
The Cheetah Data
Management System*

Paul F. Kunz

Stanford Linear Accelerator Center
Stanford University, Stanford, CA 94309-4349, U.S.A.

and

Gary B. Word

Department of Physics
Rutgers University, Piscataway, NJ 08855-0849, U.S A.

ABSTRACT

Cheetah is a data management system based on the C programming language. The premise of Cheetah is that
the “banks” of FORTRAN based systems should be “structures” as defined by the C language. Cheetah is a
system to manage these structures, while preserving the use of the C language in its native form. For C
structures managed by Cheetah, the user can use Cheetah utilities such as reading and writing, in a machine
independent form, both binary and text files to disk or over a network. Files written by Cheetah also contain a
dictionary describing in detail the data contained in the file. Such information is intended to be used by
interactive programs for presenting the contents of the file. Cheetah has been ported to many different operating
systems with no operating system dependent switches.

* Work supported by the Department of Energy, contract DE-AC03-76F00515.

Invited talk presented at the INFN Eloisatron Project, 14th Workshop: Data Structures for Particle Physics Experiments, Erice, Italy,

11–18 Nov. 1990.

SLAC-PUB-5450
March 1991
(E/I)

 The Cheetah Data Management System

 2

1. The Goal of the Cheetah System

The basic entities managed by Cheetah are structures as de-
fined in the C programming language. To quote the intro-
ductory paragraph in the chapter on structures from
Kernighan and Ritchie [1]

A structure is a collection of one or more
variables, possibly of different types,
grouped together under a single name for
convenient handling. (Structures are
called “records” in some languages, no-
tably Pascal.) […] Structures help to or-
ganize complicated data, particularly in
large programs, because in many situa-
tions they permit a group of related vari-
ables to be treated as a unit instead of as
separate entities.

The design of Cheetah is based on the premise that struc-
tures of the C language are ideally suited to organize the
complicated data within large high energy physics (HEP)
programs, such as event reconstruction and Monte Carlo
simulation programs. C structures are clearly the equivalent
of the “banks” referred to by many HEP developed data
management systems. These HEP developed systems are
all based on the FORTRAN programming language and
thus they all suffer to a greater, or lesser degree, in inte-
gration with the compiler, the operating system, and/or the
symbolic debugger. The goal of the Cheetah system is to
exploit the features of the C language while adding the data
management tools needed by HEP such as input and output
to storage. Cheetah is designed to allow the code writer to
use native C, with only minimal calls to Cheetah functions.
Cheetah maintains a symbol table of data structures which
is useful to interactive programs, reads and writes machine
independent binary and textual data files, and provides for
seamless client-server networking.

2. Introduction to C Structures

Consider the structure definition shown at the top of the
right hand column of this page. The keyword struct in-
troduces a structure declaration which is a list of declara-
tions enclosed in braces. The name track is the structure
tag. The variables named in a structure are members of the
structure. A struct declaration is a way the user can de-
clare a new data type in C.

In the Cheetah context, structures are the “banks” of FOR-
TRAN based systems. The structure tag is used by Chee-
tah as a name for the structure type. Normally, one has a set
of structures of the same type, such as multiple Monte Car-
lo tracks within an event. Thus, one could make a decla-
ration in the following way:

The variable mctrack declared in this way in the Chee-
tah context is known as a family array pointer. The use of
the double star (**mctrack) may be confusing to a nov-
ice user of the C language. It says that mctrack is a
pointer to a pointer to a track structure. Due to an arti-
fact of the C language it can also say that mctrack is a
pointer to an array of pointers to track structures. Thus
an expression like:

would set the local variable total_momentum to the
value of the member ptot of the i -th structure in the
mctrack family. Cheetah makes extensive use of this ar-
tifact. As structures are added via the Cheetah function
chadd() , Cheetah not only allocates the memory space
for the structure, but it also allocates space for the array of
pointers to the structures. This is the fundamental mode in
which Cheetah operates.

