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Abstract 
We prop 

cated CBH 
ose a simple perturbation method using a trun- 
Theorem to calculate the nonlinear generator 

for one turn maps, and argue that such maps should give 
accurate long turn dynamic apertures for proton colliders 
such as the SSC and LHC. 

I. INTRODUCTION 

A promising application for maps is the determination 
of long term dynamic apertures. Since the exact machine 
is not known, a statistical ensemble must be studied to es- 
tablish confidence in design parameters and specifications. 
This requires studying a large set of statistically generated 
machines. To use maps to study dynamic apertures one 
must be able to rapidly track them and construct them. 
The rapid tracking of maps may be done through a kick 
factorization [l] or a Fourier developed generating func- 
tion. [2] Here we address calculation of maps. 

The present method of calculating high order maps re- 
quires tracking a Taylor series element-by-element around 
the ring to determine the one turn Taylor series map. [3] 
At interesting orders the CPU time to construct the map 
in this way becomes prohibitive for a large machine. For 
example a ninth order SSC map requires more than two 
hours of Cray CPU time. 

We propose here a method by which these maps can be 
calculated rapidly. The method also provides insight into 
the physical sources of terms in the map. 

II. DESCRIPTION OF THE METHOD 

A. The Lattice Representation 
Most element-by-element tracking programs begin by 

approximating the lattice by a series of linear transforma- 
tion and nonlinear kicks. Canonical integrators prescribe 
the magnitude and sequence of kicks for thick elements. [4] 
The linear transformations may be analytically represented 
by matrices and the kicks may be represented by exponen- 
tial Lie operators. [5] There are also ways to represent a 
thick element by two linear transformations with an ex- 
ponential Lie operator acting at the center. [6] Errors in 
placement and strength as well as fringe fields can be rep- 
resented this way. Consequently, a product of linear trans- 
formations and nonlinear exponential Lie operators is a 
very general starting point for a lattice representation. 

Using a similarity transformation, 
Re:/ :R-’ = e:R/: t 

where R is a linear operator, one can rearrange operations 
to obtain a product of linear transformations times a prod- 
uct of Lie operators. 

I-I e:L:& = l-I 43 n e:Rn*n: 
1lnlN l~?l~N l$a<N 

where % = ~l<m<n I?,,,. - - 
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B. CBB Tbeorem 
The nonlinear problem becomes a problem in concate- 

nating the Lie operators. Two exponential Lie operators 
may be combined into one by using the Cambell-Baker- 
Hausdorf (CBH) Theorem. 

e:a:e:b: = e”’ 

with 

c=a+b+~[a,b]+~[a-b,[a,b]J+~[b,[a,[a,b]]]+... 

To combine several exponential Lie operators one can start 
at one end and proceed stepwise. At the nth step, 

e:/m+~:e:F.. = e:F..+~: 

where F,, is the generator corresponding to the product of 
the first n Lie operators. 

The CBH theorem can be understood as a perturbation 
series. The initial sum of generators, c z a + b, gives 
the correct result when there is no interaction between the 
nonlinearities. The first Poisson bracket (PB), i[u, 61, gives 
the first order (in generator strength) modification as the 
action of one operator is altered by the presence of the 
other, corresponding to the modification of one kick that 
results from a previous kick in a ring. The double PB gives 
second order effects and so on. Thus one may view the 
CBH theorem for the product generator as a perturbation 
series in the nonlinearity strength. If each nonlinearity 
is small, which is indeed the case with proton colliders, 
the higher order terms in the perturbation series are quite 
small. 

It is important to note that this perturbation series is 
not the same as truncating at some polynomial order. The 
individual nonlinearities can contain high order monomi- 
als. 

C. Separation of Orders 
There may be occasion or interest in keeping track 

of contributions that come from different orders. In the 
method described above terms of different order become 
mixed. This is not necessary, and with a bit more work, 
terms of different order can be kept separate. For this 
purpose we will replace fn by .z f,, and expand F,,. 

I;,, = EF,I + E’F; + ELF; + . . . 

