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The method works in any number of dimensions. 
In this paper, a test is made for two-dimensional beta- 
tron motion. An extension to include synchrotron oscilla- 
tions is possible at moderate cost; the Fourier coefficients 
would have momentum dependence, also represented by 
B-splines. 

We have developed a method that uses an arbitrary 
symplectic tracking code to generate an exactly symplec- 
tic full-turn or multi-turn map. The map is obtained 
from a generating function, which is a finite Fourier s+ 
ries in the final angle coordinates, the Fourier coefficients 
being represented as a B-spline series in the initial action 
coordinates. We achieve fest iteration of this implicitly 

_ defined map, and good accuracy. As a first application, 
we treat a simplified model of arcs of the SSC. 

I. Introduction . 
This paper presents a method for finding a full-turn 

or multi-turn symplectic map for an arbitrary accelera- 
tor lattice. The map is derived in a direct manner from 
data supplied by an arbitrary symplectic tracking code, 
unmodifid. In contrast to Irwin’s construction of sym- 
plectic maps [l] , our method does not rely on approxi- 
mation of the map by a succession of kicks and rotations, 
and avoids convergence questions associated with the use 
of Taylor series. 

The basic idea is to work in action-angle coordinates, - and use tracking data to construct a truncated Fourier se- 
ries in the angle coordinates, with action-dependent coef- 
ficients [2]. If the map is represented explicitly by such a 
series, it is not exactly symplectic. We give a nonpertur- 
bative method to find an associated generating function, 
also represented as a finite Fourier series, that defines 
implicitly an exactly symplectic map. The symplectic 
map is iterated numerically by an efficient application of 
Newton’s method, so that the time for iteration is only a 
little larger than that for the corresponding explicit map. 

On a typical orbit of interest, the action variable has 
relatively little variation, so that the Fourier coefficients 
can be described locally (in a neighborhood of a given 
orbit) as rather simple functions of action. We choose 
to represent the coefficients as quadratic B-spline series, 
in the interest of fast evaluation. To evaluate the basis 
functions at a given point, only three quadratic functions 
per degree of freedom need be computed. Furthermore, 
one finds that many Fourier coefficients in the truncated 
series are negligible. Thus, we have a description of the 
map that is very simple locally. In general, iteration of 
the map will involve far fewer function evaluations than 
are required for a power series map of comparable quality. 

l Work supported by the Department of Energy, contract 
DGAC03-76SF00515 

II. Explicit Map 
We first present an explicit map that is not exactly 

symplectic. The tracking code gives us the functions 
@(@,I) and R(O,I) such that if @ c 0’ and I I+ I’ 
over n turns, 

9’ =@+@(@,I) ) 
I’ = I+R(@,I) , 

(1) 

where 9 and I are action-angle coordinates of ‘some un- 
derlying “unperturbed” Hamiltonian system (not nec- 
essarily the underlying linear system). There may be 
anomalous regions of phase space in which action-angle 
coordinates of the linear system are not suitable for our 
purposes; for instance, a region where y is much larger 
than z if the Hamiltonian contains sextupole terms, 
z3 - 3z2y [3] . In such regions, one can apply a sim- 
ple, preliminary canonical transformation to find suitable 
variables. 

Our algorithm creates a map that takes the form: 

where the Bid) are quadratic B-splines [4] . 
The map is constructed by taking a fixed I and eval- 

uatingO(~,I)andR(O,I)onauniformJ1xJ~mesl~in 
@ using the tracking code. A fast Fourier transform gives 
the coefficients t, and rm evaluated at this I. Since the 
tracking code defines 0’ only modulo 2z, one must first 
remove the jumps of 0 that occur just after @’ reaches 
2%. By adding increments of 2r, we make 0 a continu- 
ous function, suitable for Fourier arialysis. The number 
Ji of mesh points is taken to be about four times the 
largest mode number maxImol; i.e., about twice as big 
as the minimum value required by the Nyquist criterion. 
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Repeat&this procedure, we find tm (I) and rm (I) on a 
uniform ni x ns mesh in (a,&). 