For the user, the use of C structures in this way provides a
clear and concise access to the data stored in the structures.
For the C compiler, the string mctrack[i]->ptot is
a name of a variable and thus can be used like any other
variable as part of an expression, as an argument to a func-
tion, etc. Yet, to the programmer, this string has great mne-
monic value, e.g., access to data by name. The ptot
component of the string is used here, for example, to denote
the total momentum of the track. The member name ptot
can be used in many structures without confusion, since it
is only part of the complete variable name. We call this “re-
use of the name space.” Also, the family component of the
variable name (mctrack in the example above) has

struct track {
 float x[3];
 float p[3];
 float ptot;
 int charge;
};

struct track **mctrack;

total_momentum = mctrack[i]->ptot;

 3

 The Cheetah Data Management System

strong mnemonic content. Thus, with the C language, we
have an environment very different from the FORTRAN
one where variables in common blocks generally have to be
unique throughout the whole program or where variables in
the banks of some HEP developed systems may have lost
their mnemonic value altogether.

3. Memory Management with Cheetah

It is often useful to look behind the scenes to understand
how the system is working. Figure 1 shows how memory is
being allocated when Cheetah is used. In the user code, the
variable mctrack is a pointer (a 4 byte quantity) to an ar-
ray allocated by Cheetah. This array is a set of pointers to
the actually structures which Cheetah allocates. The array
is allocated automatically when the user adds a member to
a family with the Cheetah chadd() function.

Internally, Cheetah uses the malloc function to allocate
memory space. It is part of the C standard library of rou-
tines. Thus, it is provided by the vendor of the compiler
which is most frequently the vendor of the hardware plat-
form. At least on UNIX platforms, the quality and speed of
the hardware will be measured by benchmarks consisting
of many programs written in C, including the UNIX kernel
itself. Thus, one can assume that the vendor has paid a lot of
attention to the speed and efficiency of the malloc func-
tion. Also, on many platforms, there are very sophisticated
debugging tools associated with malloc . The Cheetah
system thus benefits greatly by making direct use of these
standard utilities.

User Code

mctrack

Cheetah allocated Cheetah allocated

x[0,1,2]

p[0,1,2]

ptot

mctrack[0]

mctrack[1]

mctrack[2]

mctrack[3]

Figure 1. Memory layout with Cheetah system.

mctrack pointer array track structure

charge

4. Input and Output with Cheetah

Although the C language and its standard utilities provide
for the management of and access to data stored in struc-
tures, it does not provide for input and output of these struc-
tures in a user friendly way similar to that provided by the
FORTRAN based HEP data management systems. The
Cheetah system has been written specifically to provide
these functions in a user friendly manner.

As an input and output system, Cheetah is capable of writ-
ing collections of structures to disk and reading them back
again. The structures are organized by families, so each
read or write operation works on a collection of families
called a record. When a new record is read, existing fam-
ilies of the same name as one being read are replaced by the
newly read family. At the head of a Cheetah data file, there
is a dictionary describing the names of the families in the
file and their structure types, the names of the members of
the structure types, each member’s type and other infor-
mation so that the structure declaration can be reconstruct-
ed when the file is read.

Consider the program in Example 1 . This sample code
opens a Cheetah data file, reads one record, and writes it out
to another file. The function to open a Cheetah file,
chopen , is analogous to the C file open function fopen .
It takes the same two arguments: the name of the file as a
string, and the access mode as a second string. It returns a
pointer to a Cheetah file structure, known as a Cheetah file
pointer, just as fopen returns a file pointer. The Cheetah
file pointer is used as a parameter in calls to all further ma-
nipulations on that file.

 The Cheetah Data Management System

 4

The Cheetah read function will read one record from the in-
put file, reconstruct all the structures in that record, and al-
locate the arrays of pointers to the structures. The Cheetah
read function only requires one argument: the Cheetah file
pointer. It returns a pointer to a linked list of families or

Example 1 . Reading and writing Cheetah Files.

#include "cheetah.h"
main() {
 ch_file *ch_filep_in, *ch_filep_out;
 ch_list *ch_listp;
 int return_code;

 ch_filep_in = chopen("test.chdata","r");
 ch_filep_out = chopen("test2.chdata","w");
 ch_listp = chread(ch_filep_in);
 if (ch_listp != NULL) {
 return_code = chwrite(ch_filep_out,ch_listp);
 }
 exit(0);
}

NULL if the end of file is reached. The linked list is known
as a Cheetah list. It is used as an argument to Cheetah func-
tions that want to work on the record as a whole. For ex-
ample the chwrite function takes two arguments; the
Cheetah file pointer for output and a Cheetah list pointer.

