SLAC-PUB-5477
May 1991

(A)

Properties of the Longitudinal Equilibrium Distribution in a Storage Ring*

V. Ziemann
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

ABSTRACT

General properties of the longitudinal equilibrium dis-
tribution of a simple model storage ring are discussed us-
ing a mapping algorithm for means and correlations of a
Gaussian distribution function. The maps for synchrotron
oscillations, stochastic excitation, radiation damping and a
general localized perturbation are calculated analytically.
The fixed point of the concatenated maps is used to char-
acterize the equilibrium distribution.

INTRODUCTION

In Ref. [1} a method to investigate the behavior of
bunched beams under the influence of localized constant
wake forces was introduced. In Ref. [2] this method was
extended to resonator type wake forces. In this report we
will extend the analysis to the most arbitrary form of a
localized interaction.

The single particle map for a localized interaction, in
which the longitudinal position does not change, is then
given by

=,

(1)

zh=z2+ f(z1,22) .

Here we introduce the scaled variables z; = w,7/a and
z9 = (E — Ey)/Ey where w;, is the synchrotron frequency,
o the momentum compaction factor, Eg the energy of the
reference particle, and ¢r the distance between an electron
and the reference electron. Clearly the longitudinal coor-
dinate z; does not change.

The next element in our model storage ring describes
radiation and damping

2 =2},
2y = €2y + /(1 - E%)aoP

with ¢ = e~ 7o/78 where Ty/7E is the ratio of the revo-
lution time and the damping time, o¢ is the natural en-
ergy spread, and P is a Gaussian white noise defined by
(P)=0, (P?)=1.

The last element describes synchrotron oscillations and
is given by

2\ _ cosp sinp zy
¥ ]~ \ —sing cosp 5 )’

where ¢ is related to the synchrotron tune v, by p = 27,

(2)
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The model storage ring is then defined by the succes-
sion of mappings

1
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For this model we will construct the corresponding map-
pings for the statistical quantities bunch center X, aver-
age energy X,, squared bunch length o;,, squared energy
spread 032, and correlation o1, defined by

Xi = (z) ,

(5)
oij = ((z: — Xi)(z; — X)) -

The acute brackets denote averages with respect to the
electron distribution function ¥(z;,z2). Here we will use
a normalized Gaussian

eren) = 5
1 & (6)
xexp (=5 D (07 (e = Xo)(z; = X)) -
1,5=1

In the next section we will first construct the mappings
for the statistical quantities X; and oy;. In the following
section the-full one-turn map defined by Eq. (4) is cal-
culated, and its period-1 fixed point which describes the
equilibrium configuration is determined. A discussion of
the equilibrium concludes this paper.

MAPPINGS FOR THE STATISTICAL QUANTITIES

The maps for the statistical quantities for the radiation
and oscillation part are taken from Ref. [1]. We only quote
the results here. First, for the radiation part we have

X{ =X, X{ = €Xp;
2 2

" 1 " /
o11=0y, , 013 = §015; (7
2
0y = €00 + (1 - €%} ;

then for the oscillator part
X{” XI/
1
(Xm =U X -
2 2
" " "
(”11"12) U(Uu”u) UT
o | T "won '
021022 021022

where U is the matrix appearing in the single particle

map for the oscillation part, Eq. (3). The calculation for

the map through the interaction f is rather tedious and
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the details are reported in Ref. [2]. Here we only quote the
results

X=X,
X} = Xy + Ry(X,0),

’
011 =011,

(9)
ols = (1+R22(X,U))0'12+R21(X,0')011 ;

0';2 = (1 + 2R22(X, 0’))0’22

+ 2R21(X,0')0'12 + Ra(X,U) .

The functions R are given in terms of integrals over the
interaction function f. They still depend on the quantities
(X, o) before the interaction and are given by
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R0y =1 [an [t et fw),
-00 -0
T )
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1 242 O
Ryy(X,0) = - / dty / dty et 55;(3/1,!/2),
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1 400 400
R3(X,0) = p / dt, / dty et 1, v2)
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The argument y; and y» of the functions f(y1,y2) are re-
lated to (X, o) by

y1 = X1 +ui1 V2t + ua1v/ 205,
Y2 = Xo + uioV/2A1t1 + ug2v/2X015

where ); and (u,); are the eigenvalues and eigenvectors of
oij. They are calculated in Ref. [2].

X':.Ui:fl_l, ?:\/1+X2;

(11)

2012
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u11=; 22__y1 ;
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1 Y2 ’
U1 = —F/——— , 22 F T/ .
V1+y? 1+ y?

