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ABSTRACT 

We determine the resonant substructure of D + rr?rn decays, extracting the 

relative fractions and phases of the amplitudes contributing to the K-T+K+T~, 

17” x+?T+?T-, K-n+x+7r” and ?lr+n-w’ final states. We find that two-body de- 

cay modes account for at least 75% of these decays. We obtain branching ratios for 

D + &(1260), D + Tp, D + x1( 1270)7r, D + E, (1400)x and Do + ?U 

decay modes, as well as for several three- and four-body decay modes. In the case of 

D + I(al(1260) and D + fT’*p, we obtain the branching ratios for all three possible 

isospin combinations, enabling us to extract the isospin l/2 and 3/2 amplitudes, and 

their relative phases. We find that the isospin 3/2 amplitudes a.re suppressed relative 

to the isospin l/2 amplitudes. This implies that the widths of the D+ modes are 

suppressed relative to those of the Do, confirming that an understanding of the life- 

time difference of the Do and D+ depends on an understanding of two-body hadronic 

decays. 

For the D --t ?T*p decay modes, we obtain detailed information on the polarization 

of the r* and p. This enables us to place constraints on the form factors for D + 7;;’ 

and D ---f p transitions. A comparison of our results on D + f;;lp decays with recent 

results on semileptonic decays allows us to test the factorization hypothesis. 



I. INTRODUCTION 

A large number of exclusive hadronic final states have been observed for the D 

mesons, accounting for nearly all of their total hadronic widths [1,2]. In most cases, 

these final states contain two, three, or four long-lived particles [3]. Detailed studies of 

three-particle final states [4-71 h ave shown these to be dominated by two-body decay 

modes in which the final state is produced by the decay of a broad intermediate 

resonance. 

Measurements of the lifetimes of the charmed mesons [8] show that the lifetime of 

the D+ is 2.5 f 0.1 times that of the Do. The ratio of the hadronic widths, obtained 

by subtracting the measured semileptonic widths [9] from the total widths of the Do 

and D+, is 

OH 
AH 

= 3.2 f 0.2 . (1) 

The ratio of hadronic widths of the modes D --f XT, xp, and F7:, which account for 

30% and 23% of the total hadronic widths of the Do and Ds and have been measured 

in all isospin combinations, is [lo]: 

IT(D” + Ii’-r+,h”, IT-p+,?$O, IT*-x+,~T+~x~) = 4 o f I o 

lY’(D+ + ?a+,I(‘p+,z*‘x+) 
. . (2) 

This suggests that an understanding of the lifetime ratio requires an understanding 

of two-body decays. The r7rrr final states for which branching fractions have been 

measured account for 40% and 20% of the total hadronic widths of the Do and D+. 

We are therefore motivated to determine whether these final states are also dominated 

by two-body decay modes whose patterns of branching fractions also match the ratio 

of the total hadronic widths. 

We present herein an analysis of the resonant substructure of the following final 

states: 



Do-d-n+x+a- , 

D+ +I(u~+w+x- , 
(3) 

D+-d-n+r+w' , 

D"-t&r+a-x0 . 

This analysis is the first detailed study of a four-particle final state [ll]. We show 

that two-body decays are the principal component, and obtain branching fractions 

of decays to two vector mesons (VV), t o a pseudoscalar and an axial vector meson 

(PA), and to nonresonant decay modes. 

Table I describes the relative branching fractions of various two-body decay modes 

to four-particle final states. Each of these decay modes has three isospin combinations. 

The amplitudes for decays such as these, for which one of the mesons has isospin l/2 

and the other isospin 1, can be written in terms of isospin l/2 and 3/2 components: 

1 
A(D+ --t I+ -; 

2 
+1)) = fiA3,2ei63/2 , 

A(D” + I- ;;+I)) = 
Jc 

; A3/2ei63/2 -I- xhAlj2ei6112) , 

A(D” ---f I+ xhA3/2ei63/2 - A1,2ei61f2) . 

(4) 

If the widths for all three isospin combinations are known, the ratio IA1,2/A3,21 and 

the difference 61/z - 63/z can be calculated. This decomposition has been performed [6] 

for D -+ ET, xp, and r’n. The ratios of isospin amplitudes IA1,2/A3,21 for all three 

modes are N 3.5. The isospin phase shifts can be sizeable. A further goal of this 

analysis is to perform the isospin decomposition for new modes. 

The matrix element for a semileptonic decay may be factorized into a leptonic 

current and a hadronic current: 

GF A(D --t M&) = -Vc,LpH, 
Jz 

, (5) 
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where Vcq is the Cabibbo-Kobayashi-Maskawa (CKM) matrix element, L@ is the 

leptonic current 

LP = &/“(l - T5)V ) (6) 

and H,, is the hadronic current 

HP = Pwm - (7) 

Motivated by the spectator model of two-body hadronic weak decays, one may 

make the factorization assumption: 

GF A(D + Mm) = zVc,hpH,, . 

Here, HP is the same as in Equation (7), and the current h, is 

@I 

hp = (mlP‘l0) , (9) 

which is proportional to the decay constant of the meson m. 

In the model of Bauer, Stech, and Wirbel (BSW) [12], the amplitude in Equa- 

tion (8) has two terms: one is proportional to the quantity al (- 1.2), which 

parametrizes the strength of external W-emission, e.g. Do -+ 1(1-x+, and the other is 

proportional to the parameter a2 ( - -0.5), which parametrizes the strength of inter- 

nal W-emission, e.g. Do + ?x ‘. Thus, internal W-emission decays are expected t,o 

be suppressed relative to external W-emission decays; however, they may be great13 

enhanced by isospin phase shifts as in Equation (4). Cabibbo-allowed Ds decays 

such as D+ + ?r+ proceed via both internal and external W-emission. In the 

BSW model, it is destructive interference between these processes which accounts for 

the reduced D+ hadronic width. The BSW predictions which we will test are (141: 
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B( D+ ---t 7i*‘p+) = 17% , 

B(D” + K*-p+) = 21% , 

B(D” + rLopo) = 2.5% , 

B(D+ -+ -i70al( 1260)+) = 3.8% , 
(10) 

B(D” -+ I<--ar(1260)+) = 1.5% , 

B( Do -+ ?q( 1260)‘) = 0% . 

The factorization assumption in the BSW model does not allow for isospin phase 

shifts different from zero, in contradiction to experiment. However, if we measure 

the branching fractions to all three isospin combinations and perform the isospin 

decomposition we can calculate the effect of the isospin phase shifts and therefore 

make an improved comparison of the data to the predictions. 

If the factorization assumption is valid, results from semileptonic decays should 

apply to hadronic decays. The matrix element for the decay D+ + z*‘e+v has 

been studied in detail by the E691 Collaboration [15]. The results should apply to 

the decay modes D + x’p. Thus, by comparing our results on D --f r*p to the 

semileptonic results, we can test the factorization hypothesis. 

II. EVENT SELECTION 

The data, a total of 9.56 pb-‘, were collected at the peak of the $(3770) reso- 

nance with the Mark III detector [19] at the SLAC eSe- storage ring SPEAR. At 

the +(3770), D mesons are produced in the reaction e+e- + $(3770) + Do. This 

analysis uses information from the drift chamber, time of flight system, and elec- 

tromagnetic calorimeter. The drift chamber has an acceptance of 84% for charged 

particles. The time of flight system provides n/K discrimination up to 1.2 GeV/c at 

2a separation. The lead-gas electromagnetic calorimeter is locat,ed inside the magnet 
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coil, has a 94% geometric acceptance, and is fully efficient for photons with energy 

above 0.1 GeV. 