Example 2 . Example of accessing Cheetah managed data.

#include "cheetah.h"
#include “track.h”
/* to find the index of the fastest track in the mctrack family,
 * fastest = fastest_track(“mctrack”);
 */
int fastest_track(char *track_family;) {

 int fastest;
 int last_track;
 struct track **tracks;

 tracks = chfptrs(track_family); /* find array of pointers */
 last_track = chidlast(track_family); /* index of last track */
 fastest = 0;
 for (i = 0; i < last_track; i = i + 1) {
 if (tracks[i]->ptot > tracks[fastest]->ptot) {
 fastest = i;
 }
 }
 return fastest;
}

 5

 The Cheetah Data Management System

The average user need not be concerned about the structure
of a Cheetah list. Its just a convenient handle used to group
a set of families together. In the same way, the user is not
concerned about the structure to which a file pointer points.
However, for some applications, such as interactive pro-
grams like Reason [2] , the Cheetah list pointer contains
enough information to decipher the contents of the entire
record. Cheetah also provides functions to add or delete
members of the list.

5. Example of Usage

An example usage of Cheetah is given in Example 1 .In this
example, a function finds the index of the track with the
highest momentum in any family of the track structure
type. It shows two Cheetah utilities that make working with
C structures and the resultant handling of pointers easier.
The Cheetah function chfptrs() returns the family ar-
ray pointer of a family which is specified by name. Also,
the Cheetah function chidlast() returns the index of
the last member currently in memory of the given family.

6. Creating Cheetah Structures

 So far we’ve considered examples of code in which the
Cheetah dictionary has already been created or is read in at
the beginning of a Cheetah file. In this section, we’ll show
one method of creating a dictionary. An example code from
a Monte Carlo particle generator is shown in Example 3 .
The function mclund is set up to be called at different
stages. Only the initialization stage concerns us which is
the case with option = INIT . The structure type
event is declared to Cheetah with the function call
i_event() on line 13 . This function is generated au-
tomatically by the chgen command which will be de-
scribed later. The declaration of i_event() is included
in the event.h file, while the definition is given in a sep-
arate source file, as described below.

After the call to i_event is made, Cheetah knows about
the structure type with structure tag event . It knows
nothing about any families of type event yet. The cre-
ation of a family is done with the function call chfcre-
at() as shown on lines 16 --18. It takes two arguments.

Example 3 . Creating new Cheetah families and types.

1 #include "cheetah.h"
2 #include "event.h"
3 #include "track.h"
4
5 ch_list *mclund(enum options option) {
6 static ch_list *ch_listp;
7 int irc ;
8
9 switch(option)
10 {
11 case INIT:
12
13 irc = i_event();
14 irc = i_track();
15
16 irc = chfcreat("mcevent","event");
17 irc = chfcreat("mctrack","track");
18 irc = chfcreat("phtrack","track");
19
20 ch_listp = chlcreat("mcevent");
21 ch_listp = chladd(ch_listp,"mctrack");
22 . . .

 The Cheetah Data Management System

 6

The first is a name for the family while the second argu-
ment is a structure type already known to Cheetah. In this
way two families can be created which have the same struc-
ture type, as is shown on lines 17 and 18. A list of families
is created using chlcreat , which takes a family name
as it argument, as shown on line 20 . Line 21 shows how
other families may be added to a ch_list using
chladd , which accepts an existing list pointer and the
family name to add to the list.

The i_event() and i_track() functions, which
initialize the Cheetah structures which describe the
event and track structures, are generated using the
chgen utility. This utility reads a file which contains the

C-like descriptions of the event and track structures
and generates a C source file containing these initialization
functions. Alternatively, the definition of a Cheetah struc-
ture can be built dynamically by a set of Cheetah utilities, a
feature often useful to interactive programs, for example.

