SLAC-PUB-5450
March 1991
(EN)

The Cheetah Data
Management System

Paul F. Kunz

Stanford Linear Accelerator Center
Stanford University, Stanford, CA 94309-4349, U.S.A.

and

Gary B. Word

Department of Physics
Rutgers University, Piscataway, NJ 08855-0849, U.S A.

ABSTRACT

Cheetah is a data management system based on the C programming language. The premise of Cheetah is that
the “banks” of FORTRAN based systems should be “structures” as defined by the C language. Cheetah is a
system to manage these structures, while preserving the use of the C language in its native form. For C
structures managed by Cheetah, the user can use Cheetah utilities such as reading and writing, in a machine
independent form, both binary and text files to disk or over a network. Files written by Cheetah also contain a
dictionary describing in detail the data contained in the file. Such information is intended to be used by
interactive programs for presenting the contents of the file. Cheetah has been ported to many different operating
systems with no operating system dependent switches.

* Work supported by the Department of Energy, contract DE-AC03-76F00515.
Invited talk presented at the INFN Eloisatron Project, 14th Workshop: Data Structures for Particle Physics Experimeltggy Erice,
11-18 Nov. 1990.

The Cheetah Data Management System

1. The Goal of the Cheetah System struct track {
float x[3];

The basic entities managed by Cheetah are structures as float p[3];

fined in the C programming language. To quote the intro float ptot;

ductory paragraph in the chapter on structures fron int charge;

Kernighan and Ritchie[1] 3
A structure is a collection of one or more In the Cheetah context, structures are the “banks'WIR-
variables, possibly of different types, TRAN based systems. The structure tag is used by Chee-
grouped together under a single name for tah as a name for the structure type. Normally, one has a set
convenient handling. (Structures are of structures of the same type, such as multiple Monte Car-
called “records” in some languages, no- lo tracks within an event. Thus, one could make a decla-
tably Pascal.) [...] Structures help to or- ration in the following way:
ganize complicated data, particularly in
large programs, because in many situa- struct track **mctrack;

tions they permit a group of related vari-
ables to be treated as a unit instead of as

o The variablenctrack declared in this way in the Chee-
separate entities.

tah context is known asfamily array pointer The use of

The design of Cheetah is based on the premise that strL_the double startmctrack) may be confusing to a nov-

tures of the C language are ideally suited to organize tHC€ user of the_ C language. It says thegtrack is a
complicated data within large high energy physlH&EP) pointer to a pointer to tI_aCk structure. Due to an arti-
programs, such as event reconstruction and Monte Carfa"‘_t of the C language It can also say matrack s a
simulation programs. C structures are clearly the equivalelpolrlter to an ar_ray. of pointerstack structures. Thus
of the “banks” referred to by mariyEP developed data an expression like:
management systems. Thd4EP developed systems are
all based on theORTRAN programming language and
thus they all suffer to a greater, or lesser degree, in inte .
gration with the compiler, the operating system, and/or '[h\WOUId set the local vanabt@tal_momentum t9 the
value of the membgptot of thel -th structure in the

symbolic debugger. The goal of the Cheetah system is 1mctrack tamilv. Cheetah mak tensi thi
exploit the features of the C language while adding the dar. amily. “heetah makes extensive use of this ar-
tifact. As structures are added via the Cheetah function

I Psuchasi
management tools neededrfPsuch as input and output chadd() , Cheetah not only allocates the memory space

to storage. Cheetah is designed to allow the code writer ! .

use native C, with only minimal calls to Cheetah functionsfor_ the structure, but it also aI_Ioc_:ates space for the array pf
Cheetah maintains a symbol table of data structures Whi(pm_nters to the structures. This is the fundamental mode in
is useful to interactive programs, reads and writes machirWhICh Cheetah operates.
independent binary and textual data files, and provides fc

seamless client-server networking.

total_momentum =mctrack]i]->ptot;

For the user, the use of C structures in this way provides a
clear and concise access to the data stored in the structures.
For the C compiler, the strirgctrack[i]->ptot is

a name of a variable and thus can be used like any other
variable as part of an expression, as an argument to a func-
tion, etc. Yet, to the programmer, this string has great mne-
monic value, e.g., access to data by name. tiod
component of the string is used here, for example, to denote
the total momentum of the track. The member nptoé

can be used in many structures without confusion, since it
is only part of the complete variable name. We call this “re-
use of the name space.” Also, the family component of the
variable namerictrack in the example above) has

2. Introduction to C Structures

Consider the structure definition shown at the top of the
right hand column of this page. The keywsttlct in-
troduces a structure declaration which is a list of declare
tions enclosed in braces. The ndmack s thestructure
tag. The variables named in a structureraemberof the
structure. Astruct declaration is a way the user can de-
clare a new data type in C.

