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ABSTRACT 

The potential gain of luminosity by both focusing and colliding e+e- beams in 

an underdense plasma is investigated. We first suggest the possibility of creating the 

plasma by the beam self-induced “tunneling ionization” of a gas. We then study the 

beam optics in the continuous focusing environment provided by the plasma, and 

the subsequent e + - e beam-beam interaction in the same plasma. When applied to 

a range of beam parameters based upon the present SLC conditions, we find that a 

gain by more than a factor 10 in luminosity is possible. The sensitivity of various 

non-ideal situations is discussed. 
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Since the proposal of the self-focusing plasma lens,r-which uses the trans- 

verse wake field of a bunched relativistic charged-particle beam in a plasma, and 

promises a very strong focusing-there has been substantial progress on the con- 

cept. On the theory side, the aberrations from the nonlinear focusing force in an 

overdense plasma (i.e., the beam peak density nb is much less than the ambient 

plasma density nP) has been studied in detail. 2 More recently, inspired by the con- 

cern over the potential backgrounds due to the high concentration of plasma ions 

near the interaction region in a collider, underdense plasma lens3T4 and its induced 

asymmetric beam-beam interactions was investigated.3 The existence and the be- 

havior of this self-focusing effect has been experimentally verified at the Argonne 

National Laboratory5 and in Japan.’ 

Although the thick-lens corrections to the thin-lens assumption of plasma 

lenses have been calculated earlier, 2f3 the plasma lens concepts have been limited 

to be a discrete focusing element (the focal length is assumed to be much longer 

than the plasma lens thickness), before the proposal of the adiabatic focusing 

concept.7 It is suggested that by adiabatically focusing the beam and by avoiding 

the drift space between the lens and the focal point, the well-known Oide limit’ 

can be avoided. It is evident that in this scheme, the beams have to collide within 

the plasma, but the issue was not discussed in Ref. 7. 

For the maximum gain of luminosity at the expense of somewhat larger back- 

grounds, it is conceivable to both focus and collide the e+e- beams in a plasma. In 

this setting, the incoming beam is intense enough to trigger ionizations that turns 

a gas into a plasma. This is particularly attractive in that an externally induced 

plasma at high densities is nontrivial. The possibility that the high-energy, high- 

intensity beam induces both self-ionization and self-focusing greatly simplifies the 

scheme, thus making the practical application for high-energy experiments more 
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plausible. Notwithstanding, in this approach the beam-beam interaction inside the 

plasma still provides an effective disruption, which further pinches the beams. 

There are basically two ionization mechanisms that can be provided by a 

high intensity, high energy beam. First, there is the collisional ionization, where 

an individual beam particle ionizes the atom by a virtual photon exchange. The 

cross section can be estimated via the photo-ionization cross section, using the 

Weiszacker-Williams spectrum. For hydrogen atoms ionized by a 50 GeV electron, 

a; - 0.22 Mb. The fraction of atoms that can be ionized through this mechanism 

by an incoming beam with N particles and size or is Ri = Noi/4roF. For the 

Stanford Linear Collider (SLC) beams, ur N lprn and N N lOlo, so Ri is only of the 

order of a few percent, which is far from saturation. One therefore needs to have a 

gas which is l/Ri times denser to provide the necessary amount of plasma. This is 

not desirable from the backgrounds point of view. In addition, the nonsaturation 

of ionization also causes the tail of the beam to encounter a higher concentration 

of plasma than that seen by the head of the beam. This degrades the beam optics. 

There is another ionization mechanism that relies on the collective field of the 

beam. When an external electric field is strong enough so that the atomic Coulomb 

potential is sufficiently distorted, there is a finite probability that the bound state 

electron can tunnel through the potential barrier and become free. For hydrogen 

atoms, the ionization probability (per unit time) is given by’: 

a5c mc2 
w=4-- 

1 
2 CY~ mc2 

xc2 eE 
exp --- - 

> 3X, eE ’ 

where E is the external electric field. The coefficient in the exponent is (2/3)(03/Ac) 

(mc2/eE) E 34.1 eV/A. It is interesting to note that the ionization probability 

is already substantial, way before the exponent reaches a value of the order unity, 

due to the typical largeness of the non-exponential part. For example, an external 
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field of 3.41 eV/A would give W N 1.15 x 1014 set-‘. Under this condition, the 

ionization will be saturated within 10 femto-seconds. In fact, it can be shown for 

a field strength larger than eEth = 3.72 eV/A, where the ground state binding en- 

ergy is above the potential barrier, that, even classically, the electron can escape 

from the atom. 