The event selection procedures are described in detail in References 11, 16, and 17. 

We briefly summarize the main features here. Charged tracks are classified as pions or 

kaons with the time of flight system or with dE/ds information from the drift cham- 

ber. Neutral kaons are detected through the decay ?? + ri-i + rr+7rr-. Candidate 

w+rr- pairs are kinematically constrained to the ? mass. For the Ds -+ I(~T+T+T- 

final state, all Kg candidates are used. For the Do + ?x+x-x’ final state, in order 

to improve the signal to noise ratio, the nSn- vertex is required to be more than 

3 mm from the beam axis, and the vertex position and Kg momentum vector are 

required to align in the zy-plane. 

Neutral pion candidates are detected through the decay x0 -+ y-y. The yy pair 

is kinematically constrained to the x0 mass. The fitted photon energies are required 

to be greater than 0.05 GeV. The cosine of the angle between the photon direction 

and that of the nearest charged track must be less than 0.95 at the entrance to the 

calorimeter. For the Ds + K-w+n+~’ final state, the cosine of the x0 decay angle is 

required to be less than 0.7, where the x0 decay angle is defined as the angle between 

the direction of one of the photons in the r” rest frame and the direction of the 

laboratory frame. 

Finally, for the D+ + K-rrSr+ro final state, we require that there be less than 

two additional isolated showers in the event, where an isolated shower is defined as 

a neutral shower whose measured energy is greater than 0.08 GeV and for which the 

cosine of the angle to the nearest charged track is less than 0.97 at the entrance to 

the shower counter. The efficiency of this requirement can be obtained directly using 

8 



the Mark III sample of 1600 Ds + K-rs’lrs events. By measuring the fraction of 

these events which pass this requirement, we obtain an efficiency of 0.549 f 0.028. 

For each K7r7rn combination, an effective recoil mass can be calculated using 

E recoil - - 4(3770) - Errxr and Precoil = -pRxxx- For a real D + fTn7r7r event, both 

the invariant mass and the recoil mass of the I(wrrx combination will be near the D 
- 

mass. For each Kxmr combination, we perform a kinematic fit in which the mass 

of the combination is constrained to the D mass and the recoil mass is allowed to 

vary. The signal can then be seen in the recoil mass plot as a peak at the D mass. 

With this type of constraint, all events have the same amount of phase space for the 

decay throughout the recoil mass plot. This has the advantage that the kinematic 

boundaries of the phase space for the four-body decay are the same in the sideband 

regions and the signal regions of the recoil mass plot. The recoil mass plot is fitted 

with a Gaussian for the signal and a polynomial with an error function cutoff at high 

mass for the background. 

The recoil mass plot for the Do + IC-a+n+r- final state is shown in Figure l(a). 

There are 1281 f 45 events above background. The branching fraction has been 

determined previously by Mark III to be (9.1 f 0.8 f O.S)% [18]. 

The recoil mass plot for the ?7rs?r+a- final state is shown in Figure l(b). There 

are 209 f 20 events above background. The branching fraction has been determined 

previously by Mark III to be B(D+ ---t ?r+n+x-) = (6.6 f 1.5 f 0.5)% [I8]. 

The recoil mass plot for the K-x+w+?r” final state is shown in Figure l(c). There 

are 142 f 20 events above background. We obtain B(D+ + K-T+T+T’) = (5.8 f 

1.2 f 1.2)%/o. Th is value is determined using the cross-section in Reference 18 and 

supercedes the value in Reference 17. It is in agreement with the E691 value B(D+ + 

I~--~+T+T~) = (6.3 f 1.3 f 1.5)% (201. 
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The recoil mass plot for the ??r+rr_K’ final state is shown in Figure l(d). There 

are 140 f 28 events above background. We obtain B(D" ---t ?x+r-aO) = (10.3 f 

2.2 f 2.5)%, which is a new result. 

III. THE LIKELIHOOD FUNCTION 

For each D + I(7rrrn final state, there are several two-body and three-body decay 

modes which can contribute. We determine the contribution of each decay mode using 

a maximum likelihood fit. The fitting technique is a straightforward extension of the 

techniques commonly used in three-body Dalitz plot fits. For each decay mode, we 

define a complex amplitude in the four-body phase space. These amplitudes overlap 

and interfere. We define a probability density function (p.d.f.) which consists of 

a coherent sum of these amplitudes, and fit to the data to determine the relative 

fractions and phases of these amplitudes. 

The p.d.f., a function in the phase space defined by the four-momenta of the deca) 

products of the D candidate, provides a complete description of the decay in the five- 

dimensional phase space. A wide variety of kinematic variables can be defined, such 

as two- and three-body invariant masses, and helicity angles. Since we are analyzing 

the complete phase space, and not projections, we do not have to “choose” any five 

particular variables, but instead use whichever ones are convenient for each term in 

the p.d.f. 

The likelihood function L is defined as 

L= rI 3 9 
events 

(11) 
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where F is the p.d.f. The p.d.f. consists of a signal term 3.5 and a background term 

38: 

3= 
RSIBW+ 3B 

RS/B+l ' 
(12) 

For each event we calculate the ratio of signal to background, RSIB, as a function of 

recoil mass, using the curve fitted to the recoil mass plot. 

The signal p.d.f., TS, consists of a coherent sum of complex amplitudes, weighted 

by the density of states in phase space and the detector efficiency. Each amplitude 

is individually normalized over phase space before taking into account detector effi- 

ciency, and 3.5 as a whole is normalized over phase space weighted by the detector 

efficiency: 

1 3s=-6 
N3s Is 

flM ,iw - s1 + ... + f/y I+- 
r 

2 
’ 

dx j$ 

(13) 

The 5’; are complex amplitudes varying over phase space; c is the detector efficienq 

as a function of location in phase space; q5 is the four-body phase space function; N, 

are the normalizations of the amplitudes over phase space weighted by 4; and IL’~-, is 

the overall normalization of the p.d.f. The fractions fiM and the phases oi are varied 

in the fit to maximize the likelihood. 

The background p.d.f. is: 

1 m -> M cBi$ 
3B = N3B i-l ” 04) 

The Bi are functions which describe the resonant content of the background. TheJ’ 

are similar to the Si, except they do not interfere with each other. The fractions CJ~’ 
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are allowed to vary in the fit. The normalizations Mi and N3B are evaluated with 

the same procedures used for 3’. 

To find the maximum of the likelihood function, we minimize -en t. The func- 

tions c and 4 do not depend on the f,N, g,g, or oi, and are factored out before the 

minimization. If we define 3s = c&5’ and 3~ = q5B, then 

Rs/BS+B 

&i/B +l 
-he4 . (15) 

The term 4% I$ is a constant for the purpose of minimizing F and is neglected. We 

therefore never explicitly need to evaluate c and 4; they are taken into account entirely 

by Monte Carlo techniques in the normalization procedure. 

The minimization is performed by setting one fraction and one phase to a constant 

and letting the relative fractions and phases vary. However up, the p.d.f. for the 

produced distribution of events before efficiency effects, must be normalized to one. 

This function is: 

3p = (16) 

To properly normalize 3p we rescale the fractions fsy to obtain the physical fractions 

fi: 

tM 
fi=~ , 

where P is the integral of 3~: 

and Nij is the overlap integral of the ith and jth amplitudes. Note that due to 

interference between the amplitudes, 
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kr+ i 1 . (19) 
i=l 

The final states Do + K-r+w+?r-, D+ + ?rr+7r+~-, and D+ t K-T+T+T~ 

all have two identical positive pions. The 7r+7rTT- or rr+7r” combination with the higher 

mass is referred to as (r+r-)high or (n+rO)high, the other as ( 7r+x-)low or ( x+,‘)low. 