Expanding the CBH theorem in powers of E and identifying 
terms of equal power one finds: 

F;+I = fn+l + F; 

F,f+, = F,” + ;[fn+, , F,11 

F,3+1 = F, + frr,,,, F,l + ; [fn+l - F; 3 [fn+l, F;]] 

F;+, = F, + ;[fn+&l+ & [fn+l, [fn+, - F&F:]] 

+ $ [F,h [fr,+l, [fn+,> F:]]] 
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Using these relationships it is possible to write the F,,‘s 
directly in terms of the f,,‘s. For example, 

F,t, = c fn 
n$?l 

III. ESTIMATING AND CALCULATING POISSON BRACKETS 

A. Estimating Poisson Brackets (PBS) 
From the basic definition of the exponential operator, 

2’ = e”‘z. = 2 + [a, z] + i [a, [a, z]] + . . . 

it follows that for a weak nonlinearity 6r = [a,~]. For an 
action variable J E 0.5(z2 + pz), 6J k [u, J]. 

For a a polynomial of order p, which we denote by 
up, let us take as an estimate of the strength of up the 
exnression 

1 

aP - 
PJI #= ma - 

05e52n 25 
We have included the factor 2 because J is auadratic in 

phase space variables x and po, and defined this way the 
estimate is related to the definition of smear [7]. Writing c 
and pz in terms of J and 0 we find 

up = ~cuptJfeike 
k 

where opk is COmpkX, op,-k iS the Complex COnjUg& Of 
opk, and only even or odd values of k occur according to 
whether p is even or odd. Thus 

% k: ~jkapk J$-leike. 

k 

As a rough estimate of the sum, we replace each quantity 
by its average value and multiply by the number of turns. 
Then 

PJal P’ 

Likewise for b, 
- Z y+x,kI)J+-’ 

J 

b, = c & Jqeije 

and 16Jbl 9’ - e ,(IPqjI)J’-’ J 

To estimate 6J[0,,b,] we first calculate [up, b4]. 

From (l(pj - qk)(k + j)l) a max(p,q)pq/3 and the same 
estimation procedure as above, we get 

]6JIa,bl] ~ 
J 

J+-2max(p’ q)(pq)2 (Ia 
6 PV 

kl)(j@ I) 
BJ 

from which we deduce 

( > # 
or &p7bql rz i max(p, q)a,# bf 

Another way to look at this is to make use of the Jacobi 
identity to write 

bJ[,,tq = [[a, bl, Jl = [a, P, 511 -Lb, [a, JII = bj 6Jal - [b, 6Jb] 
where it is now clear that the change of J due to [a, b] is the 
change of a change, and hence of higher order. The factor 
2 max(p, q)/3 comes from the fact that the derivative of 
the change comes in, not just its magnitude. We have 
used the fact that for polynomials of known order we can 
estimate the derivative in terms of the function. 

For th;%C, at values of J near the long term dynamic 

aperture v 
% .OOl for an f generating the nonlinearities 

of a single ipole. As one proceeds around the rin 
Jg 

the cu- 
mulative effects of these nonlinearities grows ss N, where 
N is the number of dipoles. For the enerator representing 
the nonlinearities of the full ring Iit = .06 at J near the 
long term dynamic aperture. We ITo’te that the long term 
dynamic aperture is very near what is referred to as the 
linear aperture, the latter being defined as that aperture 
with smear equal 10%. 

The connection between the nonlinear generator we are 
calculating and the generator giving the smear is to be 
found in Normal Form theory. (81 Normal Form theory at- 
tempts to combine’ihe linear transformation and the non- 
linear factors into one grand generator which would be the 
pseudo-Hamiltonian of the ring. This is a risky procedure 
which works in some situations and not in others. Reso- 
nance denominators are involved. Such problems do not 
arise in the formation of the nonlinear generator we are 
constructing. 

B. Calcul&ion of Poisson Brackets 
A PB in two degrees of freedom can be calculated by 

taking four derivatives of each function and performing 
four multiplications. In the general situation it is pre- 
ferrable to use the PB for the basic monomials: 

[~obcde~ap~YCp~~e,~pqrst~Pp~y’p;~f] = %bedePpqrs#+ 

{h - b)x 
a+p-lp;+q-l yc+rpyd+s 

+ (cs - dr)x o+pp~tqyc+r-lp~+s-l} 

The number of operations involved is somewhat greater 
than two multiplications if the monomials are scanned to 
optimize computation time. When one of the functions is a 
kick the calculation can be reduced to two multiplications. 
This follows from the relationship 

E anmx”yrn 1 F] = c ncr,,~~--~y”‘[x, F] 

+c ” mhmx Y “-‘[y, F]. 