The interpretation of the functions R; in Eq. (9) is straight-
forward. R; is a generalized loss factor, because it de-
scribes the energy exchange (it changes the energy-like
variable z,) in the interaction f. Rz describes the damp-
ing (or anti-damping) effect of the interaction f, because
negative (positive) Rys decreases (increases) the magni-
tude of 012 and o322 in Eq. (9). Note from the third line
of Eq. (10) that Ry, is proportional to the derivative of
f with respect to the energy-like variable z,. Therefore
damping or anti-damping can only come from an energy
dependence of the interaction f. From Eq. (9) we see that
Ry drives the cross term 0,4 and is responsible for correla-
tions between energy and position inside the bunch. Note
that Ry; is proportional to the derivative of f with respect
to the position-like variable z,. Therefore an interaction f
that distinguishes different parts inside a bunch can pro-
duce a correlation between position and energy inside the
bunch. Finally, R3 is a noise term. It can be shown that
it is positive definite and increases the energy spread oag;
1.e.,1t introduces noise.

THE CONCATENATED MAPPING AND ITS FIXED POINT

In order to calculate the one-turn map for the model
storage ring defined by Eq. (4) we will follow Ref. [1] and
use det o, Treo, and o7 as the mapped quantities. This
“trick” facilitates the algebra, because det ¢ and Tro are
invariant under oscillations and the other maps leave oy,
invariant. After a considerable amount of algebra we ob-
tain for the one-turn map

Xi":XICOS<P+f(X2+R1(X’U)) sing
Xy =-Xysing+€(X2+ Ri(X,0)) cos g,
ol = o11cos’ep

+ 28[(1 + Rz2)012 + R21011]sinpcos ¢

+ [€2(1 + 2R22)002 + 2% Roy 012 + €2 R3
(13)
+ (1 - 62)0(2)] Sinz ®
det o’ = 52 [(1 =+ 2R22) det o + R3oq;
— (Ra1011 + R220’12)2] + (1 =€} ojon,
Tro' =Tro — (1 — €2 - 262Ry,) (022 — o)

+ 2% Ro30% + 262 Ry1012 4+ €2R3 .

These maps can now be used to investigate the time depen-
dence of the model storage ring as was done in Ref. [2] for
a resonator type wake. Here we will investigate the equi-
librium configuration. To this end we will calculate the
period-1 fixed point of the maps given by Eq. (13). Equat-
ing the primed and the triple primed quantities we get the



following implicit set of equations for the equilibrium val-

ues X{° and o7, and obtain
X = 1f_£R1cot% ,
X3¢ == lf-ﬁRl )
o] = 055 — 2075 cot (14)
7 = 77 +5€(ﬁ: o) 11
052 = 02 4 €2 R3 + 2Ry0% + 2Ry, 053

1-— 62(1 + 2R22)

In the following section we will discuss some of the inter-
esting features of Eq. (14).

DiscuUsSION

The equilibrium energy X$° in the presence of the in-
teraction is changed proportional to the generalized loss
factor R; and the position of the bunch center X{° is
shifted accordingly. Note that X{° and X$° implicitly
depend on the equilibrium values X{° and ¢} through
Ry = Ry(XP°, ag‘?). The dependence of the loss factor R,
on the bunch sizes is therefore taken into account in a self-
consistent way.

Furthermore note that the dependence of the equilib-
rium correlation 053 is proportional to Ra2;. Eq. (10) shows
that Ry is proportional to the derivative of the interac-
tion f to the position-like variable z;. Consequently, for an

interaction f that affects all particles inside the bunch in
the same way cannot introduce a correlation. Moreover,
if 055 is zero we obtain from the third of Eqs. 14 that
the bunch length oS3 is proportional to the energy spread
055. Another way to state this is: if the interaction f only
depends on the energy z2, the correlation o735 vanishes and
the bunch length is proportional to the energy spread.

An example for an interaction that treats all particles
in a bunch in the same way is an amplifier Free Electron
Laser (FEL), where a continuous external laser is passed
over the transversely undulating electrons. Therefore the
amplifier FEL does not produce a correlation between en-
ergy and position in the bunch.

On the other hand, the light in an oscillator FEL ac-
quires a pulsed structure due to a mode-locking mechanism
produced by the FEL process itself. The light pulses are
typically much shorter than the bunch length and there-
fore affect only part of the electrons. Consequently a cor-
relation between energy and position is generated.

A further example is the wake interaction in which the
leading particles in a bunch affect the trailing. Obviously,
this will then introduce a correlation o3 in the bunch.
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