The 2x+ or K-T+ combination formed with the 7rr+ not used in (r+r-)high or 

(x+xO)high is referred to as (I(‘*+)1 or (K-x+)1, the other as (rc’x+)z or (K-7r+)2. 

Alternatively, phase space may be divided according to high and low ?;;‘a+ mass, with 

the notation (K-r+)high, (T’T-)~, etc. 

For the Do -+ K”rr+a-no final state, the charged pions are not identical. Ideally, 

mass plots involving the charged pions would be divided according to the charge of 

the pion relative to the charge of the charmed quark. However, the charge of the 

charmed quark cannot be determined for events in this final state as reconstructed 

in this analysis. Therefore, we continue to divide plots the same way as for the other 

final states, as if the charged pions were identical. For example, we will refer to 

(“ixO)hiph and (KYCF)r . 

For the final states with identical pions, the amplitudes are symmetrized. There- 

fore, parametrizing the phase space in terms of high and low mass combinations 

has no impact on the p.d.f., but is done simply for our convenience. Nonetheless, 

(K-?r+)l and (K-T+)~, for example, are independent kinematic variables; plotting 

them separately provides more information than a histogram with two entries per 

event. The I(* peaks from two different amplitudes may have different heights in the 

different K-T+ plots. 

We model each decay chain with a complex amplitude consisting of a Breit- 

Wigner propagator for each resonance in the decay chain, multiplied by a form facto1 
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for each vertex in the decay chain and a matrix element depending on the spin and 

parity of the intermediate resonances and final decay products. These matrix elements 

are evaluated in the Lorentz invariant [21] or helicity amplitude [22] formalism. 

Lorentz invariant matrix elements are constructed by describing a decay in terms 

of sequential two-body vertices. Intermediate states may consist of resonances, or 

nonresonant states in which two particles are in a particular partial wave. The total 

matrix element is the product of the matrix elements for each vertex, which are 

constructed from the four-momenta and polarization vectors of the incoming and two 

outgoing states. The Lorentz invariant matrix elements used are listed in Table II. 

The decay D --t VV may be described in terms of three helicity amplitudes. 

Alternatively, it may also be described in terms of amplitudes for the three possible 

partial waves, S, P, or D. These two bases each form a complete basis for VV decays. 

The helicity formalism leads to three amplitudes Al,l, A-1,-1, and Ao,o. The 

measurement of longitudinal polarization of the Ii’* in semileptonic D decays [23] 

suggests that we fit the transverse amplitudes A r,r, A-1,-1 independently from the 

longitudinal amplitude, Ao,o. 

We define the transverse amplitude as: 

AT = Al,1 + A-l,-1 

= - sin 81 sin 02 cos 4 , 

and the longitudinal amplitude as: 

AL = Ao,o 
(21) 

= cos 81 cos 02 ) 

where 81 and 192 are the helicity angles of the two vector mesons, and C$ is the angle 

between their decay planes. These decay planes are defined by the direction of the 

vector meson and one of its decay products, measured in the D rest frame. In the case 
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of D + 1T*p, the helicity angle of the x* is defined as the angle between the D and 

the kaon measured in the K* rest frame; the helicity angle of the p is defined as the 

angle between the D and the a- or 71’ measured in the p rest frame; the orientation 

of the decay plane of the p is defined by 

$(7r$) x f17r09-) (22) 

and that of the I(* by 

(23) 

The I = 1 amplitude, in the helicity formalism, is: 

A/cl = Al,1 - A-1,-1 
(24) 

= sin 81 sin 02 sin 4 . 

If the three amplitudes, AT, AL, and Al=1 are included in a fit, then any possible 

helicity state can be modeled. With our definitions of the helicity angles and the 

angle 4, we have, in the nonrelativistic limit: 

Lo = -AT + AL , (25) 

Ai=2 = -EAT - &$AL . (36) 

When Lorentz invariant matrix elements are used, a relativistic Breit-Wigner 

propagator (241 is included for each intermediate resonance: 

m2 - rni +irmo ’ cm 
If the helicity formalism is being used, only the angular distribution information is 

included in the matrix element, and the momentum dependencies must be put in by 

hand. In this case, the following Breit-Wigner propagator is used: 
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-lmGz 
m2 - rni + irmo ’ (28) 

The decay chains used, corresponding to the amplitudes in Table II, are shown in 

Table III. Tables II and III, combined with the equations in this section, provide the 

information necessary to reproduce our results in a Monte Carlo generator. 

A very large number of decay modes can contribute to each final state; it is not 

practical to perform a fit that includes all possible decay modes simultaneously. In- 

stead, we perform a number of fits assuming different combinations of partial waves 

and two-body decay modes. Only the lowest available partial waves yield significant 

contributions, and the fractions of two-body amplitudes and the four-body nonres- 

onant amplitude remain consistent among the best fits. Nonresonant ?T;*TT and 

I(pa amplitudes also contribute. The fits are not always sensitive to the partial wave 

content of these three-body amplitudes; nevertheless the overall fra.ctions remain con- 

sistent among the best fits. 

Except for the very broad a~( 1260) Breit-Wigner propagator, The ?;;ar(1260) 

amplitudes are identical to the amplitudes for nonresonant i?p~ in which the p and 

A are in a relative S-wave. Fits in which both of these amplitudes are included do 

not result in a significantly better likelihood; however, the fractions for each of these 

two amplitudes become highly uncertain, while their combined fraction remains well 

determined. This occurs because the relative phases for these amplitudes adjust so 

that there is nearly maximum constructive or destructive interference to an extent 

that depends very sensitively on the conditions of each particular fit. A systematic 

uncertainty for this effect would be both very large and difficult to quantify. Therefore, 

we make the assumption that the amplitude for nonresonant f;‘pn in which the p and 

x are in a relative S-wave is zero, and do not include any systematic uncertainties for 

its possible existence. Nevertheless, we retain the caveat that the presence of this one 
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nonresonant amplitude can have a large effect on the fraction of l;‘ul( 1260), only if 

its phase is adjusted to produce strong interference. We find that this assumption is 

well justified: Fits in which the xu1(1260) amplitudes are replaced by the three-body 

amplitude result in a significantly poorer likelihood, with a difference in (-en L) of 

at least 15. Also, the fractions of Kpr in other partial waves are relatively small. We 

assume 1.26 GeV/c2 for the mass of the a1(1260), and 0.4 GeV for the width [25]. 

We include in the systematic uncertainties the effect of varying the mass between 1.2 

and 1.3 GeV/c2, and the width between 0.3 and 0.5 GeV. 

We estimate the systematic errors on the fractions by varying the partial waves of 

the three-body amplitudes, the event-selection criteria, the background parametriza- 

tion, the parametrizations of the amplitudes, the parameters of the intermediate 

resonances, the detector resolution, Monte Carlo statistics, and the possible presence 

of additional amplitudes. 

Amplitudes which do not yield significant contributions remain small in all fits 

with good likelihood. We can therefore set meaningful upper limits. In addition to in- 

cluding the statistical errors in the calculation of the limit, we include any systematic 

variations in the fractions obtained in different fits. 