C. Comparison with Power Series Tracking 
When carefully optimized the number of polynomial 

multiplications per dipole in power series tracking is about 
twice the order retained in the error multipoles of the 
dipole. For 5th order multipoles (through dodecapole) 
this is 12 multiplications per dipole. For the procedure we 
are suggesting the number of PBS will be one or two per 



dipole corresponding to approximately two or five multi- 
plications, independent of maximum multipole order. For 
ninth order multipoles the improvement in computational 
time could be almost a factor of ten. Some computations 
will be needed to establish the exact improvement because 
there are other effects: the order of the generators is larger 
by one than the order of the map, though they begin at 
third order for the first PB and at fourth order for the 
second PB and many pairs are absent. 

IV. CHOICE OF TRUNCATION OF THE CBH THEOREM 

A. Truncation Order for Ensembles of Maps 
In concatenating the many weak nonlinear generators 

into one generator it is crucial to maintain at least one of 
the PBS in the CBH theorem. This conclusion rests on 
the fact that one PB is needed to include the effects of 
sextupoles acting on sextupoles. Such terms produce an 
octupole like term that gives an important contribution to 
the phase shift with amplitude. 

However there is an indication that statistically this 
may be sufficient. Statistical analytic calculations of tune 
shift and smear, including one PB for the tune shift and 
none for the smear, have been compared with tracking 
over 400 seeds. The tracking results were Fourier ana- 
lyzed so that one could compare smear details. The results 
agreed [9] to within the accuracy of the tracking analysis. 

One might further argue that if you have the correct 
tune shift with amplitude, which determines the position of 
resonance lines in the particle phase space, and the correct 
smear amplitudes, which determine the driving strengths 
of resonances, the long term dynamic apertures would also 
agree. We believe this will be especially true when one 
compares ensembles of machines because the coefficient of 
any particular monomial in the map will vary more widely 
with the change in the first order terms than with modi- 
fication by higher order effects. If this is indeed the case, 
the limits on our ability to know and measure the high 
order multipoles in a single magnet will limit our ability 
to predict the long term dynamic aperture. 

B. Statistical Generation of Maps 
If it can be established that the maps constructed with 

one PB produce the same long term dynamic aperture, or 
even that statistically they give the same long term dy- 
namic aperture, then it is possible to generate these maps 
analytically. [9] This can be done extremely fast. In this 
case it should be possible to identify the important coef- 
ficients in the map and their source. This would provide 
important insight into the determination of the long term 
dynamic aperture. 

C. Truncation Order for Individual Maps 
Though we believe it is enough to include one PB of 

the CBH theorem when studying the properties of an en- 
semble of machines, we recognize it would build confidence 
in the method to show that the map for a single particular 
machine generated in the way we propose gives exactly the 
same dynamic aperture as the element-by-element track- 
ing of that machine. For this purpose we conjecture that 
one more PB may be enough. This belief rests on our 
estimation of the accuracy of the approximation at this 
level, that the tune shift with amplitude and the resonant 

strengths are determined accurately, and also on the fact 
that the next order PB, if it were to be included, is even 
an order smaller than would be expected at first sight. In 
other words including one more PB includes all effects that 
occur in the next two orders of approximation. We now 
present the argument for this result. 

Denote by fn the nth nonlinear generator, and by F,, 
the generator that combines the first n generators. For the 
SSC the result of summing up terms [fn+i, F,J is about 
[FN, FN], and so is approximately of magnitude ( .06)2 at 
the long term dynamic aperture. The result of summing 
a term like [F,, vn+l, Fn]] will be down by another factor 
of .06 because it involves an additional PB. However the 
term [fn, Vn, &II will b e smaller yet by a factor of l/50 
because F,, grows like fi compared to f,,, and half way 
around the ring fi s 50. Thus at any given order of PB, 
terms which have two f’s will be smaller than terms with 
one f by more than one order. 

Since the only third order PB occurring in the CBH 
theorem is 

[fn+l, P-n, [fn+l, Fnlll 
and since it has two f’s, effects from this order will be more 
than two orders smaller than the second order PB terms. 

V. CONCLUSION 

We have described a method to calculate one turn maps 
that offers insight into the structure of the maps and is sub- 
stantially faster than standard power series methods. If 
the program suggested here is carried out and the conjec- 
tures proven correct, the nonlinear generators for one turn 
map maps could be calculated directly using analytic ex- 
pressions containing random numbers. Substantial insight 
would be gained into the physics behind the determination 
of long term dynamic apertures. 
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