The Cheetah Data Management System

strong mnemonic content. Thus, with the C language, w4, |nput and Output with Cheetah

have an environment very different from fR®RTRAN

one where variables in common blocks generally have to kAlthough the C language and its standard utilities provide

unique throughout the whole program or where variables ifor the management of and access to data stored in struc-

the banks oome HERJeveloped systems may have losttyres, it does not provide for input and output of these struc-

their mnemonic value altogether. tures in a user friendly way similar to that provided by the
FORTRAN basedHEP data management systems. The
Cheetah system has been written specifically to provide

3. Memory Management with Cheetah these functions in a user friendly manner.

It is often useful to look behind the scenes to understanAs an input and output system, Cheetah is capable of writ-
how the system is working. Figure 1 shows how memory iing collections of structures to disk and reading them back
being allocated when Cheetah is used. In the user code, fagain. The structures are organized by families, so each
variablemctrack is a pointer (a 4 byte quantity) to an ar- read or write operation works on a collection of families
ray allocated by Cheetah. This array is a set of pointers icalled a record. When a new record is read, existing fam-
the actually structures which Cheetah allocates. The arrélies of the same name as one being read are replaced by the
is allocated automatically when the user adds a member newly read family. At the head of a Cheetah data file, there
a family with the Cheetabhadd() function. is a dictionary describing the names of the families in the
file and their structure types, the names of the members of
Internally, Cheetah uses thealloc function to allocate the structure types, each member’s type and other infor-
memory space. It is part of the C standard library of roumation so that the structure declaration can be reconstruct-
tines. Thus, it is provided by the vendor of the compileiled when the file is read.
which is most frequently the vendor of the hardware plat
form. At least orUNIX platforms, the quality and speed of Consider the program in Example 1. This sample code
the hardware will be measured by benchmarks consistinopens a Cheetah data file, reads one record, and writes it out
of many programs written in C, including ttkNIX kernel to another file. The function to open a Cheetah file,
itself. Thus, one can assume that the vendor has paid a lotchopen , is analogous to the C file open functfopen .
attention to the speed and efficiency ofthalloc func- It takes the same two arguments: the name of the file as a
tion. Also, on many platforms, there are very sophisticatestring, and the access mode as a second string. It returns a
debugging tools associated withalloc . The Cheetah pointer to a Cheetah file structure, known as a Cheetah file
system thus benefits greatly by making direct use of thespointer, just afopen returns a file pointer. The Cheetah
standard utilities. file pointer is used as a parameter in calls to all further ma-
nipulations on that file.

Cheetah allocated Cheetah allocated
User Code mctrack pointer array track structure
| mctrack — mctrack[0] | x[0,1,2] |
| mctrack[l]] —=» || p[0,1,2] |
[mctrack2] —{m» | [ptot |
| mctrack[3] —}+#» | | charge |

Figure 1. Memory layout with Cheetah system.

The Cheetah Data Management System

#include "cheetah.h"

main() {
ch_file *ch_filep_in, *ch_filep_out;
ch_list *ch_listp;
int return_code;

ch_filep_in = chopen("test.chdata","r");
ch_filep_out = chopen("test2.chdata","w");
ch_listp = chread(ch_filep_in);
if (ch_listp = NULL) {

return_code = chwrite(ch_filep_out,ch_listp);
}
exit(0);

Example 1. Reading and writing Cheetah Files.