IV. RESULTS FOR EACH FINAL STATE 

The Do + IC-rr’rSn- final state has the highest statistics and the lowest back- 

ground of the final states studied in this analysis. The D+ ---t i?n+T’T- and 

Ds + I-C-?r+n+r’ final states have lower statistics, and somewhat higher back- 

ground. Since the resonant substructure is expected to be relatively simple in these 

two final states, it is still possible to extract statistically significant results. Further- 

more, some decay modes contribute to both of these final states, allowing cross-checks 

between the analyses. Although the Do + 7;;07r+7rS7r” final stat,e suffers from still 
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lower statistics and higher background, the analysis of this final state is required 

in order to provide information about the third isospin combination of many decay 

modes, allowing us to complete the pattern for these modes. The sensitivity in the 

Do + K’?r+rr-no final state is further reduced since we cannot tell if an individual 

candidate event arises from a Do decay or a 3 decay. Furthermore, the resonant 

substructure is potentially very complicated, with many decay modes contributing. 

However, using information from the other final states, it is possible to make useful 

measurements of the resonant substructure in this final state. 

A. Do + K-T+T+W- 

The two-body decay modes which can contribute to the K-T’T+T~ final state in- 

clude K-al (1260)+, r*‘p’, K1(1270)-n+ and I~1 (1400)-n+. Two three-body modes 

can also contribute: f?*‘rr+x- and K-p’r+. 

The results of the fit to this final state are shown in Table IV. Projections of 

the p.d.f. 3 onto events in the signal region are shown in Figure 2. The histograms, 

representing the projections of 3, are superimposed on data points. 3~ is also drawn, 

--;*O scaled to the background level. Clear Ii and p” peaks are visible and are well 

reproduced by the fit. A peak at the Kr(1270) mass is visible in the K-(T+TT-)~~,~ 

mass plot. The enhancement at low K-T- mass, characteristic of the longitudinal 

polarization (A = 0) of the ur( 1260) in the K-a~( 1260)+ amplitude, is illustrated 

in Figure 3. The dip near 0.5 GeV/c2 in the (a+a-)low mass plot arises from the 

exclusion of n-t,- combinations which have a high probability of originating from a 

KS decay. 

The presence of the transverse Top0 amplitude leads to distinctive angular corre- 

lations between ?i*’ and p” decays. We show an example in Figure 4. The transverse 

z*‘p” amplitude is a sum of S-wave and D-wave amplitudes with destructive inter- 
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ference. At the bottom of Table IV, we show the results for x*“po if partial wave 

amplitudes are used instead of helicity amplitudes. 

In previous analyses [26-291, the resonant substructure of Do -+ IC-r+rrSn- 

decays was measured by fitting one-dimensional mass plots to obtain the Top’, in- 
-*0 

elusive K , inclusive p”, and nonresonant four-body branching fractions. In the 

present analysis, the likelihood function provides a complete description of the decay 

modes in the five-dimensional phase space. All the information available in the event 

is used in the fit, making it possible to use a general set of amplitudes, include inter- 

ference, and obtain branching fractions for exclusive decay modes. A comparison with 

results from other experiments is shown in Table V. The inclusive I?* and p branch- 

ing fractions are coherent sums of the appropriate exclusive fractions. Similarly, the 

coherent sum of all the two-body amplitudes is 76%. 

B. D+ --t I(yT+T+*- 

The two-body decay modes which can contribute to the ?7r+nsx- final state 

include ?a1(1260)+, x1( 1270)‘nS and x1( 1400)‘7r+. No x’p mode can contribute 

to this final state. There are two three-body modes which can contribute, K*-T+x+ 

+o+ and h p T . 

The main features of the resonant substructure of this final state may be seen 

in the scatter plots in Figures 5(a) and 5(b). The notable features are a Ii’*- band, 

with clusters at high and low (n+n-)2 mass, and a p” band, with clusters at high 

and low li’u?r- mass. In Figures 5(c) and 5(d), th ese features are reproduced with 

Monte Carlo events generated according to the results of the fit to the data, and 

include contributions from ??a~ (1260)+, r, (1400)‘7r+, and four-body nonresonant 

decays. These features are analogous to the enhancements at low I<-x- mass in 

Do --t ICeal (1260)+ decays. 
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Although the Kr(1400)’ ’ IS very broad, with a width of 0.184 GeV, clustering 

of the I<*- band in the xr( 1400)’ regions is visible in the scatter plots in Fig- 

ures 6(a) and 6(b). A cluster of I(*- events can also be seen extending into the low 

P(r+*-)hjgh region, in contrast to events outside the I~*- band. This cluster, a 

kinematic reflection of the rr(1400)” in the ?(7rSrr-)law plot, cannot be produced 

by any known amplitude other than the rr(1400)07r+ amplitude. Scatter plots of 

Monte Carlo data are shown in Figures 6(c) and 6(d). 

Results of the fit are shown in Table VI. Projections of 7onto events in the signal 

region are shown in Figure 7 for the D+ + ?7r+rr+w- final state. 3~ is also drawn, 

scaled to the background level. The coherent sum of the two-body amplitudes is 83%. 

C. D+ --t Ic-7r+7r+A" 

The two-body decay modes which can contribute to the Ir’-7rsn+7ro final state in- 

clude X*‘p+, Er(1270)‘nS and Kr(1400)07rs. No fiai(1260) mode can contribute to 

this final state. There are three three-body modes which can contribute: K*-rr+x+, 

F*‘R+x’ and K-p+r+. 

The results of the fit are shown in Table VII. Projections of 3 onto events in the 

signal region are shown in Figure 8. 3~ is also drawn, scaled to the background level. 

Large r” peaks are seen in the K-a+ mass plot. Although there is a large peak 

in K-x0 mass, it is too high in mass to fit a I<*- Breit-Wigner propagator, and is 

assumed to be a fluctuation. The coherent sum of the two-body amplitudes is 82%. 

The fraction of x1( 1400)’ x + is 0.40 fO.lO, in excellent agreement with the value 

expected from the results of the analysis of the D+ ---t Is;"r+n+~- final state. The 

fraction for Top+ is very large, 0.56f0.08. 1 n contrast to the I<-n+7r+7r- final state, 

both transverse and longitudinal helicities yield significant contributions correspond- 

ing to the S-wave amplitude, in which case the Lorentz-invariant amplitude for the 
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total Fop+ assumes a very simple form when expressed in terms of three-momenta 

in the rest frame of the fi”‘: 

where nr is the pion from the x*‘. From this expression; we expect a distribution 

proportional to cos2 Bvv, where 0vv is the angle between the two three-vectors in the 

dot-product. Figure 9, a scatter plot of K-x: mass vs. cos Bvv, shows the expected 

behavior. 

In this analysis, we cannot tell if an individual ??~+7r-r’ candidate event arises 

from a Do decay or a Tis” decay. To deal with this problem, we form a total p.d.f. out 

of the p.d.f. for each hypothesis: 

3s=3DO+377Q . (30) 

The limited statistical sample in this final state makes it necessary to adopt the 

following set of simplifying assumptions: 

1. Several of the decay modes contributing to this final state have already been 

measured in the K-n+7r+7rS final state. We constrain the relative fractions and 

phases of the amplitudes for x*‘p” (transverse), 1<1(1270)-x+, and E*‘7rrs7r- 

to the values expected from these measurements. Isospin calculations are re- 

quired to convert both the relative fractions and phases in one final state to 

those expected in another final state. The overall fraction of these amplitudes 

is allowed to vary, providing a consistency check. The relative fractions and 

phases are allowed to vary within errors. 
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2. When an amplitude for P-wave K*-p+ is included, the fraction can be as large 

as 20 f 7%. The stringent upper limits on P-wave ??*‘p’ and Top+ decays 

combined with the isospin relations rule out the possibility of a fraction for P- 

wave Ii*-p+ above 9%. Therefore, we leave this amplitude out of the final fit. 

However, the variations in the other fractions when this amplitude is included 

in the fit are included in the systematic errors. 

