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ABSTRACT 

General properties of the longitudinal equilibrium dis- 
tribution of a simple model storage ring are discussed us- 
ing a mapping algorithm for means and correlations of a 
Gaussian distribution function. The maps for synchrotron 
oscillations, stochastic excitation, radiation damping and a 
general localized perturbation are calculated analytically. 
The fixed point of the concatenated maps is used to char- 
acterize the equilibrium distribution. 

INTR0DuCTIoN 
In Ref. [l] a method to investigate the behavior of 

bunched beams under the influence of localized constant 
wake forces was introduced. In Ref. [2] this method was 
extended to resonator type wake forces. In this report we 
will extend the analysis to the most arbitrary form of a 
localized interaction. 

The single particle map for a localized interaction, in 
which the longitudinal position does not change, is then 
given by 

x’1 =x1 ) 
(1) 

x; = +2 + f(x1,22) . 

Here we introduce the scaled variables 11 = w87/a and 
12 = (E - Eo)/Eo where w, is the synchrotron frequency, 
o the momentum compaction factor, Ec the energy of the 
reference particle, and c7 the distance between an electron 
and the reference electron. Clearly the longitudinal coor- 
dinate xl does not change. 

The next element in our model storage ring describes 
radiation and damping 

(2) 

with ( = eeTQfrE, where To/7~ is the ratio of the revo- 
lution time and the damping time, 60 is the natural en- 
ergy spread, and P is a Gaussian white noise defined by 
(P) = 0, (P2) = 1. 

The last element describes synchrotron oscillations and 
is given by 

where p is related to the synchrotron tune V, by cp = 2av,. 
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The model storage ring is then defined by the succes- 
sion of mappings 

Map 1 , Rod. ,, 08C. x1,x2 - xi,22 - 4,z2 - xy,xy . (4) 

For this model we will construct the corresponding map- 
pings for the statistical quantities bunch center Xi, aver- 
age energy X2, squared bunch length uir, squared energy 
spread ~22, and correlation uiz defined by 

Xi = (Xi) 9 

(5) 
Uij = ((Xi - Xi)(Xj - Xj)) . 

The acute brackets denote averages with respect to the 
electron distribution function ti(xi,zz). Here we will use 
a normalized Gaussian 

$(x1 7x2) = 
1 

ST& 
(6) 

(U-‘)ij(Xi - Xi)(Xj -xi)) 

In the next section we will first construct the mappings 
for the statistical quantities Xi and Uij. In the following 
section the-full one-turn map defined by Eq. (4) is cal- 
culated, and its period-l fixed point which describes the 
equilibrium configuration is determined. A discussion of 
the equilibrium concludes this paper. 

MAPPINGS FOR THE STATISTICAL QUANTITIES 
The maps for the statistical quantities for the radiation 

and oscillation part are taken from Ref. [l]. We only quote 
the results here. First, for the radiation part we have 

x:=x; , x; = <xi; 

uy~=f& , ur2 = 6712 ; 

uy2 =( 2u;* + (1 - tz)u,2 ; 

then for the oscillator part 

(7) 

(8) 

where U is the matrix appearing in the single particle 
map for the oscillation part, Eq. (3). The calculation for 
the map through the interaction f is rather tedious and 
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ii’,;i”,t”ls are reported in Ref. [2]. Here we only quote the 

x; = x1 ) 

I 
611 = 611 9 

(9) 
u;2 = (1+ R&C,a))Wz + R2l(X7Uhl ) 

ui2 = (1+ 2R22(X, +722 

+ 2R21(X, u)u12 + R3(X, 0) . 

The functions R are given in terms of integrals over the 
interaction function f. They still depend on the quantities 
(X, u) before the interaction and are given by 

+cr, +m 
RI (X, u) = ; J J dtl dt2 e-*T-tz f (yl, ~2) , 

--Do -03 

+C- +m 
~zl(~,a) = i J cttl J dt2 e-t:-tz g(yl, y2) , 

--DC, -m 

+w +m 
Rzz(X,a) = ; J dtl J dt2 e-t:-t: $y1,y2) , 

(10) 

-02 -co 

+03 +w 
R3(X,u) = ; J J dtl dt2 e-r:-t: f2(yl,y2) 

-co --M 

- Rf(X,u) 

The argument yi and y2 of the functions f (yl, ~2) are re- 
lated to (X, u) by 

Yl = Xl + w/%1 + u21l/Gt2 , 

(11) 

Y2 = x2 + u12@31 + uzz&Gtt, , 

where Xi and (ui)j are the eigenvalues and eigenvectors of 
uij. They are calculated in Ref. [2]. 

*= 622 - 011 

2a12 
, F=&y3; 

y1=2+P ) y2=X-P; 

Xl,2 = 
Cl1 + 622 

2 f a12Y ; 

Ull = &; > u12 = J+ ; 

u21 = d&-g ’ u22 = JS . 