The Cheetah read function will read one record from the inNULL if the end of file is reached. The linked list is known
put file, reconstruct all the structures in that record, and aas a Cheetah list. It is used as an argument to Cheetah func-
locate the arrays of pointers to the structures. The Cheettions that want to work on the record as a whole. For ex-
read function only requires one argument: the Cheetah filample thechwrite function takes two arguments; the
pointer. It returns a pointer to a linked list of families or Cheetah file pointer for output and a Cheetabh list pointer.

#include "cheetah.h"

#include “track.h”

/* to find the index of the fastest track in the mctrack family,
* fastest = fastest_track(“mctrack”);

*/

int fastest_track(char *track_family;) {

int fastest;
int last_track;
struct track **tracks;

tracks = chfptrs(track_family); /* find array of pointers */
last_track = chidlast(track_family); /*index of lasttrack */
fastest = 0;
for(i=0;i<last_track;i=i+1){
if (tracksJi]->ptot > tracks[fastest]->ptot) {
fastest = i;
}

}

return fastest;

Example 2. Example of accessing Cheetah managed data.

The Cheetah Data Management System

The average user need not be concerned about the structg, Creating Cheetah Structures

of a Cheetabh list. Its just a convenient handle used to grot

a set of families together. In the same way, the user is NSo far we've considered examples of code in which the
concerned about the structure to which a file pointer point<Cheetah dictionary has already been created or is read in at
However, for some applications, such as interactive prcthe beginning of a Cheetah file. In this section, we’ll show
grams like Reason[2], the Cheetah list pointer containone method of creating a dictionary. An example code from
enough information to decipher the contents of the entirwa Monte Carlo partic|e generator is shown in Examp|e 3.
record. Cheetah also provides functions to add or delefThe functionmclund is set up to be called at different

members of the list. stages. Only the initialization stage concerns us which is
the case wittoption = INIT . The structure type
event is declared to Cheetah with the function call

5. Example of Usage i_event() on line 13. This function is generated au-

tomatically by thechgen command which will be de-
An example usage of Cheetah is given in Example 1.In thiscribed later. The declarationiofevent() is included
example, a function finds the index of the track with thein theevent.h file, while the definition is given in a sep-
highest momentum in any family of th&ck structure arate source file, as described below.
type. It shows two Cheetah utilities that make working with
C structures and the resultant handling of pointers easieAfter the call toi_event is made, Cheetah knows about
The Cheetah functioohfptrs() returns the family ar- the structure type with structure tegent . It knows
ray pointer of a family which is specified by name. Also,nothing about any families of tymvent yet. The cre-
the Cheetah functioohidlast() returns the index of ation of a family is done with the function califcre-
the last member currently in memory of the given family.at() as shown on lines 16--18. It takes two arguments.

1 #include "cheetah.h”

2 #include "event.h"

3 #include "track.h”

4

5 ch_list *mclund(enum options option) {
6 static ch_list *ch_listp;

7 intirc;

8

9 switch(option)

10 {

11 case INIT:

12

13 irc =i_event();

14 irc = i_track();

15

16 irc = chfcreat("mcevent”,"event");
17 irc = chfcreat("mctrack”,"track");
18 irc = chfcreat("phtrack”,"track™);
19

20 ch_listp = chlcreat("mcevent");
21 ch_listp = chladd(ch_listp,"mctrack™);
22 Ce

Example 3. Creating new Cheetah families and types.

The Cheetah Data Management System

The first is a name for the family while the second arguC-like descriptions of thevent andtrack structures
ment is a structure type already known to Cheetah. In thiand generates a C source file containing these initialization
way two families can be created which have the same strufunctions. Alternatively, the definition of a Cheetah struc-
ture type, as is shown on lines 17 and 18. A list of familieture can be built dynamically by a set of Cheetah utilities, a
is created usinghlcreat , which takes a family name feature often useful to interactive programs, for example.
as it argument, as shown on line 20. Line 21 shows ho

other families may be added toch_list using

chladd , which accepts an existing list pointer and the7, Cheetah Text Files

family name to add to the list.