3. When amplitudes for Rr(127O)O ’ R are included, the fraction is as large as 18 f 

9%. Given the measurement of 1<1(1270)- a+, the upper limit on rr( 1270)‘nS, 

and the isospin relations, we can calculate a maximum plausible value for 

xr(1270)07ro. We estimate a 90% C.L. upper limit of 3.2% for 1111(1270)-n+, 

and use the previously derived upper limit of 1.1% for r1(1270)‘n+. We as- 

sume a relative phase of A between Al,2 and A312 so that the interference is 

maximally destructive for K1(1270)- 7rlrs and constructive for Er (1270)‘~‘. We 

find that the fraction for 1(r( 1270) Or0 cannot be more than 10%. As we are 

not sensitive to a fraction this large, we leave the amplitudes for rl(1270)0n0 

out of the fits. However, the variations in the fractions as this amplitude is 

included in the fit is included in the systematic errors. 

4. There are five different types of three-body amplitudes which can contribute to 

this final state, ?p ’ ‘, f;iop-7;+, ?p+n-, ~*‘x+TT-, and I<*-xs7ro. Ea.ch 7r 

of these comes in six different partial waves, assuming there is only one unit 

of angular momentum. None of these amplitudes are statistically significant. 

We include them one at a time, to obtain the systematic errors on the other 

fractions. 

The results of the fit are shown in Table VIII. Projections of 3 onto events in the 

signal region are shown in Figure 10. 3~ is also drawn, scaled to the background level. 
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There is a K* peak visible in the (rC’rr)r mass plot and a strong w peak visible in the 

?rsx-7ro mass plot. There is no enhancement evident at low pro mass, indicating 

that the Do + f70q (1260)’ amplitude is small. The coherent sum of the two-body 

amplitudes is 79%. 

For the w line-shape, a Breit-Wigner function is convoluted with a Gaussian res- 

olution function [30]. The resolution predicted by the Monte Carlo is 0.0087 GeV/c2. 

Interference between the ?w amplitude and other amplitudes is ignored. To ob- 

tain the I(vw amplitude, we evaluate the following triple product, where the three- 

momenta are evaluated in the w frame: 

APY =&p(&+ x&-) . (31) 

We have also obtained several upper limits from the analysis of these four final 

states. These are shown in Table IX. 

V. ISOSPIN DECOMPOSITIONS 

We combine results from the analysis of the four final states. Using these results, 

we perform an isospin decomposition on several two-body decay modes. 

A. D +&(1260) 

We have obtained measurements of the branching fractions for A’-ur( 1260)+ and 

?a1(1260)+ and a stringent upper limit on that for ?a~( 1260)‘. The latter is 

expected to be zero in the BSW model. However, the large branching fractions for 

the first two decay modes could have made the branching fraction for ?ar(1260)’ 

large through final state interactions. The upper limit, therefore, is very useful for 

placing limits on the effects of final state interactions, thereby eliminating this source 

of ambiguity in the comparison of measurements with models. 

23 



We list the measurements, predictions, and isospin decomposition for Ka1(1260) 

in Table X. We define 6 E 6r,2 - 63/2. The central values for the branching fractions 

of the three Xor(1260) modes are close to the edge of the space allowed by the 

isospin relations. We therefore perform a fit in which we vary the three branching 

fractions within their errors, but apply the constraint of the isospin relations, in order 

to obtain new values and errors for the branching fractions, and values and errors for 

6 and IA1/2/A3pj. We use B(D” -+ ?ar(1260)‘) = (0.4 f 0.4 f 0.9)% for this fit. 

The ratio of isospin amplitudes is 2.8 f 0.4 f 0.3, consistent with that found in PP 

and PV decays. The measured branching fractions are much higher than the BSW 

predictions. 

B. D-d?p 

We have obtained measurements of the branching fractions to the three r*p 

modes. BSW have made predictions for each of these modes. We list the measure- 

ments and predictions, along with the isospin decomposition, in Table XI, as well as 

the BSW predictions, recalculated with the measured value of the isospin phase shift. 

Again, the ratio of isospin amplitudes is in the range found for PP and PV modes. 

-0 0 The branching fraction for I< p was first reported in Reference 31, and was 

found to be in good agreement with the value predicted by BSW. Now that the 

branching fractions for the other two r*p modes have been measured, and isospin 

phase shifts have been taken into account, we find that the branching fractions for 

x*p are much smaller than the predicted values. 

We find that in the Top0 mode, the fi*’ and p” are completely transversely 

polarized (X = &l), requiring a mixture of S- and D-wave amplitudes such that 

the longitudinal components of these two amplitudes cancel. We have placed an 

upper limit on the P-wave component. For the fT*‘p+ mode, we find a mixture of 
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transverse and longitudinal polarization consistent with a pure S-wave amplitude. We 

have placed limits on the P- and D-wave components. For the It’*-p’ mode, we are 

not sensitive to the polarization. A limit on P-wave K*-pS is obtained using the 

other two sT”p modes and the isospin relations, and is shown in Table IX. 

C. D + li’r(1270)n 

We have obtained a measurement of the branching fraction to 1(1(1270)-n+, and 

an upper limit on that to li1(1270)‘n+. We can place a lower limit on the ratio 

of isospin amplitudes in this mode. Using a conservative lower bound of 0.73% on 

the branching fraction to Kl( 1270)-7r+ and combining this with the upper limit 

on that to z1(1270)‘1r+, assuming maximum constructive interference between the 

isospin amplitudes for K1(1270)-A+, we obtain a conservative lower limit on the 

ratio of isospin amplitudes. The results are summarized in Table XII. The limit on 

f;=r( 1270)“~o is derived from the results for the other two rr( 1270)x modes and the 

isospin relations. 

D. D t 7I;r(1400)7r 

We have obtained a measurement of the branching fraction to r1(1400)07r+, and 

upper limits on those to Kl( 1400)-7r+ and 1(r( 14OO)o7ro. We estimate a 90% C.L. 

lower limit of 1.9% for Er( 1400) Or+ Combining this with the two upper limits, we . 

obtain the largest plausible value of the ratio of isospin amplitudes. The results are 

summarized in Table XIII. 

E. Summary of Isospin Decompositions 

In Table XIV we gather the results on the isospin decompositions from this paper, 

together with the results from Reference 6. As discussed in Section I, the ratios of 

isospin amplitudes for the PP and PV modes correspond to the lifetime ratio of the 
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0’ and D+. For the VV and PA decays 1T*p and xar(1260), we find the ratios of 

isospin amplitudes to be 2.8f0.4f0.3 and 3.4f0.7f0.7. These values also correspond 

to the lifetime difference of the D mesons, and confirm that an understanding of this 

difference requires an understanding of two-body decay modes. 

VI. FORM FACTORS 

In models of semileptonic charm decay, the matrix element in Equation (7) is 

typically parametrized in terms of a Lorentz invariant matrix element multiplied by 

.a form factor. The Lorentz invariant matrix element contains the dependence on 

the spins and four-momenta of the particles involved. The form factor contains the 

dependance on q2, where qfi is the four-momentum of the .!v system, or of the meson m 

in the hadronic case. The form factors are typically calculated at one value of q2, and 

extrapolated to other values of q2 using a single pole function. Under the assumption 

of factorization, the decays Do + K*-p+ and Ds + x*‘e+y both depend on the 

same D + r* form factors. 