The Bspline coefficients rm;ij and pm;ij are then 
.- found quickly by solving the systems 

where 0~ = 2s(jl/Jl, jz/Jz). 
We can evaluate O+ in terms of values of 0 on mesh 

points, as follows: 

where a and /3 index the mesh points. The first system 
(4) can be solved simply by inverting the ni x ni ma- 
trix Ai, = Bi(‘) (,&) . A similar inversion is required 

_ for system (5). Note that since ni and ns are typically 
less than 40 or so, these matrix inversions are easy to 
perform. 

III. Generating Function Map 
A. General 

Now we shall find a map (*,I) I-+ (@‘,I’) induced 
by a generating function, which is exactly symplectic. 

- Recall that the generating function G (a’, I) is defined 
so that 

. 
O=O’+G1(O’,I) , I’=I$G+(W,I) , (6) 

where subscripts indicate partial differentiation. This im- 
plies the identification 

O(O,!)_= -Gx(O’,I) , R(@,I)= @(@‘,I) , (7) 
where 

G(W,I) =~gm(I)eim+ 

- 9m (I) = 5 gm;ijBil) (Jr;) B,“’ (Ji;) . (8) 

ij 

B. Finding Fourier Coefficients 
For this subsection, I will be fixed. Once gm (I) has 

been found at several I mesh points, a B-spline interpo- 
- lation defines it at all I. Our mathematical problem is 

this: we want the Fourier series in 0’ of a function F(O), 
where 9’ = 8 + 0 (a). The solution is to to make a 
change of integration variable in the integral defining the 
Fourier coefficient: 

, r2r r2r 
fm = 2- 

(27r)2 0 0 =(*I I I 
e-im.+'d2at 

1 St 2r 

= fl o o F(QP)e-‘m.+ 
I/ 

-e ‘im’e(*)det(l + Oe (+))d2@ , (9) 

where 1 is the 2 x 2 identity matrix. Now, make a discrete 
sum approximation to this integral. The result is 

fm = &--F(4j)e-im’+J 
I 

.e -im’Q(a~) det (1 + 00 (Oj)) , (10) 

This formula would be exact if all Fourier modes of 0 
beyond Im,, I= (J, - 1)/2 were absent. 

C. Computingg, from 0 and R 
From equations (7) and (8), 

8, (@,I) = _ g yeim’*’ , (12) 

R, (9, I) = c im,g, (I) eim’*’ . (13) 
m 

We can apply (10) with F(@) = R,(@,I) to get 
im,g,(I). To get gm itself, we choose Q so that m, # 0, 
and divide by im,. This is possible unless m = (0, 0), 
for which case we must employ information from 0. 

The function 6’goo/81 is obtained on the 1 mesh from 
(10) with m = (0,O) and F(O) = @(@,I). To determine 
the spline representation of this function, we have to ac- 
count for the identity ~~=‘=, Bi(z) = 1, which implies that 
the derivatives B:(z) are linearly dependent. Applying 
the identity, we cast the equations to be solved in the 
form 

z$ = 2F(rij - rlj)B,(1)‘(t/j;)@2)(&) I (14) 
i=2 j=l 

where rij = goo;ij. Evaluating (14) at the points 
(Zi;o,Z2;~), a = 2,...,nl, p = l,...,nZ, we get 
(ni - l)nz independent equations in a similar number of 
unknowns rij = I’ij - I’ij , i # 1. Solving the equations, 
we obtain the desired coefficients Tij = Tij (1 - 6ii) + rij 
expressed in terms of n2 constants of integration rlj, 
one of which, say l?ii, may be chosen arbitrarily. The 
remaining constants are determined from equations in- 
voking data on agoo/a& evaluated at the action points 
not yet used, (Zi;i, Zs;p), @ = 2,. . . , n2. 

D. Iteration of the map 
To compute values of the map defined implicitI) 

by the generating function, we must solve the nonlin- 
ear equation Q, = 0’ + Gr (@‘,I) for e’, then substit.ute 
the result in I’ = I + G+ (@‘,I). The equation is solved 
by Newton’s method, with a first guess for @’ from the 
explicit map. The cost of generating an adequate guess 
is low, since it is sufficient to include only a few Fourier 
modes in the explicit map. The Newton iteration con- 
verges quickly to a solution with machine precision, usu- 
ally in 4 or fewer steps. 



