; f rom to p  to  

b o tto m  A , =  2 , .5 , .2 . 

Fig. 4 . E ffect ive p o te n tia l  fo r  sex tupo le  ( m  =  f3 )  osci l lat ions; f rom to p  to  

b o tto m  A , =  2 , .5 , .2 . 
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Fig. 5. Effective potential for dipole.(m = f3) oscillations; A0 = -.05, t = .05, 

from top to bottom -iv/m = .l, .075, .05, .025. 

Fig. 6. Effective potential for dipole (m = Al) oscillations; 5 = .05, u = i.01, 

for the top line A0 = 0, then from the bottom A0 = -.125, -.025, -.375. 

Fig. 7. Effective potential for dipole (m = &l) oscillations; t = .05, u = i.01, 

from top to bottom A0 = 0, -.0125, -.015, -.02. 

Fig. 8 Effective potential for dipole (m = kl) oscillations; t = .05, v = i.01, 

from top to bottom A0 = -.4, -.35, -.3, -.25. 
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