The E691 Collaboration has measured the branching fraction for D+ + ~*"c'v 

to be (4.5 & 0.7 f 0.5)% [15]. Th is value is lower than the Mark III result (7.i f 

1.3)% obtained from a global fit to several exclusive semileptonic branching fractions, 

inclusive semileptonic branching fractions, and the charmed meson lifetimes [9]. The 

E691 measurements of the form factors for this decay indicate that the form factors are 

not predicted correctly by the models, as shown in Table XV. Mark III has obtained 

a result for the ratio of longitudinal to transverse polarization of the x*‘, I’L/I’T, 

but not for the individual form factors. 

While the decay Do + 1(*-p+ depends on D + Ii’* form factors, the decay 

Do ---t F*‘p” depends on D + p form factors, and the decay Ds + Fop+ depends 

on both D + I(* and D + p form factors. The values of these form factors as 
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calculated in the BSW model are shown in Table XVI. These values are used for 

the predictions in Table XI. If we substitute the E691 form factors into the BSW 

model, we obtain the results in the column labeled “BSW 1” in Table XVII. We have 

assumed that the D + p form factors are equal to the D + x* form factors. These 

results are much closer to the measured values than the predictions in Table XI. Thus, 

the disagreement of the predictions from the data may be due to problems with the 

form factor predictions rather than with the factorization hypothesis. In the column 

labeled “BSW 2” in Table XVII, we have listed the predictions of the BSW model 

using the E691 form factors scaled by the square root of the Mark III Ds --f x*‘e+v 

branching fraction. This scaling somewhat worsens the agreement with the model, 

but is still better than the original prediction. 

We can gain additional information on these form factors from our studies of 

D + X*/L Wh’l 1 e we do not have enough information on polarization in Do + 

I(*-p+, and the mode Do -+ Top0 is strongly affected by isospin phase shifts, the 

decay D+ -+ f7*‘p+ is theoretically relatively simple. Weak annihilation is possible 

only for Do decays. This mode is unaffected by isospin phase shifts, and inelastic 

final state interactions should be small because they must proceed through the exotic 

I = 3/2 channel. A disadvantage of the analysis of this decay mode is that. it involves 

a subtraction of two terms, the first proportional to the D --f 1;;’ form factors, and 

the second the D + p form factors. 

The matrix element for the decay D -+ VlV2 has three terms. The first is an 

S-wave term, proportional to the form factor A1(q2): 

El ‘E2 , (32) 

where el and ~2 are the polarization vectors of VI and V2. The second is a P-wave 

term, proportional to the form factor V(q2): 
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where PC” is the sum of the four-momenta of VI and V2 and Q” is the difference. The 

third is the longitudinal component of a D-wave term, proportional to the form factor 

A2(q2>: 

(~1 - &)(~2 . Q) - (34) 

The predictions of the BSW model for E*p for these three terms are shown in 

Table XVIII. We see that in the BSW model, the S-wave term is dominant, in agree- 

ment with our observation in D+ -t z*‘p+ decays. However, it is notable that in 

the decay mode R*‘p’, the r*‘*O and p” are transversely polarized (X = fl). Thus 

the amplitude for this decay mode is a combination of S- and D-wave states. A large 

D-wave contribution would not be consistent with the factorization hypothesis. 

In our study of polarization in Ds + R*‘p+ decays, we have found that the data 

is well described by an S-wave amplitude as in Equation (32). We have set limits on P- 

wave and longitudinal D-wave amplitudes. If S-wave and D-wave terms are included 

in the fit, the fractions become (71.6 f lo)% and (2.4 f 2.9)% respectively, with an 

interference term of -18.5% so the total remains 55.5%. This is approximately what 

is expected in the BSW model: A small D-wave term and a larger interference term. 

We therefore use (71.6 f 10 f ll)% for the S- wave fraction when placing constraints 

on the Al form factors. 

Assuming factorization, we can now place the following constraints on the form 

factors: 

17.18~lA1(0)~-~* + 8.38azA@)~,,I = 2.4 f 0.5 , 

11.06~lV(O)D-~* + I.~OU~V(O)D,,I < 0.7 , 

IO.~~U~A@)~J~* + l.~5u2A2(o)&.+,l < 0.8 , 

(35) 
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where al and a2 are the parameters of the BSW model. Using al = 1.2 and a2 = 

-0.5 and the E691 values for the D + I(* form factors, we may solve for the D + p 

form factors. Since we take the absolute value of the left side of Equation (35), there 

are two solutions. For the All,, form factor, we list both solutions. For the other 

form factors, we quote the more conservative upper limit: 

AI(O) = 0.4 f 0.2 (solution 1) , 

= 1.5 f 0.2 (solution 2) , 
(36) 

v(o)&., < 3.4 , 

Az(o)~,~ < 2.2 . 

VII. CONCLUSIONS 

We have measured the resonant substructure of four D + rxxr final states. 

We have found that these final states are dominated by two new types of two-body 

decay modes, VV and PA. We have measured branching fractions for the ?iul(1260): 

x*p, K1(1270)7r, ?T1(1400)7r, and ?w decay modes. For the ?;;,I( 1260) and T*I, 

decay modes, we have measured branching fractions for all three isospin combinations. 

This has allowed us to determine the effects of isospin phase shifts on the branching 

fractions, allowing an improved comparison of the data with the model of Bauer. 

Stech, and Wirbel. The branching fractions for the xul( 1260) modes are much 

larger than the predictions, while the branching fractions for the r*;t~ decay modes 

are a factor of three smaller than predicted. 

We have doubled the number of measured branching fractions for Cabibbo-allowed 

Ds decays. We have extended, from 38% to 62% for the Do, and 33% to 60% for the 

Ds, the fraction of the hadronic widths of the D mesons accounted for by two-bodlr 

decays. It was shown in Section I that the widths for PP and PV decay modes of 

the Do and Ds are proportional to the total hadronic widths of the Do and Ds. \?‘e 
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find this is also true for Ear (1260) and x*p decays. Thus, we confirm the hypothesis 

that an understanding of the lifetime ratio of the charmed mesons depends on an 

understanding of their two-body decays. 

We have obtained detailed information on the helicity distributions in x*p decays. 

In agreement with the BSW model, we find that the S-wave term is dominant for 

D+ + x*Op + decays. However, for Do + ??*‘p” decays, we find a significant D- 

wave component, in contradiction with the factorization predictions. However, in Do 

decays, there may be large effects from final state interactions and weak annihilation. 

Assuming factorization, we have placed constraints on the D --t r* and D --t p 

form factors, as shown in Equation (35). Th ese constraints may be used to test the 

factorization hypothesis, as the same form factors are measured in semileptonic D 

decays. 

A recent analysis by the E691 collaboration has measured the D + r* form 

factors in the decay D+ + z*‘e+~. The results are not in agreement with theoretical 

models. If the factorization hypothesis is valid, these form factors should also appl)T 

to Do + I(*-p+ decays. The BSW predictions for E*p decays are three times larger 

than the branching fractions measured in the present analysis. If we substitute the 

form factors measured by E691 into the BSW model and assume that the D + 1;;’ and 

D + p form factors are equal, we obtain good agreement with our measured values. 

If we substitute E691 form factors scaled to the Mark III Ds ---t r*‘e+~ branching 

fraction, the agreement is not as good. Future measurements of D + r*&, and 

D + p[vl will enable a more precise test of factorization [32]. 
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TA’BLE I. Relative branching fractions of various two-body decay modes to four-particle 

final states. In addition to the four final states we study, there are three additional final 

states, which have too many neutral particles to detect efficiently. 

