Properties of the Longitudinal Equilibrium Distribution in a Storage Ring*

V. Ziemann
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Abstract

General properties of the longitudinal equilibrium distribution of a simple model storage ring are discussed using a mapping algorithm for means and correlations of a Gaussian distribution function. The maps for synchrotron oscillations, stochastic excitation, radiation damping and a general localized perturbation are calculated analytically. The fixed point of the concatenated maps is used to characterize the equilibrium distribution.

Introduction

In Ref. [1] a method to investigate the behavior of bunched beams under the influence of localized constant wake forces was introduced. In Ref. [2] this method was extended to resonator type wake forces. In this report we will extend the analysis to the most arbitrary form of a localized interaction.

The single particle map for a localized interaction, in which the longitudinal position does not change, is then given by

$$
\begin{align*}
& x_{1}^{\prime}=x_{1} \\
& x_{2}^{\prime}=x_{2}+f\left(x_{1}, x_{2}\right) . \tag{1}
\end{align*}
$$

Here we introduce the scaled variables $x_{1}=\omega_{s} \tau / \alpha$ and $x_{2}=\left(E-E_{0}\right) / E_{0}$ where ω_{s} is the synchrotron frequency, α the momentum compaction factor, E_{0} the energy of the reference particle, and $c \tau$ the distance between an electron and the reference electron. Clearly the longitudinal coordinate x_{1} does not change.

The next element in our model storage ring describes radiation and damping

$$
\begin{align*}
& x_{1}^{\prime \prime}=x_{1}^{\prime} \\
& x_{2}^{\prime \prime}=\xi x_{2}^{\prime}+\sqrt{\left(1-\xi^{2}\right)} \sigma_{0} \hat{P} \tag{2}
\end{align*}
$$

with $\xi=e^{-T_{0} / \tau_{E}}$, where T_{0} / τ_{E} is the ratio of the revolution time and the damping time, σ_{0} is the natural energy spread, and \hat{P} is a Gaussian white noise defined by $\langle\hat{P}\rangle=0,\left\langle\hat{P}^{2}\right\rangle=1$.

The last element describes synchrotron oscillations and is given by

$$
\begin{equation*}
\binom{x_{1}^{\prime \prime \prime}}{x_{2}^{\prime \prime \prime}}=\binom{\cos \varphi \sin \varphi}{-\sin \varphi \cos \varphi}\binom{x_{1}^{\prime \prime}}{x_{2}^{\prime \prime}}, \tag{3}
\end{equation*}
$$

where φ is related to the synchrotron tune ν_{s} by $\varphi=2 \pi \nu_{s}$.

[^0]The model storage ring is then defined by the succession of mappings

$$
\begin{equation*}
x_{1}, x_{2} \xrightarrow{\text { Map } 1} x_{1}^{\prime}, x_{2}^{\prime} \xrightarrow{R a d .} x_{1}^{\prime \prime}, x_{2}^{\prime \prime} \xrightarrow{\text { Ose. }_{.}} x_{1}^{\prime \prime \prime}, x_{2}^{\prime \prime \prime} \tag{4}
\end{equation*}
$$

For this model we will construct the corresponding mappings for the statistical quantities bunch center X_{1}, average energy X_{2}, squared bunch length σ_{11}, squared energy spread σ_{22}, and correlation σ_{12} defined by

$$
\begin{align*}
X_{i} & =\left\langle x_{i}\right\rangle \tag{5}\\
\sigma_{i j} & =\left\langle\left(x_{i}-X_{i}\right)\left(x_{j}-X_{j}\right)\right\rangle
\end{align*}
$$

The acute brackets denote averages with respect to the electron distribution function $\psi\left(x_{1}, x_{2}\right)$. Here we will use a normalized Gaussian

$$
\begin{align*}
& \psi\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sqrt{\operatorname{det} \sigma}} \\
& \quad \times \exp \left(-\frac{1}{2} \sum_{i, j=1}^{2}\left(\sigma^{-1}\right)_{i j}\left(x_{i}-X_{i}\right)\left(x_{j}-X_{j}\right)\right) \tag{6}
\end{align*}
$$

In the next section we will first construct the mappings for the statistical quantities X_{i} and $\sigma_{i j}$. In the following section the full one-turn map defined by Eq. (4) is calculated, and its period-1 fixed point which describes the equilibrium configuration is determined. A discussion of the equilibrium concludes this paper.

