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‘Abstrac.t 
A qualitative consideration of the impedance caused 

by the synchrotron radiation is given. The rigorous results 
such tithe value of the threshold frequency and the maxi- 
mum value of the impedance are obtained in a simple way. 

I. INTRODUCTION 
-The problem of the synchrotron radiation of a charge 

in a conductive vacuum chamber has been considered many 
times, see references in recent publications [1,2,3]. The rig- 
orous consideration is based on the exact solution of the 
wave equation in a particular geometry (a charge mov- 
ing between two conductive planes or in a toroidal cham- 
ber j and involves rather cumbersome calculations. Provid- 
ing very useful reference models, these solutions call for a 

-more simple heuristic picture of the physics involved which 
would clarify the situation, especially in cases where the 
exact sdl’ution is unknown. 

Consider, for example, the results [2] for a charge mov- 
ing along a circle with the radius R, in a pillbox cavity 
with the radius b and the height h = 2s. The real part 
of the impedanc_e is given as a sum of b-functions due to 
the excitation- of eigen modes of the cavity. The thresh- 
old frequency Wth is much higher than the cutoff frequency 
wcut = nclh, 

312 
>>l, - 

and the maximum value of the impedance 

[ 1 Re z(n) 
n maz 

N 300 i Ohm 

is independent of b, see Appendix. This indicates that 
c%nsideration based on the modal analysis is superfluous 
while the threshold frequency is a result of the intrinsic 
properties of the synchrotron radiation in a waveguide. 

The threshold frequency may be obtained in the fol- 
-lowing way. As it is well known, the harmonic n of the syn- 
chrotron radiation can be radiated only within the small 
angle 0 with the plane of motion: 

e -e n-II3 . (1) 
That follows from the intensity of the n-th harmonic of 
the synchrotron radiation [4] f 0 an ultrarelativistic particle 
y>>l: 

dW(n,B) = g $ 

where e2 = l/y2+8 2. The int,ensity rolls off exponentially 
for harmonics 

* Work supported by Departrnent of Energy contract DE- 
AC03-76SF00515. 

(3) 

in agreement with Eq. (1). The result Eq. (1) is the direct 
result of the Lorentz transformation of the dipole radiation 
in the moving frame of a particle and is an intrinsic feature 
of the synchrotron radiation. 

Consider now a particle moving in (2, y) plane between 
two conductive planes separated by the distance 11 = 2y. 
The radiated wave propagates between the planes as in a 
waveguide. Usually, this is possible if the wave frequent!. 
w is above the cutoff frequency: k = w/c > x/h. For the 

_~_ f‘ 

waves with frequencies well above the cutoff frequency the 
propagation of the wave may be described in terms of the 
geometric optics with a wave vector z, ];I = w/c = n$/R. 
The boundary conditions on the conductive walls still re- 
quire that the vertical component of the wave vect.or call- 
not be too small: 

kl = k6’ > ; (4) 

The cutoff frequency corresponds to the angle 8 z 1. For 
the harmonics n >> 1 the angle is restricted by Eq. (1). 
Eqs. (1) and (4) give the threshold frequency: 

_ 

wR 2 TR J( > 312 
nth=-- = 

C 3 h (5) 

The synchrotron radiation with n < nth may be radiated 
only with the radiation angle 0 > nd1i3, othenvise the 
boundary conditions cannot be satisfied. The probabilit!. 
of such radiation, as has been mentioned above, is espo- 
nentially small. 

Hence, the single particle synchrotron radiation is es- 
ponentially small (see Eq. (2)) for harmonics n < nth and. 
as usually, with n > n,,, = r3. Unfortunately, it is al- 
ways nth << nmazr and the decrease of the total radiatclcl 
power due to suppression of the radiation with the har- 
monics n < nth is small. 

The parameters defining the threshold frequency hay<, 
to be clarified for more complicated structures such as a 
toroidal chamber, where there are several geometric dimelr- 
sions (the height and the width of the chamber). \\‘itll a 
good accuracy the polarization of the synchrotron radia- 
tion is such that the vector of the electric field is in tlrc 
plane of motion (intensity of this polarization is 7/g of’ 
the total intensity [4]). Th ere ore, f only the height of the 
chamber enters in the boundary conditions for the t angel]- 
tial component of the electric field and in the threshold 
frequency. 