Do-+ D+ + 

Mode K-x+x+ r- ~~+x-# h'-r+nOxO ~#ro~o ?;i",txtx- K-~+~+~O ~~txOxO 

?a,(1260)+ l/2 l/2 

K-al (1260)+ l/2 l/2 

?a1(1260)’ 1 

7.0 h P+ 2/3 l/3 
,*- h P+ 213 l/3 

7.0 
h PO 213 l/3 

~1(1270)~r+ 0.34 0.48 0.05 

A-1(1270)-*+ 0.34 0.48 0.05 

~,(1270)“ro 0.34 0.48 0.05 

RI (14oo)Os+ 419 419 l/9 

h-,(1400)-*+ 4/9 419 l/9 

~~(1400)“xo 419 4/9 l/9 

Number of 
events 1281 140 209 142 

Backgrounds Low High Low Medium 
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TABLE II. Lorentz invariant amplitudes. Given a vertex A + B + C, A, B, and C 

have d-momenta PA, pi, and pc reSpeCtiVely; qA = pB -PC is the difference between 

the outgoing momenta. Pseudo-scalar, scalar, vector, axial vector and tensor states 

are denoted by P, S, V, A, and T respectively. 

Mode Amplitude 

D ---) PPl, P -+ VP2, V -+ P3P4 

D + API, A -+ VP2 V -+ P3P4 

D -+ APl, A + SP2, S + P3P4 

D -+ V&-2, VJ. -+ P1P2, V2 -+ P3P4 

(VI and V2 in relative S-wave.) 

D + VlV2, VI + PlP2, V-2 -+ P3P4 

(VI and V2 in relative P-wave.) 

D -+ VI&, K + P1P2, V2 -+ P3P4 

(Longitudinal D-wave.) 

D + VS, V -+ PlP2, S -+ P3P4 

D -+ VIPl, Vl + V2P2, Vi + P3P4 

D+TPl,T+VP2,V+P3P4 

Three-body nonresonant 

Four-body nonresonant 

((PP, * w) - (PP, . pT)(w . pr)/M$) 

x w7aP$&:P;, 

Substitute l/p2 for 1/M2. 
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TABLE III. Decay chains. The subscript “A” denotes an 

axial vector state, while the subscript “P” denotes a pseu- 

doscalar state. The relative fractions of the three decay modes 

of the ?Tr(1270) are constrained within errors to those of 

the Particle Data Group [8] multiplied by the appropriate 

Clebsch-Gordon coefficients. The relative phases are allowed 

to vary. 

Do + K-q(1260)+ q(1260)+ ---) p”“+ p” -+ x-r + 

Do -t K*-p+ K *- + Kun- P+ -+ x+7r" 

-O 0 D"+K p -*o K +I(-7r+ p" + n+x- 

Do + Kr(1270)-a+ 

1&(1270)- + p°K- p” + 7r+7r- 

z;( 143O)%r- 
-*o K, +K-r+ 

F07r+ 
-0 
K + K-n+ 

D"+(K-or-)px+ 0 (r* ?~-)~--tR*'r- r*'--$ K-r+ 

Do + (POK-)~T+ (~'I--)A + p°K- p" + r+x- 

D+ + ?ar(1260)+ q(1260)+ ’ + -+PT p" + x-x + 

D+ + lj*‘p+ fi*O -+K-n+ P+ -+ ?r+7r” 
D+ + ?71(1400)07r+ F1(1400)’ + K*-w+ K*- + ?n- 

D+ + 171 ( 14OO)ox+ 

Xr(14OO)O + I(*Owo 
-0 K +K-x+ 

I(*-7r+ K *- + I{-?r" 

D+-+(p+K-)AT+ (p+K-)* +p+K- p+ +w+r" 
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TABLE IV. Results for Do + K-x+?r+?r-. At the bottom, we show the 

results for rope if partial wave amplitudes are used instead of helicity ampli- 

tudes. 

Branching 

Amplitude Relative Fraction f; Phase oi Fraction (% ) 

Four-body nonresonant 0.242 f 0.025 f 0.06 -1.07 f 0.08 2.2 f 0.3 f 0.6 

R*‘pO transverse 0.142 f 0.016 f 0.05 1.75 f 0.09 1.9 f 0.3 f 0.7 

K-q( 1260)+ 0.492 f 0.024 f 0.08 0 9.0 f 0.9 f 1.7 

Kr(1270)-x+ 0.066 f 0.019 f 0.03 0.71 f 0.25 1.8 f 0.5 f 0.8 

IT*O*+7r- 0.140 f 0.018 f 0.04 3.07 f 0.09 1.9 f 0.3 f 0.6 

K-p%+ 0.084 f 0.022 f 0.04 -0.30 f 0.13 0.8 f 0.2 f 0.4 

li;*OpO S-wave 0.327 f 0.046 f 0.05 1.69 f 0.10 4.5 f 0.7 f 0.8 

z*‘p” D-wave 

longitudinal 0.161 f 0.027 f 0.05 1.96 f 0.12 2.2 f 0.4 f 0.7 
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TABLE V. Fractions of the K-w+7r+?r- final state as observed by different experi- 

ments. 

Channel 

TO+x 
PO + x 
iTop 
K-p%?+ 

K-a1(1260)+ 

iT"7r+7r- 

K-if+T+T- 

Mark III 

0.207 f 0.020 f 0.03 

0.855 f 0.032 f 0.03 

0.142 f 0.016 f 0.05 

0.084 f 0.022 f 0.04 

0.492 3~ 0.024 f 0.08 

0.140 f 0.018 f 0.04 

0.242 f 0.025 f 0.06 

a Reference 26. 

b Reference 27. 

’ Reference 28. 

a Reference 29. 

e In the ARGUS analysis, angular distributions of p” decays outside the I(*’ 

bands were examined. The K-pox+ component was found to be consistent 

with being entirely K-al (1260)+. 

SLAC- 
LBL" 

0 1+0.11 
. -0.10 

0 85+0." 
. -0.22 

0 (-J+o.2 
. -0.0 

0.05f0.'l 0 05 

ACCMOR" 

0.5 f 0.2 

0.2 f 0.2 

< 0.18 

ARGUS 

0.39 f 0.03 

0.86 f 0.10 

0.35 f 0.06 

0.51 f 0.08 

0.51 f 0.08' 

0.04 f 0.04 

0.11 f 0.06 

E691d 

0.26 f 0.04 f 0.03 

1.06 f 0.06 f 0.09 
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TABLE VI. Results for D+ + ?n+n+?r-. 

Amplitude Fraction (%) Phase Branching Fraction (%) 

Four-body nonresonant 17.0 f 5.6 f 10.0 1.09 f 0.28 1.1 f 0.4 f 0.7 

?a1 (1260)+ 53.9 f 5.7 f 7.0 0 7.1 f 1.8 f 1.1 

1(1( 14oo)0x+ 27.7 f 4.7 f 8.0 -0.07 f 0.32 4.1 f 1.2 f 1.2 
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TABLE VII. Results for D+ + K-r+n+x'. 

Amplitude Fraction (%) Phase Branching Fraction (%) 

Four-body nonresonant 18.4 f 7.0 f 5.0 4.0 f 0.22 1.1 f 0.5 f 0.4 

Top+ S-wave 55.5 f 7.7 f 11.0 0 4.8 f 1.2 f 1.4 

K1( 14oo)07r+ 40.3 f 9.7 f 8.0 3.4 f 0.15 5.3 f 1.7 f 1.5 

K-p+T+ 15.9 f 6.5 f 6.0 3.8 f 0.25 0.9 f 0.4 f 0.4 
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TABLE VIII. Results for Do + ??r+r-?r’. 