The maximum collective electric field strength in a bi-Gaussian beam can be 

calculated to be eEmax/mc2 N reN/2aZar, where re is the classical electron radius. 

A maximum field strength of 3.72 eV/A corresponds to, for example, a beam of 

N = 3 x 101’,aZ = 0.4 mm, and cr, = 1.4 pm. This is within the range of the 

SLC parameters. We shall thus assume in the following discussions that the beam 

is effectively seeing a plasma with constant density created by the self-induced 

tunneling ionization. The subtleties involved in the real situation concerning the 

(r, z) dependence of the beam collective field will be discussed at the end. 

The physics of a high-energy beam focused by an underdense plasma has been 

addressed in Refs. 3 and 4. Assuming that the ion is infinitely heavy, then an un- 

derdense plasma reacts to an electron beam by total rarefaction of the plasma 

electrons inside the beam volume, producing a uniform ion column of charge den- 

sity enp. This uniform column produces linear, nearly aberration-free focusing. 

Simulations have shown that nb w 2np is needed to produce linear focusing over 

most of the bunch.4 

We start with the the familiar third-order linear differential equation for the 

,&function, 

p”’ + 4ICp’ + 2Ii’‘,B = 0 . (2) 

In the underdense plasma regime, the focusing strength K is determined by the 

density of the plasma: I/; = 2m,np/y. Let the plasma density be determined by 

4 



: 

the initiaI beam density with a ratio 77, r+ = qnbo. (In practice we will choose 

77 4 l/2 to ensure the underdense condition.) Assuming a cylindrically symmetric 

bi-Gaussian beam-density profile pb = nbe-r2/2u:e-Z2/2u:, the peak beam density 

can be derived: nb = N/(27r)3/20,2a,. In terms of the the initial beam size, ozo = 

POW -l, we can write 

Ore c 
K = ~poenaz 7% ’ (3) 

where cn is the normalized emittance. Here, we also introduce the phase space 

density <, which measures the beam density in the three-dimensional beam volume 

of r, r’, z, and plays a central role in the physics of the self-focusing plasma lens. 

To solve Eq. (2), we first integrate through the h-function in K’ at the start 

of the lens, and obtain AD” = -2K&. The other two initial conditions are the 

continuity requirements /3’ = &, and /3 = ‘90. Also note that ,B[ = 2/p,* just before 

the lens, where ,& is the value at the waist that would be formed in the absence of 

the lens. The equation of motion is then p” + 4KP = 2/p; + 25, and we obtain3 

P = $ + & + ($ - &) cos[v(s - so)] + 2 sin[v(s - so)] , (4) 
0 0 

where v = 2fi. This solution demonstrates an oscillatory behavior when without 

damping effects. We further assume that /30 = /?g and SO = 0. To minimize the 

backgrounds, we look for the next waist at sin(Ys*) = 0, then the path length is 

7r 
SC=-= 

v (5) 

The corresponding ‘8’ is 

To appreciate the results, we note that 5 = 10 cm-’ corresponds to the beam 

parameters of N = 2.84 x lOlo, bZ = 0.4 mm, and initial normalized emittance 
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e n= 4 x 10e3 cm, if 17 = l/2 is assumed. This will give pt = 1 mm. With an initial 

/3$ = 5 mm, the corresponding path length is s*_ 2~ 3.54 mm. If all parameters 

are fixed except Q, = 0.2mm, then (’ = 20 cm -l. In this case, the p-function is 

reduced by a factor 10 to pr = 0.5 mm in a distance s*_ N 2.5 mm. 

For an underdense plasma interacting with a positron beam, the plasma elec- 

trons are drawn toward the beam axis by the focusing potential provided by the 

positron beam. This results in a complex motion of these electrons that simultane- 

ously oscillate across and co-move with the beam. In each cycle of oscillation the 

plasma electron spends a fractional amount of time inside the core of the positron 

beam, resulting in an effective concentra.tion of negative charges that partially neu- 

tralize the positron beam’s space-charge force, and the self-focusing is thus induced. 