It is worthwhile to consider the radiation length of th, 
mode n. As usual, the radiation length or the length of th(a 
formation of the radiation can be defined as the lerrgtll 1~ 
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where the phase of the radiation remains small: lk,L - 
wtl < ?F. Us&+, = (n/R) COSB, and Eq. (3) we obtain: 

Eqs. (8) and (10) define th e wake in terms of the harmonics 
En,r(r, z): 

L = 27rRn-II3 = 2m . (6) 
The length L is small, L << R. Hence, the results ob- 
tained for a periodic motion on a circle with the radius R 
are valid also for an aperiodic motion or a periodic motion 
along a complicated tra’ectory with R being a local radius 

‘provided R >> L N 8 hR. 
It should be noted that the parameter wo = c/R has a 

W(s) = -f E,,,(R,O) eeinslR (11) 

The longitudinal beam impedance for a periodic motion 
Z(w) = Z,woS(w - rwo) (12) 

is the Fourier harmonic of the periodic W(s) = W(s+2xR) 
wake: 

meaning of a fundamental frequency of oscillations. Thus, 
the same effect of suppression of the radiation below a 
threshold frequency can be expected for a dipole oscillating 
with frequency wg and propagating in a straight waveguide. 

The effect of the finite conductivity can be estimated 

~(~1 = C i$Z e-inw5s/u . (13) 

Hence 

2, = L E,,(R 0) 
e ’ ” (14) 

comparing the radiation length Eq. (6) with the absorp- 
tion length_of a wave. The absorption length Lobs is de- 
fined as the length where the intensity of a wave decreases 
by .3 factor of e. It can be estimated from the definition of 
a Q-factor of a mode, L&s = ct = c/(&w) with Q = a/6. 
Here 6 is the skin depth, and a is the geometric factor of 
the5rder of the beam pipe aperture. Clearly, the effect of 
finite conductivity is small provided L&s >> L. 

Note that 2, is the average value of the impedance 
Eq. (12): 

< z(w) >= 2 Jciuz(w) = z, 
s-f 

wo 

Let us consider now the coherent radiation of a bunch. 
-The radiation of a bunch can be coherent if the bunch 
length issmall compared with the wavelength. For a Gaus- 
sian bunch with rms length u that means wu/c < 1 or n < R/u. Because radiation of the modes n < nth is 
suppressed, the coherent synchrotron radiation is possible 
only for very short bunches: 

-- 

where n = w/w0 and the interval of the averaging is wo. 
The azimuthal component of the electric field of a 

point-like charge e moving with velocity v on a circle with 
the radius R in the (x,y) plane has harmonics 

X 
{ 

i+s(wot - ($) - ;2.& !$ 
> 

II. IMPEDANCE DUETO SYNCHROTRON RADIATION 
The electromagnetic field of the synchrotron radiation 

of-a particle may change the energy of other particles in a 
bunch. The energy variation is described usually in terms 
of the wake field or, in the case of two point-like particles 
separated by the distance s, in terms of the 6- functional 
wake field W(s). The last is related to the variation of the 
energy of the second particle AE due to interaction with 
t%e tangential to the trajectory component of the field of 
the first particle. For a periodic motion in a plane t = 0 
on a circle with the radius R, AE(s) is the variation of 
the energy per turn due to the azimuthal harmonic of the 

-electric field: 

w(s) = - $ AE(s) 
( > 

T (8) 
C 

= -- 
e J ( dtE+ R,$, = wet-s 

> R,z=O,t ’ 
0 

Here T = 2nRjv = 2?r/ wo is the revolution period, and 
we/2a is-the revolution frequency. The field Eo(T, C#J, z, t) 
is periodic in time and azimuth: 

with harmonics 
En(r, z, w) = wg c E,,,i(w - nv) (10) 

where p = IF- r’(t) 1, IF’(t)1 = R, and the integration over 4 : 
is performed on the interval 27r. 