(12) 

2 

The interpretation of the functions Ri in Eq. (9) is straight- 
forward. RI is a generalized loss factor, because it de- 
scribes the energy exchange (it changes the energy-like 
variable 12) in the interaction f. R22 describes the damp- 
ing (or anti-damping) effect of the interaction f, because 
negative (positive) R 22 decreases (increases) the magni- 
tude of ~712 and ~722 in Eq. (9). Note from the third line 
of Eq. (10) that R 22 is proportional to the derivative of 
f with respect to the energy-like variable 22. Therefore 
damping or anti-damping can only come from an energy 
dependence of the interaction f. From Eq. (9) we see that 
R21 drives the cross term ~712 and is responsible for correla- 
tions between energy and position inside the bunch. Note 
that R21 is proportional to the derivative off with respect 
to the position-like variable 21. Therefore an interaction f 
that distinguishes different parts inside a bunch can pro- 
duce a correlation between position and energy inside the 
bunch. Finally, R3 is a noise term. It can be shown that 
it is positive definite and increases the energy spread ~722; 
i.e., it introduces noise. 

THE CONCATENATED MAPPING AND ITS FIXED POINT 

In order to calculate the one-turn map for the model 
storage ring defined by Eq. (4) we will follow Ref. [l] and 
use det u, Tr u, and ull as the mapped quantities. This 
“trick” facilitates the algebra, because det u and Tr u are 
invariant under oscillations and the other maps leave uii 
invariant. After a considerable amount of algebra we ob- 
tain for the one-turn map 

X~=X1cosp+[(X2+R1(X,u))sinp, 

Xr = -X1 sin ‘p + <(X2 + Rl(X, u)) cos ‘p , 

u’1; = 611 cos2$o 

+ Y[(l + &2)m + R2lml sin cp ~0s cp 

+ [t2(l + 2R22)~22 + %2R21u12 + E2& 

+ (1 - t2)6i] sin2 cp , 
(13) 

det u”’ = t2 [(l + 2R22) det u + R3ull 

- (R21~11 + R22~12)~] + (1 - <“) &II , 

Tru”’ = Tr cr - (1 - e2 - 2t2R22) (u22 - CT:) 

+ X2R22a,2 + 2F2R21a12 +t2R3 . 

These maps can now be used to investigate the time depen- 
dence of the model storage ring as was done in Ref. [2] for 
a resonator type wake. Here we will investigate the equi- 
librium configuration. To this end we will calculate the 
period-l fixed point of the maps given by Eq. (13). Equat- 
ing the primed and the triple primed quantities we get the 



following implicit set of equations for the equilibrium val- 
ues X,? and a,?, and obtain 

t 
XY= 1+< -RI cot ; , 

t 
xm=-l+t 

2 -RI , 

a; = - U321 

1+ ((1 + R22) 
G I 

uz = uo” + t2 
R3 + 2R224 + 2R21G 

1 -<‘(l+ 2R22) 

In the following section we will discuss some of 
esting features of Eq. (14). 

DISCUSSION 

(14) 

the inter- 

The equilibrium energy XT in the presence of the in- 
teraction is changed proportional to the generalized loss 
factor RI and the position of the bunch center Xy is 
shifted accordingly. Note that Xr and XT implicitly 
depend on the equilibrium values X,? and u,y through 
RI = R1(XIv, u,?). The dependence of the loss factor RI 
on the bunch sizes is therefore taken into account in a self- 
consistent way. 

Furthermore note that the dependence of the equilib- 
rium correlation uz is proportional to R2l. Eq. (10) shows 
that R2l is proportional to the derivative of the interac- 
tion f to the position-like variable 21. Consequently, for an 

interaction f that affects all particles inside the bunch in 
the same way cannot introduce a correlation. Moreover, 
if ug is zero we obtain from the third of Eqs. 14 that 
the bunch length aE is proportional to the energy spread 
uz. Another way to state this is: if the interaction f only 
depends on the energy x2, the correlation a; vanishes and 
the bunch length is proportional to the energy spread. 

An example for an interaction that treats all particles 
in a bunch in the same way is an amplifier Free Electron 
Laser (FEL), where a continuous external laser is passed 
over the transversely undulating electrons. Therefore the 
amplifier FEL does not produce a correlation between en- 
ergy and position in the bunch. 

On the other hand, the light in an oscillator FEL ac- 
quires a pulsed structure due to a mode-locking mechanism 
produced by the FEL process itself. The light pulses are 
typically much shorter than the bunch length and there- 
fore affect only part of the electrons. Consequently a cor- 
relation between energy and position is generated. 

A further example is the wake interaction in which the 
leading particles in a bunch affect the trailing. Obviously, 
this will then introduce a correlation UE in the bunch. 
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