Since the focusing force is nonlinear, the net effect is not simple to describe analyt- 

ically. We shall instead adopt the theoretical model developed in Ref. 2. The de- 

scription of the positron beam focusing in this approach is only approximate, and 

further theoretical efforts are needed to better elucidate the process. It is shown 

that the aberrations due to a thin-plasma lens can be described by an aberration 

power P that transforms the Twiss parameters as cy = as/P, ,0 = PO/P, E = COP, 

and a* = (ao + Po/f)/P, w h ere the aberration power is defined by 

P E [l + ($s)2]1’2 . (7) 

Here f is the focal length and 6 is the effective total divergence-increase due to the 

T and z variations in K. By grouping all the position dependent effects under P, 

this treatment recovers an effective focusing strength that is independent of (r, z). 

From the simulations in Ref. 4, it is estimated that 6 21 0.28 for a mildly underdense 

lens for positron focusing. We see from Eq. (7) that the aberration is more severe 

when the focusing is stronger, since in that case the focal length is shorter. 
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Strictly speaking, this treatment of the degradation is not self-consistent in 

thecase of thick lenses, as the dilution in phase space should really be convoluted 

with the focusing strength, which in turn influences the optics further downstream. 

Moreover, the effective focusing strength K for the positron beam can in principle 

be larger than that in the corresponding electron beam case. This is because in the 

latter case the maximum focusing attainable is by total rarefaction of the plasma 

electrons inside the beam volume, whereas in the former case more supplies of 

plasma electrons can be drawn in from outside the beam. For a rough estimate of 

the effect, however, we shall assume that this model indeed applies to thick lenses, 

and that h’ = K. Then we first need to determine the equivalent focal length of 

the lens. The final spot size is shown3 to be 

uz2 P& P2 -z-z 
*2 - 

'J*r P2 + (QO + Po/f>2 . 60 0 cl 
(8) 

We may deduce the focal length from the ideal aberration-free condition by setting 

P = 1 in Eq. (8) (cyo = O,po = PO’), and combining it with Eqs. (5) and (6). We 

find 

Once the focal length is determined from the ideal lens parameters, we insert it back 

into Eq. (8) to calculate the aberration-prone positron final spot size. Similarly, 

the S* for the positron beam can be derived to be 

+;q p p2 + (Po*m2 y2 . (10) 

Having the optics for the electron and the positron beams described, next we 

look into the physics of beam-beam interaction inside a plasma. The disruption 

effect due to the mutual pinching between the colliding e+e- beams in vacuum 

has been studied in details in the past. l”yll In the situation where the e+e- beams 

7 



I : 

.- 

collide inside a plasma, the mechanism is in principle different. When the two 

colliding beams overlap, the total beam current is increased; thus we expect an 

increase of the “return current” induced in the plasma. In principle, the return 

current acts to reduce the self-focusing effect and the mutual beam-beam pinching. 

However, one important underlying assumption which makes the concept of plasma 

self-focusing possible is that the initial beam transverse size is much smaller than 

the plasma wavelength’ : or0 << X,(X, = ds). In this regime, the plasma 

return current runs mostly outside the beam, and does not effectively reduce the 

self-focusing force. At the final focus where beams collide, the spot sizes are 

supposed to be even smaller, thus the effect of return current during collision should 

be diminishingly small. On the other hand, in the same beam over-lapping region 

the net space charge is reduced. Therefore, we expect a decrease of the space- 

charge perturbation in the plasma. This helps to reduce the plasma influence on 

the disruption effect. Most importantly, around the collision point, the plasma is 

extremely underdense: np/ni = q/?*/& << 1. S o even if there is a residual plasma 

effect on a colliding beam, it should be negligibly small compared to the force 

exerted by its oncoming beam. We thus conclude that the beam-beam disruption 

effect in an underdense plasma is effectively the same as that in the vacuum. 

The overall enhancement on luminosity in our scheme can be estimated as 

HD = HDIHDZ 

HDO 

where HD~ is the “geometric” enhancement due 

, (11) 

to the reduction of the beam sizes 

from the plasma lens, and HDO and HD~ are the disruption enhancement due to 

beam-beam interaction with and without the plasma lens, respectively. Since the 
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plasma-focused e + - e beams are different. in sizes, 

(excluding depth of f ecus and disruption effects) in 

q-*2 
H Dl = 

h"rO 
ur_2 + a;2 - 

To illustrate the effectiveness of this thick lens scheme, we demonstrate three 

the “geometric” enhancement 

luminosity is 

(12) 

numerical examples, based on beam parameters that are inspired by the current 

SLC running conditions. The p,?, from the newly installed superconducting final 

quadrupole is expected to be 5 mm. We assume the normalized emittance is 

En = 4 x 10m3 cm. This would give an initial beam size of u;o = 1.4 pm. The 

bunch populations are N = 3,4,5 x 10 lo . The nominal bunch length is u, = 1 mm. 