The harmonic E ,,,(R, 0) defines the impedance. Sub- 
stituting p = 2Rsin(cr), where CY = 2(4 -wet) we obtain: 

&Z(n)=3 * 
n 2 J dap2 cos 2c~-l] 

sin(2npsin ck - 2na) 
sin ck 

0 

(16) 
Here ,9 = v/c, and ZO = 120s Ohm. The modes of interest 
are the modes 1 << n << y3. For such modes the signif- 
icant contribution to the integral is given by no3 5 1 so 
that cy >> l/y. Eq. (16) takes the form: 

Fte F = ZO jadasin ($) = 0.813% (li) 
0 

Here we use the following value of the integral: 
7 

J dzz-1/3 sinz = 1.172 
0 

Hence, for very large n the impedance rolls off as n-2/3. 
For n < n,h impedance is exponentially small. Therefore, 
the impedance has maximum value at n = 72th. Eq. (17) 
and Eq. (5) give: 

[ 1 Z(n) Rc 
n 

= 223.3 i Ohm (18) 
maz 

which is reasonable close to the result obtained by exact 
solution [3]. 
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Let us estimate the effect of the finite transverse size 
~1 of a bu<&‘The estimate obtained above is valid if 

UT << 4R2sin2(o) 21 R2 nB213 . 

-l&r n z nth that gives ui << Rh. Otherwise, the estimate 
has to be modified taking into account the finite size 61. 

III. CONCLUSION 
The simple approach described the main features of 

the synchrotron radiation in a vacuum chamber. That 
opens the possibility of consideration of the effect for more 
complicated geometries and, hopefully, clarifies the physics 
of the-problem. 
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IV. APPENDIX 
-The estimate for the maximum value of the impedance 

[ 1 Z(n) Rc 
n mao 

1: 300 $ Ohm 

-can-be-obtained from the exact solution obtained in the 
paper by Warnock and Morton [2] (see their Eq. (2.47)) 
for a particle moving in a cylindrical pillbox cavity: 

z(n)= R 
iT2Z, - 

n h 

2 Jn (~$9 
Jn (~9) pn (7pb, 7p R) .(Al) 

(odd) + 
Here h = 29, 

*P 
Qp=29y 

7; = (F)’ - a; 

and 
P~(~C,Y> = Jn(z)Yn(~) - Yvz(r)Jn(~) , 

+x(x, Y) = J;(GXY) - %(~)J;(Y) . 
The real part of the impedance is given by the zeros of 

the denominators. Two terms in Eq. (Al) give equal con- 
tribution. Thus, we may consider the first term and double 
the answer. Expanding denominators near the resonance 
frequencies 

; = &I)‘+ (7)’ 
we obtain: 

&z(n)= 
n 

2n3Z4 

is much smaller than the threshold frequency Wth/c 2~ 

wwvm 7% ere ore, f the summation may be replaced 
by the integration. Introducing the polar coordinates 
(WY 4) 

SP W 
cos4, &I W 

-=- 
h c 

b .=,; sin4 

we have 

,z(n) = 2x2 Z, R ; , 
n 

X J d4 cqs24 Jz(nsin4) Y,,(nisin4) 
sin 4 J,‘,(ni sin 4) 

0 

For n >> 1 

J,,(n sin 4) 21 3 Kl,3 (3 cos34) . 

The main contribution is given by small cr - a/2 - 4 

1 a /I (l/n)“” 

For b >> R the ratio 

Y,(ni sin 4) 
JA(ni sin4) fi ’ 

Hence, 

*I2 
Re ‘cn) - = 5 Z, Rz 

n C J do g Kf,, (f sin3 a) 

-n/2 

Replacing sin o 21 Q and using the integral 
co 

J dtt213 hT2 J;; 
l /3@) = 21/3 

0 

and integrating over Aw << w we obtain finally: 

& Z(n) J;r zo 
-=61/3n2/3. n 

Hence, the real part of the impedance rolls off as ne2j3 for 
large n. The maximum value is reached at the threshold 
nth given by Eq. (5). That gives 

PI 

PI 

; c (5)2 $ J~(+;(yp) B(w - w,,p) [31 
P>U, 

(A21 
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& Z(n) - 
n 

268 i Ohm 
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