
I
:

. . SLAC-PUB-5505
April 1991

(W

Status of Pascal Standardization*

BEBO WHITE

Stanford Linear Accelerator Center

Stanford University, Stanford, CA 94309

Presented at SHARE 76, San Francisco, CA, February 24-March 1, 1991

* Work supported in part by the Department of Energy contract DE-AC03-76SF00515.

I
. .-

.- Features of Extended Pascal

O Modularity and Separate Compilation

O Schemata

O String Capabilities

O Binding of Variables

O Direct Access File Handling

O File Extend Procedure

O Constant Expressions

O Structured Value Constructors

O Generalized Function Results

O Initial Variable State

O Relaxation of Ordering of Declarations

O Type Inquiry

O Implementation Characteristics

O Case-Statement and Variant Record
Enhancements

O Set Extensions

2

Even More Features....

O Date and Time

O Inverse ORD

O Standard Numeric Input

O Non-Decimal Representation of Numbers

O Underscores in Identifiers

O Zero Field Widths

O Halt

O Complex Numbers

O Short Circuit Boolean Evaluation

O Protected Parameters

O Exponentiation

O Subranges Bounds

O Tag Fields of Dynamic Variables

O Conformant Arrays

I : .

.- Example of Modularity

module employee-sort interface;

export employee-sort =
(sort_by_name,sort_by_clock_number,employee-list);

import generic-sort;
.

type
employee = record

last-name,first-name : string(30);
clock-number : 1 ..maxint;

end;

employee~list(num~employees : max-sort-index) =
array [1 ..num-employees] of employee;

procedure sort-by-name(employees : employee-list;
var something-done : Boolean);

procedure sort-by-clock-number(employees : employee-list;
var something-done : Boolean);

end.

.- Modularity

O Each module exports one or more interfaces
containing entities (values, types, schemata,
variables, procedures, and functions) from that
module, thereby controlling visibility into the
module.

“A variable may be protected on export, so that
an importer may use it but not alter its value. A
type may be restricted, so that its structure is not
visible.

O The form of a module clearly separates its
interfaces from .its internal details.

O Any block may import one or more interfaces.
Each interface may be used in whole or in part.

* Entities may be accessed with or without
interface-name qualification.

O Entities may be renamed on export or import.

O Initialization and finalization actions may be
specified for each module.

O Modules provide a framework for
implementation of libraries and non-Pascal
program components.

5

I : ._

.-

Example of Schemata

type
SWidth = 0..1023;
SHeight = 0..2047;
Screen(width: SWidth; height: SHeight) =

array [&height, O..width] of boolean;

Matrix(M,N: integer) = array {l..M,l..N] of real;

Vector(M: integer) = array [l ..M] of real;

Color = (red,yellow);
Color-Map(formal-discriminant: color) =

record
case formal-discriminant of

red: (red-field : integer);
yellow : (yellow-field : integer);

end;

function bound : integer;
var s : integer;

begin
write(‘How big?‘);
readln(s);

bound := s;
end;

var
My-Matrix : Matrix(lO,lO);
My-Vector : Vector(bound); (Notice the run-time expression! >
MatrixJ?tr : “Matrix;

X,Y : integer;

begin
readln(x,y);
new(Matrix-Ptr,X,Y);
end

6

!
:
.

.- Schemata

O Statically selected types are uses as any other
types are used.

O Dynamically selected types subsume all the
functionality of, and provide functional
capability beyond, conformant arrays.

O The allocation procedure NEW may
dynamically select the type (and thus the size) of
the allocated variable.

O A schematic formal-parameter adjusts to the
bounds of its actual-parameters.

O The declaration of a local variable may
dynamically select the type (and thus the size) of
the variable.

O The with-statement is extended to work with
schemata.

O Formal schema discriminants can be used as
variant selectors.

. . ‘String Capabilities

O All string and character values are compatible.

O The concatenation operator (+) combines all
string and character values.

O String ‘may be compared using blank padding
via the relation operators, or using no padding
via the functions EQ, LT, GT, NE, LE, and GE.

O The functions LENGTH, INDEX, SUBSTR,
and TRIM provide information about, or
manipulate, strings.

O The substring-variable notation makes
’ accessfble, as a variable, a fixed-length portion of

a string variable.

O The transfer procedures READSTR and
WRITESTR process strings in the same manner
that READ and WRITE process textfiles.

O The procedure READ has been extended to
read strings from textfiles.

I
.

.-

Binding of Variables

O A variable may optionally be declared to be
bindable. Bindable variables may be bound to
external entities (file storage, real-time clock,
command lines, etc.). Only bindable variables
may be so bound.

O The procedurs,JJND and UNBIND, together
- with the related type BINDINGTYPE, provide

capabilities for connection and disconnection of
bindable internal (file and non-file) variables to
external entities.

O The function BINDING returns current or
default binding information.

9

I : ‘,

.- Direct Access File Handling

O The declaration of a direct-access file indicates
an index by which individual file elements may be
accessed.

O The procedures SEEKREAD, SEEKWRITE,
and SEEKUPDATE position the file.

O The functions POSITION, LASTPOSITION,
and EMPTY report the current position and size
of the file.

O The update file mode and its associated
procedure UPDATE provide in-place
modification.

I : .

. .

Set Extensions

O An operator (><) computes the set symmetric
difference.

O The function CARD yields the number of
members in a set.

O A form of the for-statement iterates through
the members of a set.

11

Complex. Numbers

O The simple-type COMPLEX allows complex
numbers to be expressed in either Cartesian or
polar notation.

O The monadic operators + and - and dyadic
operators +, -t *, I, =, [and] <> operate on
complex values.

O The functions CMPLX; POLAR, RE, IM, and
ARC construct or provide information about
complex values.

O The functions ABS, SQR, SQRT, EXP, LN,
SIN, COS, [and] ARCTAN operate on complex
values.

12

.-

Object-Oriented Extensions to Pascal

X3 J9 is in the process of developing a technical report
on object-oriented extensions to Pascal. This work is
being done in cooperation with major vendors of
Pascal and with users of Pascal. This report is
expected to be completed by the 4th quarter, 1991.

13

. .

Scope of Object Pascal Study

O Definition of Objects

O Inheritance of characteristics of one object by
another

O Overriding of inherited characteristics

O Creation and initialization of instances of
objects

O Destruction and removal of objects

O Sharing of code between objects

O Dynamic and static selection of object methods

O Security of objects

O Extension of existing language features for
objects

O New functions for dealing with objects

O Integration with existing language features in
Pascal

14