W-Example: a Model of SSC Arcs 
We illustrate by applying a tracking code JJIP by 

D. Ritson, which provides a highly simplified model of 
the SSC arcs. It give results similar to Ritson’s more 
elaborate SSC model embodied in SSCTRK [5] , and 
presumably entails a complexity of transverse nonlinear 
effects similar to that of a full SSC model (not includ- 
ing beam-beam interaction and interaction point optics). 
The model consists of 8 FODO cells, with phase ad- 
Lance slightly greater than 90° per cell. For each F-D 
pair there are three thin-lens multipole kicks, embody- 
ing typical systematic and random errors of dipole mag- 
nets, up to 14-poles. The kicks are lumped at the D 
and F quadrupoles, and at the midpoint between F and 
D. Bends are omitted, as are chromaticity sextupoles, 
which almost cancel owing to the near 90” phase advance 
per cell. The tunes are chosen, rather arbitrarily, to be 
v, = 2.0314, Y* = 2.0500. 

We give results for maximum amplitudes max(z, v) 
sz 2.2mm (runs A) and 3.5mm (runs B). Figure 1 shows 
a typical phase-plane plot at 3.5mm. The lOOOO-turn 
dynamic aperture along a line Z, = I,, is at about 
m=(z,d = 7.7mm. Table 1 gives times in millisec- 
onds for iteration of the symplectic map on the IBM 3090 
(without vectorization), and the parameter E which mea- 
sures deviation of the map from the tracking code that 
produced it. The latter is defined by 

- 

We give cN, the maximum of c over N turns, for N = 1 
and N = 1000. The number of B-splines is the same 
in each degree of freedom, n = nl = n2, and so is the 
maximum mode number, M = max IrnlI = max [rnzl. 

We explore the variation of results with n and M. 
After choosing n we increase M until there is no appre- 
ciable improvement in the accuracy as judged by clooo. 
The final M is listed in the table; it is gratifying that it 
has a rather small value. As was mentioned above, many 
modes with lmol < M are negligible, and are discarded 
so as to optimize the speed of iteration. 

The time t to compute one iterate is substantially 
independent of the number of B-splines; it varies at all 
in the table only because we have discarded more or fewer 
small Fourier modes in the various trials. This illus- 
trates the motivation for using B-splines; one can increase 
the density of interpolation points without increasing the 
time of evaluation of the interpolated function, since the 
number of nonzero splines at a point depends only on the 
order of the splines. 

The accuracy over 1000 turns improves rather slowly 
with the number n of B-splines. One does not expect 
rapid improvement, since the functions G+ and GI are 
represented by piecewise quadratic and piecewise linear 
functions of I, respectively; (our quadratic B-splines have 
continuous first derivatives). Increasing the number n 
expands memory requirements during iteration, but does 
not necessarily increase the cost of constructing the map. 

Figure 1: Horizontal phase space plot for Run B, 
ps vs. 2. 

We plan to set up the map construction based on higher- 
order functions and few interpolation points, then use 
quadratic B-splines on a finer mesh to calculate the high- 
order functions during iteration. In a region close to the 
dynamic aperture, a somewhat higher order representa- 
tion may be desirable even in iteration. 

The speed of iteration that we have achieved is quite 
encouraging. We estimate that the inclusion of syn- 
chrotron motion, with one r.f. kick per turn, would 
increase the time for iteration by only a factor of two. 
Accounting for the fact that the iteration lends itself to 
vectorization, we can then expect at least lo5 turns per 
minute in six degrees of freedom on a Cray computer. 

We are grateful to David Ritson for offering us his 
tracking code, and helping us to use it. 
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Run 1 n 1 M 1 t(ms) 1 ~1 ~1000 
A 10 6 1.9 6 x 1O-6 1 x 1O-4 
A 20 7 2.1 1 x lO-‘j 2 x 1O-5 
A 32 7 2.7 8 x lo-’ 1 x 1O-5 
B 10 4 1.3 1 x 1O-4 5 x 1O-3 
B 20 5 1.6 4 x 1O-5 2 x 1O-3 
B 32 7 2.7 4 x lo-’ 1 x 1O-5 

Table 1: Iteration time and relative errors on compar- 
ing map to tracking code. Run A/B is a map made to 
track a particle at about 2.2/3.5 mm, n is the number 
of B-splines used, and M = max rrnoI is the maximum 
Fourier mode number. t is the time to iterate the map 
once on the IBM 3090. en is the maximum error over 
n turns, as described in the text. 