Mappings for the Statistical Quantities

The maps for the statistical quantities for the radiation and oscillation part are taken from Ref. [1]. We only quote the results here. First, for the radiation part we have

$$
\begin{align*}
& X_{1}^{\prime \prime}=X_{1}^{\prime} \quad, \quad X_{2}^{\prime \prime}=\xi X_{2}^{\prime} \\
& \sigma_{11}^{\prime \prime}=\sigma_{11}^{\prime} \quad, \quad \sigma_{12}^{\prime \prime}=\xi \sigma_{12}^{\prime} \tag{7}\\
& \sigma_{22}^{\prime \prime}=\xi^{2} \sigma_{22}^{\prime}+\left(1-\xi^{2}\right) \sigma_{0}^{2}
\end{align*}
$$

then for the oscillator part

$$
\begin{align*}
\binom{X_{1}^{\prime \prime \prime}}{X_{2}^{\prime \prime \prime}} & =U\binom{X_{1}^{\prime \prime}}{X_{2}^{\prime \prime}}, \\
\binom{\sigma_{11}^{\prime \prime \prime} \sigma_{12}^{\prime \prime \prime}}{\sigma_{21}^{\prime \prime \prime} \sigma_{22}^{\prime \prime \prime}} & =U\binom{\sigma_{11}^{\prime \prime} \sigma_{12}^{\prime \prime}}{\sigma_{21}^{\prime \prime} \sigma_{22}^{\prime \prime}} U^{T} \tag{8}
\end{align*}
$$

where U is the matrix appearing in the single particle map for the oscillation part, Eq. (3). The calculation for the map through the interaction f is rather tedious and
the details are reported in Ref. [2]. Here we only quote the results

$$
\begin{align*}
X_{1}^{\prime} & =X_{1} \\
X_{2}^{\prime}= & X_{2}+R_{1}(X, \sigma) \\
\sigma_{11}^{\prime}= & \sigma_{11} \\
\sigma_{12}^{\prime}= & \left(1+R_{22}(X, \sigma)\right) \sigma_{12}+R_{21}(X, \sigma) \sigma_{11} \tag{9}\\
\sigma_{22}^{\prime}= & \left(1+2 R_{22}(X, \sigma)\right) \sigma_{22} \\
& +2 R_{21}(X, \sigma) \sigma_{12}+R_{3}(X, \sigma)
\end{align*}
$$

The functions R are given in terms of integrals over the interaction function f. They still depend on the quantities (X, σ) before the interaction and are given by

$$
\begin{align*}
R_{1}(X, \sigma)= & \frac{1}{\pi} \int_{-\infty}^{+\infty} d t_{1} \int_{-\infty}^{+\infty} d t_{2} e^{-t_{1}^{2}-t_{2}^{2}} f\left(y_{1}, y_{2}\right) \\
R_{21}(X, \sigma)= & \frac{1}{\pi} \int_{-\infty}^{+\infty} d t_{1} \int_{-\infty}^{+\infty} d t_{2} e^{-t_{1}^{2}-t_{2}^{2}} \frac{\partial f}{\partial y_{1}}\left(y_{1}, y_{2}\right), \\
R_{22}(X, \sigma)= & \frac{1}{\pi} \int_{-\infty}^{+\infty} d t_{1} \int_{-\infty}^{+\infty} d t_{2} e^{-t_{1}^{2}-t_{2}^{2}} \frac{\partial f}{\partial y_{2}}\left(y_{1}, y_{2}\right), \tag{10}\\
R_{3}(X, \sigma)= & \frac{1}{\pi} \int_{-\infty}^{+\infty} d t_{1} \int_{-\infty}^{+\infty} d t_{2} e^{-t_{1}^{2}-t_{2}^{2}} f^{2}\left(y_{1}, y_{2}\right) \\
& -R_{1}^{2}(X, \sigma) .
\end{align*}
$$