7. Cheetah Text Files

In addition to the ability to read and write binary files,
Cheetah can also read and write text files. The text file con-
tains two sections, the first describes the structures and de-
clares the families that are in the file, the second section
contains the individual records. In Example 4 , a Cheetah

Example 4 . An example Cheetah text file containing two records.

struct runevent { int run, event; };

struct track {
 float x[3];
 int charge;
 float p[3], ptot;
 };

struct track mctrack; /* Declares family mctrack
 of type track. */
struct runevent header; /* Declares family header
 of type runevent. */

{ /* Begins a record. */
 header = 101 1; /* Assigns header[0]. */
 track =
 1. 2. 3. -1 4. 5. 6. 7. , /* Assigns track[0]. */
 4. 5. 6. +1 1. 2. 3. 4. , /* Assigns track[1]. */
 1. 2. 3. -1 4. 5. 6. 7. , /* Assigns track[2]. */
 ; /* Ends family track. */
} /* Ends a record. */

{ /* Begins a new record. */
 header = 101 3; /* Assigns header[0]. */
 track =
 1. 2. 3. -1 4. 5. 6. 7. , /* Assigns track[0]. */
 [2] 4. 5. 6. +1 1. 2. 3. 4. , /* Assigns track[2]. */
 /* track[1] is NULL. */
 ; /* Ends family track. */
} /* Ends a record. */

 7

 The Cheetah Data Management System

text file containing two families and two records is shown.
This file may be read directly, using chread as in Ex-
ample 1 , or may be used to create a binary file using the
Cheetah importer routine chimp. Similarly, there exist a
Cheetah exporter routine, chexp , which creates a text file
from a binary file.

8. Cheetah Networking

Cheetah has been designed to permit Cheetah records to be
transmitted over the network transparently to the end user.
The actual transmission of data over the network is effected
using Sun’s XDR product (eXternal Data Representation).
The handshaking between the client and the server is af-
fected using Sun’s RPC product (Remote Procedure
Calls). These products are generally part of a TCP/IP net-
working package. To retrieve records from another ma-
chine, the end user simply creates a file (called a Cheetah
service file) containing the internet address of the remote
machine, the name of the remote server, and, if the records
are to be read from a file, the name of the file on the remote
machine. The remote server may also be designed to create
the records internally using, for example, a Monte Carlo
generator followed optionally by additional processing, or
may send samples of records from a real-time data stream.
From the point of view of the end user, the only difference
between reading records from the network and reading
them directly from a file is the creation of the service file to
provide the link to the remote data stream. Of course, writ-
ing to a remote server is just as transparent to the end user.
Servers have been prototyped which can be used to read
Cheetah data files, Jazelle data files, and a slightly modified
Adamo text file. A server shell exists with user hooks to al-
low for users to write other special purpose servers.

Because of the use of XDR, which uses a canonical format
for data transmission, the server and the client may exist on
computers of differing architecture. To date, networking
has been accomplished between a NeXT UNIX computer,
an IBM mainframe with VM/CMS computer, and a DEC
VAX /VMS computer, with no changes required in Chee-
tah code.

9. Summary

The C language, with minimal extensions for input and out-
put of data structures as afforded by Cheetah, provides a
nice environment in which to accomplish HEP tasks. The
C-structures are natural replacements for the “banks” of
traditional FORTRAN based data management systems.
By letting Cheetah manage the pointers to the structures,
the casual user is relieved of this responsibility and, in-
stead, is given a straightforward method to access the struc-
tures. Cheetah is also well suited for use by interactive
programs, when access to the symbol table describing the
data is essential and where dynamic creation of data struc-
tures is also desirable. Cheetah has both a binary and a text
file format, each of which is machine independent, and can
be used to move structures from one machine to another
over a network. Although Cheetah was designed to be used
by C programs, it can be and has been used from FOR-
TRAN programs in order to make use of its network trans-
parent file structure and its dynamic memory allocation.
Cheetah has also attained its goal of portability, having
been ported to many different operating systems with no
operating system dependent switches. Cheetah does con-
tain switches, however, so that it may compile with either
an ANSI C compiler or a traditional K&R C compiler.

10. References

[1] B. W. Kernighan and D. M. Ritchie, The C
Programming Language (Prentice Hall, Englewood
Cliffs, 1978).

[2] W.B. Atwood, Richard Blankenbecler, Paul F. Kunz,
Benoit Mours, A. Weir, G. Word, 8th Conf. on
Computing in High Energy Physics, Santa Fe, NM,
Apr 9-13, 1990.