This bunch length is indeed close to the operating value along the linac. But the 

eventual bunch length at the collision point in SLC can be made much smaller 

than this value.12 It is known that by accelerating the beam at an RF phase 

which is off from the crest, a coherent energy spread (as a function of the particle 

longitudinal position inside the bunch) is induced in the beam. If the phase is 

properly chosen, then the subsequent beam transport through the SLC arc would 

help to compress the the core of the beam before it eventually arrives at the final 

focus. The minimum attainable SLC bunch length is then governed essentially 

by the incoherent energy fluctuation in the beam, which in the parameters that 

we consider is roughly 0.12 mm. l3 We shall thus assume that a bunch length of 

uZ = 0.2 mm is attainable in SLC. 

The shortness of the bunch is essential to the success of applying our scheme 

to SLC for three major reasons; First, given the constraints on other beam pa- 

rameters, which is usually harder to be improved, one should minimize the bunch 

length in order to raise the beam collective field beyond the tunneling ioniza- 

tion threshold. Second, with the densest possible incoming beam, the matching 
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plasma density can be raised to provide the strongest possible focusing and small- 

est-possible /3*. Finally, having the /3* sufficiently reduced, one also likes to have 

the bunch length sufficiently short, such that the further luminosity enhancement 

from beam-beam disruption is not damped due to the depth of focus effect12 when 

A E CT,/@* 2 1. 

With the above choice of beam parameters, we fix the plasma density by letting 

77 = l/2. The corresponding plasma densities are nP = 2.4,3.2,4.0 x 1018 cmw3, 

respectively. Other relevant physical parameters can be derived, and are listed in 

Table 1. The disruption parameter in the absence of plasma, Do = r,u,N/rc$$, 

ranges from 0.10 to 0.16 in the three cases. The corresponding HD~ is essentially 

of the order unity. For HD~, the physics is more complex, as it involves beams with 

unequal sizes and divergences. Computer simulations using the code ABELl have 

been performed under the above argument of negligible plasma effects, to estimate 

both HD~ and HD~. These results are also shown in Table 1. We see that the 

resultant luminosity can, in principle, be raised by a factor N 12 to 23. Assuming 

a collision repetition rate of fP = 120/ set, the luminosity will be enhanced to N 6 

to 30 x 1030 cmm2. 

So far we have studied the luminosity enhancement in an ideal situation. It 

is important to study sensitivity of the scheme to various nonperfect conditions. 

The issue can be generally categorized in three types: fluctuation of various beam 

parameters, fluctuation of plasma density and thickness, and the transverse jitters 

between the two colliding beams. 

In the underdense regime, the focusing strength and the optics are determined 

by the plasma density. Thus the system is relatively insensitive to the fluctuation 

of beam parameters, as long as the underdense condition is sufficiently satisfied. 

On the other hand, the fluctuation on the plasma density causes the variation of 
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K, which in turn changes p* and s*. 

waist of the p-function, we demand 

we obtain the constraint 

To ensure that the beams collide around the 

that 6s* <, ,0*. Combining Eqs.(5) and (6), 

(13) 

For our parameters, this corresponds to SnP/nP 2 30%, which is not at all stringent. 

Unlike conventional optics, in the self-focusing plasma lens, the axis of sym- 

metry is determined by the incoming beam axis and the initial offset is not pro- 

portionally demagnified. It is thus essential to express the tolerance on such beam 

jitters in terms of the initial beam size. The condition for less than one e-folding 

of the lcinlc instabiEity at the time when the two beam cores collide is found to bel5 

For our parameters, we find the constraint to be r5r/afo =S 15%. This is somewhat 

stringent, but not incompatible with the current SLC running condition. 

We have seen that the proposed scheme of beam self-induced tunneling ion- 

ization, with the subsequent self-focusing and collision in a plasma, looks quite 

promising. There are, however, several issues yet to be addressed. As the field is 

dependent on (r, z) in a bi-Gaussian beam, the tunneling ionization is generally 

not saturated near the head of the bunch. Thus the beam particles ahead of a 

certain position z, will not be focused well by the plasma, resulting in an effective 

loss of beam particles. The condition for the saturation of tunneling ionization 

isl=J:“,Wd / z c, where the position dependence of W 

longitudinal variation of the field, E(z) = Emaze-22/2u~. 