The argument y_{1} and y_{2} of the functions $f\left(y_{1}, y_{2}\right)$ are related to (X, σ) by

$$
\begin{align*}
& y_{1}=X_{1}+u_{11} \sqrt{2 \lambda_{1}} t_{1}+u_{21} \sqrt{2 \lambda_{2}} t_{2} \\
& y_{2}=X_{2}+u_{12} \sqrt{2 \lambda_{1}} t_{1}+u_{22} \sqrt{2 \lambda_{2}} t_{2} \tag{11}
\end{align*}
$$

where λ_{i} and $\left(u_{i}\right)_{j}$ are the eigenvalues and eigenvectors of $\sigma_{i j}$. They are calculated in Ref. [2].

$$
\begin{align*}
& \tilde{X}=\frac{\sigma_{22}-\sigma_{11}}{2 \sigma_{12}}, \quad \tilde{Y}=\sqrt{1+\tilde{X}^{2}} \\
& y_{1}=\tilde{X}+\tilde{Y} \quad, \quad y_{2}=\tilde{X}-\tilde{Y} \\
& \lambda_{1,2}=\frac{\sigma_{11}+\sigma_{22}}{2} \pm \sigma_{12} \tilde{Y} \tag{12}\\
& u_{11}=\frac{1}{\sqrt{1+y_{1}^{2}}} \quad, \quad u_{12}=\frac{y_{1}}{\sqrt{1+y_{1}^{2}}} \\
& u_{21}=\frac{1}{\sqrt{1+y_{2}^{2}}} \quad, \quad u_{22}=\frac{y_{2}}{\sqrt{1+y_{2}^{2}}}
\end{align*}
$$

The interpretation of the functions R_{i} in Eq. (9) is straightforward. R_{1} is a generalized loss factor, because it describes the energy exchange (it changes the energy-like variable x_{2}) in the interaction $f . R_{22}$ describes the damping (or anti-damping) effect of the interaction f, because negative (positive) R_{22} decreases (increases) the magnitude of σ_{12} and σ_{22} in Eq. (9). Note from the third line of Eq. (10) that R_{22} is proportional to the derivative of f with respect to the energy-like variable x_{2}. Therefore damping or anti-damping can only come from an energy dependence of the interaction f. From Eq. (9) we see that R_{21} drives the cross term σ_{12} and is responsible for correlations between energy and position inside the bunch. Note that R_{21} is proportional to the derivative of f with respect to the position-like variable x_{1}. Therefore an interaction f that distinguishes different parts inside a bunch can produce a correlation between position and energy inside the bunch. Finally, R_{3} is a noise term. It can be shown that it is positive definite and increases the energy spread σ_{22}; i.e., it introduces noise.

The concatenated mapping and its fixed point

In order to calculate the one-turn map for the model storage ring defined by Eq. (4) we will follow Ref. [1] and use $\operatorname{det} \sigma, \operatorname{Tr} \sigma$, and σ_{11} as the mapped quantities. This "trick" facilitates the algebra, because $\operatorname{det} \sigma$ and $\operatorname{Tr} \sigma$ are invariant under oscillations and the other maps leave σ_{11} invariant. After a considerable amount of algebra we obtain for the one-turn map

$$
\begin{align*}
X_{1}^{\prime \prime \prime} & =X_{1} \cos \varphi+\xi\left(X_{2}+R_{1}(X, \sigma)\right) \sin \varphi \\
X_{2}^{\prime \prime \prime} & =-X_{1} \sin \varphi+\xi\left(X_{2}+R_{1}(X, \sigma)\right) \cos \varphi \\
\sigma_{11}^{\prime \prime \prime} & =\sigma_{11} \cos ^{2} \varphi \\
& +2 \xi\left[\left(1+R_{22}\right) \sigma_{12}+R_{21} \sigma_{11}\right] \sin \varphi \cos \varphi \\
& +\left[\xi^{2}\left(1+2 R_{22}\right) \sigma_{22}+2 \xi^{2} R_{21} \sigma_{12}+\xi^{2} R_{3}\right. \\
& \left.\quad+\left(1-\xi^{2}\right) \sigma_{0}^{2}\right] \sin ^{2} \varphi \tag{13}
\end{align*}
$$

$$
\begin{aligned}
\operatorname{det} \sigma^{\prime \prime \prime}= & \xi^{2}\left[\left(1+2 R_{22}\right) \operatorname{det} \sigma+R_{3} \sigma_{11}\right. \\
& \left.\quad-\left(R_{21} \sigma_{11}+R_{22} \sigma_{12}\right)^{2}\right]+\left(1-\xi^{2}\right) \sigma_{0}^{2} \sigma_{11} \\
\operatorname{Tr} \sigma^{\prime \prime \prime}= & \operatorname{Tr} \sigma-\left(1-\xi^{2}-2 \xi^{2} R_{22}\right)\left(\sigma_{22}-\sigma_{0}^{2}\right) \\
+ & 2 \xi^{2} R_{22} \sigma_{0}^{2}+2 \xi^{2} R_{21} \sigma_{12}+\xi^{2} R_{3}
\end{aligned}
$$