In addition to the ability to read and write binary files,
Thei_event() andi_track() functions, which Cheetah can also read and write text files. The text file con-
initialize the Cheetah structures which describe theains two sections, the first describes the structures and de-
event andtrack structures, are generated using theclares the families that are in the file, the second section
chgen utility. This utility reads a file which contains the contains the individual records. In Example 4, a Cheetah

struct runevent { int run, event; };

struct track {
float x[3];
int charge;
float p[3], ptot;

struct track mctrack; /* Declares family mctrack
of type track. */
struct runevent header; /* Declares family header
of type runevent. */
{ [* Begins a record. */
header =101 1; [* Assigns header|[0]. */
track =
1.2.3.-14.5.6.7., [* Assigns track|0]. */
4.5.6.+11.2.3.4., [* Assigns track[1]. */
1.2.3.-14.5.6.7., [* Assigns track|[2]. */
; [* Ends family track. */
} /* Ends a record. */
{ [* Begins a new record. */
header =101 3; [* Assigns header|[0]. */
track =
1.2.3.-14.5.6.7., [* Assigns track|0]. */
[2] 4.5.6.+11.2.3.4., [* Assigns track[2]. */
/* track[1] is NULL. */
/* Ends family track. */
} /* Ends a record. */

Example 4. An example Cheetah text file containing two records.

The Cheetah Data Management System

text file containing two families and two records is shown.9, Summary
This file may be read directly, usirdpread as in Ex-
ample 1, or may be used to create a binary file using thThe C language, with minimal extensions for input and out-
Cheetah importer routiréhimp. ~ Similarly, there exista put of data structures as afforded by Cheetah, provides a
Cheetah exporter routinehexp , which creates a textfile nice environment in which to accomplistEP tasks. The
from a binary file. C-structures are natural replacements for the “banks” of
traditionalFORTRAN based data management systems.
By letting Cheetah manage the pointers to the structures,
8. Cheetah Networking the casual user is relieved of this responsibility and, in-
stead, is given a straightforward method to access the struc-
Cheetah has been designed to permit Cheetah records totures. Cheetah is also well suited for use by interactive
transmitted over the network transparently to the end useprograms, when access to the symbol table describing the
The actual transmission of data over the network is effectedata is essential and where dynamic creation of data struc-
using Sun'sXDR product (eXternal Data Representation).tures is also desirable. Cheetah has both a binary and a text
The handshaking between the client and the server is &file format, each of which is machine independent, and can
fected using Sun'®RPCproduct (Remote Procedure be used to move structures from one machine to another
Calls). These products are generally part ®CGP/IPnet- over a network. Although Cheetah was designed to be used
working package. To retrieve records from another maby C programs, it can be and has been used FQR-
chine, the end user simply creates a file (called a CheeteTRAN programs in order to make use of its network trans-
service file) containing the internet address of the remotparent file structure and its dynamic memory allocation.
machine, the name of the remote server, and, if the recorCheetah has also attained its goal of portability, having
are to be read from a file, the name of the file on the remotbeen ported to many different operating systems with no
machine. The remote server may also be designed to creioperating system dependent switches. Cheetah does con-
the records internally using, for example, a Monte Carldain switches, however, so that it may compile with either
generator followed optionally by additional processing, oran ANSI C compiler or a traditiondk&R C compiler.
may send samples of records from a real-time data streal
From the point of view of the end user, the only difference
between reading records from the network and readin10. References
them directly from a file is the creation of the service file to
provide the link to the remote data stream. Of course, Wrif1] B. w. Kernighan and D. M. Ritchie, The C
ing to a remote server is just as transparent to the end us Programming Language (Prentice Hall, Englewood
Servers have been prototyped which can be used to re Cliffs, 1978).
heetah data fil zell ta fil n lightly modifi
gd:r(;g te?(?fﬁe.(i\s:s‘;?veer Ehdealll ani;SS, \;;\l/itﬂ 3sserg ho)(;ks?tg aT[Z] W.B. Atwood, Richard Blankenbecler, Paul F. Kunz,
Benoit Mours, A. Weir, G. Word, 8th Conf. on
low for users to write other special purpose servers. Computing in High Energy Physics, Santa Fe, NM,
Apr 9-13, 1990.
Because of the use DR, which uses a canonical format
for data transmission, the server and the client may exist ¢
computers of differing architecture. To date, networking
has been accomplished betwedweXT UNIX computer,
anlBM mainframe wittVM/CMS computer, and BEC
VAX/VMS computer, with no changes required in Chee-
tah code.