E max 2 Eth, 

in Es.(l) is through the 

It can be shown that for 

ZS 203 mc2 
- N -2.72 [ 1 - --- 
02 3 Xc eEmax 

log-l 11.5a2F 
( >I 

. 
C 

11 

(15) 
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In our examples, the peak fields are 7.5 to 12.6 eV/A, so the front-most points 

of saturation are z, 11 -1.80, to -2.la,, respectively. Since the field also varies 

radially, the saturation near the core of the beam is not reached as rapidly. In fact, 

the tunneling ionization would never penetrate down to the beam axis, where the 

field vanishes. This results in a ring-shaped region of plasma. In this paper, the 

degradation off the plasma focusing and off the effective number of bunch particles 

was not included in the luminosity calculations, so our result is an over estimate 

in this regard. However, since the peak field in our examples are way above the 

threshold, the inner radius of the plasma “ring” is a small fraction of bzo, even 

at the start of the lens. As the beam becomes tighter during focusing, the inner 

radius will shrink rapidly; thus the degradation should not be too severe. 

12 



I : 

.- 

ACKNOWLEDGEMENT 

- The author appreciates various helpful discussions with colleagues at SLAC, 

including M. Breidenbach, C. Baltay, K. Bane, R. Blankenbecler, S. D. Drell, 

W. Gabella, C. Prescott, S. Rajagopalan, B. Richter, R. D. Ruth, and P. B. Wilson. 

13 



I 
: 

.- 

REFERENCES 

1. P. Chen, Particle Accelerator 17, 121 (1987). 

2. J. B. Rosenzweig and P. Chen, Phys. Rev. D39, 2039 (1989). 

3. P. Chen, S. Rajagopalan, and J. B. Rosenzweig, Phys. Rev. D 40, 932 

(1989). 

4. J. J. Su, T. Katsouleas, J. M. Dawson, and R. Fidele, Phys. Rev. A 41, 3321 

(1990). 

5. J. B. Rosenzweig, et al., Fermilab Report FERMILAB-PUB-89/213, 1989; 

to appear in Phys. Fluids B. 

6. H. Nakanishi et al., submitted to Phys. Rev. Lett., 1990. 

7. P. Chen, K. Oide, A. Sessler, and S. Yu, Phys. Rev. Lett. 64, 1231 (1990). 

8. K. Oide, Phys. Rev . Lett. 61, 1713 (1988). 

9. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic 

Theory, 3rd edition, (Pergamon Press, 1981) p. 293 . 

10. R. Hollebeek, Nucl. Instrum. Methods 184, 333 (1981). 

11. P. Chen and K. Yokoya, Phys. Rev. D 38, 987 (1988). 

12. K. Bane, SLAC-AP-80 (1990). 

13. K. Bane, private communications, March 1991. 

14. K. Yokoya, KEK Report KEK-85-9, 1985. 

15. K. Yokoya and P. Chen, “Beam-Beam Phenomena in Linear Colliders,” to 

appear in Frontiers of Particle Beams, eds., M. Month and S. Turner 

(Springer-Verlag, 1991). 

14 



. 

.- 
Table 1. Plasma Lens. Parameters for SLC 

Beam Parameters 

N [101’] 3 4 5 

tT [GeV] 45 45 45 

PO* b-4 5 5 5 

~0 [10-l’ m-rad] 4 4 4 

h [mm] 0.2 0.2 0.2 

Plasma Lens Parameters 

np [1018 cme3] 2.4 3.2 4.0 

s* (= s*_ + s;) [mm] 4.9 4.3 4.0 

Beam Optics Parameters 

5 [cd 23.6 31.5 39.4 

s? [mm] 2.3 2.0 1.8 

K b-4 0.42 0.32 0.25 

0: [Pm1 0.41 0.36 0.32 

f b4 1.5 1.3 1.2 

-P 1.36 1.46 1.53 

s; b-4 2.6 2.3 2.2 

0; b-4 0.54 0.50 0.47 

Luminosity Enhancement 

Do 0.10 0.13 0.16 

HDO 1.08 1.10 1.11 

HDI 8.70 10.5 12.4 

HDZ 1.49 1.83 2.05 

HD 12.0 17.5 22.9 

frep [=+I 120 120 120 

LOO [1030 cmm2] 0.43 0.77 1.20 

Lo(= HDOLOO) [1030 cmB2] 0.46 0.84 1.34 

Ll(= HD~Loo) [103’ cmm2] 3.74 8.05 14.8 

L(= H~2tl) [103’ cmm2] 5.78 14.8 30.2 
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