These maps can now be used to investigate the time dependence of the model storage ring as was done in Ref. [2] for a resonator type wake. Here we will investigate the equilibrium configuration. To this end we will calculate the period- 1 fixed point of the maps given by Eq. (13). Equating the primed and the triple primed quantities we get the
following implicit set of equations for the equilibrium values X_{i}^{∞} and $\sigma_{i j}^{\infty}$, and obtain

$$
\begin{align*}
X_{1}^{\infty} & =\frac{\xi}{1+\xi} R_{1} \cot \frac{\varphi}{2}, \\
X_{2}^{\infty} & =-\frac{\xi}{1+\xi} R_{1}, \\
\sigma_{11}^{\infty} & =\sigma_{22}^{\infty}-2 \sigma_{12}^{\infty} \cot \varphi, \tag{14}\\
\sigma_{12}^{\infty} & =-\frac{\xi R_{21}}{1+\xi\left(1+R_{22}\right)} \sigma_{11}^{\infty}, \\
\sigma_{22}^{\infty} & =\sigma_{0}^{2}+\xi^{2} \frac{R_{3}+2 R_{22} \sigma_{0}^{2}+2 R_{21} \sigma_{12}^{\infty}}{1-\xi^{2}\left(1+2 R_{22}\right)} .
\end{align*}
$$

In the following section we will discuss some of the interesting features of Eq. (14).

Discussion

The equilibrium energy X_{2}^{∞} in the presence of the interaction is changed proportional to the generalized loss factor R_{1} and the position of the bunch center X_{1}^{∞} is shifted accordingly. Note that X_{1}^{∞} and X_{2}^{∞} implicitly depend on the equilibrium values X_{i}^{∞} and $\sigma_{i j}^{\infty}$ through $R_{1}=R_{1}\left(X_{i}^{\infty}, \sigma_{i j}^{\infty}\right)$. The dependence of the loss factor R_{1} on the bunch sizes is therefore taken into account in a selfconsistent way.

Furthermore note that the dependence of the equilibrium correlation σ_{12}^{∞} is proportional to R_{21}. Eq. (10) shows that R_{21} is proportional to the derivative of the interaction f to the position-like variable x_{1}. Consequently, for an
interaction f that affects all particles inside the bunch in the same way cannot introduce a correlation. Moreover, if σ_{12}^{∞} is zero we obtain from the third of Eqs. 14 that the bunch length σ_{11}^{∞} is proportional to the energy spread σ_{22}^{∞}. Another way to state this is: if the interaction f only depends on the energy x_{2}, the correlation σ_{12}^{∞} vanishes and the bunch length is proportional to the energy spread.

An example for an interaction that treats all particles in a bunch in the same way is an amplifier Free Electron Laser (FEL), where a continuous external laser is passed over the transversely undulating electrons. Therefore the amplifier FEL does not produce a correlation between energy and position in the bunch.

On the other hand, the light in an oscillator FEL acquires a pulsed structure due to a mode-locking mechanism produced by the FEL process itself. The light pulses are typically much shorter than the bunch length and therefore affect only part of the electrons. Consequently a correlation between energy and position is generated.

A further example is the wake interaction in which the leading particles in a bunch affect the trailing. Obviously, this will then introduce a correlation σ_{12}^{∞} in the bunch.

Acknowledgements

I wish to thank Prof. K. Wille for his continuous support and interest in the completion of this work and the entire DELTA group for many discussions.

References

[1] K. Hirata, Part. Acc. 22, 57, 1987.
[2] V. Ziemann, Ph.D. Thesis, Universität Dortmund, a available as DELTA Internal Report 90-03, Universität Dortmund, 1990.

[^0]: * Work supported in part by Department of Energy contract DE-AC03-76SF00515 and by Bundesministerium für Forschung und Technologie under contract 05 AX 334 B2.