Amplitude Fraction (%) Phase Branching Fraction (%) 

Four-body nonresonant 21.0 f 14.7 f 15.0 -0.45 f 0.55 2.2 f 1.6 f 1.7 

Ii’*-p+ longitudinal 19.3 f 7.4 0 

I~*-p+ transverse 21.1 f 12.0 2.0 f 0.48 

K*-p+ total 40.4 f 12.5 f 8.4 6.2 f 2.3 f 2.0 

liow 19.5 f 4.3 f 1.4 2.3 f 0.7 f 0.6 

-0 K 0 transverse p 4.2 f 3.7 1.3 f 1.2 

K1(1270)-?r+ 4.8 f 1.5 1.0 f 0.4 

7?07r+7r- 12.7 f 7.0 3.9 f 2.3 
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TABLE IX. The 90% C.L. upper Limits from the four final states. 

Amplitude Branching Fraction (% ) 

Do + Top0 Longitudinal (S-wave) < 0.3 

D+ +z"p+ P-wave < 0.5 

Do + K*-p+ P-wave < 1.5” 

Do --t?7*'p" P-wave < 0.3 

D+ + x*‘p+ Longitudinal D-wave < 0.7 

D+ + &(1270)‘1r+ < 1.1 

Do --f K1(1400)-n+ < 1.2 

Do ---) 7T1(1400)0n0 < 3.7 

Do -d&( 1260)’ < 1.9 

Do + K-a2(1320)+ < 0.6 

D+ -d&(1320)+ < 0.8 

Do + K*(1415)-7r+ < 1.2 

D+ ---) T(1415)‘7r+ < 0.7 

D++K*-?r+n+ < 1.3 

D+ + ~*“x+xo < 0.8 

D+ -+?p'r+ < 0.4 

a Obtained using other ??*p P-wave limits and isospin relations. 



TABLE X. ‘iia1(1260) B ranching Fractions (%), followed by the results 

of the isospin decomposition. 

Mode Measurement Fit Value BSW, with 6 = 0 f 37’ 

?&(1260) + 7.1 f 1.8 f 1.1 7.8 f 1.5 f 0.9 3.8 

K-q(1260)+ 9.0 f 0.9 f 1.7 8.7 f 0.8 f 1.6 1.5 f 0.1 

?~~(1260)~ < 1.9 90% CL. 0.7 f 0.2 f 0.5 0 f 0.1 

IA3,2/A3,21 = 2.8 f 0.4 f 0.3, 6 = 0 f 21 f 30” 
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TABLE XI. r*p Branching Fractions (%), followed by 

the results of the isospin decomposition. 

Mode 
-0 
K P+ 

K*-p+ 
z*OpO 

Measurement 1 BSW 1 BSW, with 6 = 61 f 37’ 1 

4.8 f 1.2 f 1.4 17 17 

6.2 f 2.3 f 2.0 21 18f3 

1.9 f 0.3 f 0.7 2 5f3 

IA1,2/A3,2j = 3.4 f 0.7 f 0.7, 6 = 61 f 22 f 30’ 
I 
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TABLE XII. F1(1270)* Branch- 

ing Fractions (%), followed by 

the results of the isospin decom- 

position. 

I Mode I Measurement I 

rl (127O)‘x+ < 1.1 

K1(1270)-7r+ 1.8 f 0.5 f 0.8 

fT1(1270)‘a0 < 2.0 

IA1/2/A3/2i ’ 2*o 

46 



I 

TABLE XIII. K1(1400)7r Branch- 

ing Fractions (%), followed by 

the results of the isospin decom- 

position. 

I Mode I Measurement I 

x1(1400)07r+ 4.1 f 1.2 f 1.2 

KI(1400)-7r+ < 1.2 

Kl( 1400)07r0 < 3.7 
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TABLE XIV. Isospin decompositions. 

Mode IA1/2/A3/21 6 I’( Do -+ Mode)/I’(D+ + Mode) 

Kw a 3.67 f 0.27 77” f 11° 4.8 f 1.0 

17pa 3.12 f 0.4 0’ f 26’ 4.2 f 1.6 
-* 
K ra 3.22 f 0.97 84’ f 13’ 3.3 f 1.8 

&(1260) 2.8 f 0.4 f 0.3 0 f 21 f 30” 3.3 f 1.2 

1T*p 3.4 f 0.7 f 0.7 61 f 22 f 30’ 4.2 f 2.2 

r1 (1270)~ > 2.0 

R1(140O)r < 4.3 

a Reference 6. 
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TABLE XV. 
-0 

Results from E691 on D+ -+ K e+v. 

1 Mark III” 1 

IO.46 f 0.05 f 0.05 1 0.8 1 0.9 1 0.8 1 1.0 1 

1 0.0 f 0.2 f 0.1 1 0.8 1 1.2 1 0.6 1 1.0 1 

r-L/ITT 0.47t;:;;f;:y; 1.8’;:: f 0.3 1.1 0.9 1.2 1.2 

a Reference 9. 

b Reference 15. 

’ Reference 33. 

d Reference 34. 

e Reference 35. 

f Reference 36. 
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TABLE XVI. Form fac- 

tors in the BSW model. 

D-+rD-+p 

Al (0) 0.88 0.78 

A2Gv 1.15 0.92 

V(O) 1.23 1.23 
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TABLE XVII. Branching Fractions (%) in 

BSW model, using experimental values of form 

factors. The column labeled “BSW 1” lists the 

predictions using E691 form factors. The col- 

umn labeled “BSW 2” lists the predictions us- 

ing E691 form factors scaled to agree with the 

Mark III D+ + x*‘e+v branching fraction. 

Both columns assume b = 61 f 37’. 

Mode 1 M easurement 1 BSWl 1 BSW2 1 

Top+ 14.8 f 1.2 f 1.4 14.7 f 1.6 1 8.0 f 3.1 1 

Ii’*--p+ 6.2 f2.3f2.0 6.1 312.3 10.4 f4.3 

R*OpO 1.9 f 0.3 f 0.7 2.1 f 0.8 3.6 f 1.5 
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TABLE XVIII. Partial wave breakdown for x*p decays in BSW model. 

Amplitude 

S-wave P-wave D-wave 
-*o 
K p+ 6.3~1 + 6.4~ -1.3~~ - 1.3~ 0.9q + 0.9u2 

K*-p+ 6.3~~ -1.3q 0.9Ul 

R*OpO 4.5~2 -0.9t.22 0.6~2 

Width , 10” set-’ 

Total 

34.59(u1 + 1.04u2)2 

34.05uf 

18.45ai 
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FIGURE CAPTIONS 

Figure 1. Recoil mass plots for the four final states being studied. 

Figure 2. Invariant mass projections for the Do + K-n+w+r- final state. 

Figure 3. Schematic of the I(-u1(1260)+ amplitude. The enhancement at low 

K-w- mass is characteristic of the Ii-ar(1260)+ amplitude, and is due 

to the longitudinal polarization of the ur(1260). The small vertical ar- 

rows indicate the polarization of the ul(1260) and p. The relative or- 

bital angular momentum at each vertex is shown. To conserve angular 

momentum, the ur(1260) must be longitudinally polarized. Since the 

ar(1260) decays to pr in an S-wave [37], the spin of the p is parallel to 

the spin of the ar(1260). Th ere ore, f in the decay of the p, the ?r- tends 

to be produced in a forward or backward direction with respect to the 

direction of the K-, producing a distribution with an enhancement at 

low K-7rr- mass. 

Figure 4. The presence of the transverse x*‘p” amplitude leads to angular corre- 

lations between R*’ and p” decays. (a) The (K-w+)1 invariant mass. 

(b) A scatter plot of (I<- + x )r mass vs. 4, where C$ is the angle between 

the 7?*’ and p” decay planes as seen from the Do rest frame. In the IT*’ 

band, an enhancement near 4 = 0 and a larger enhancement near q5 = K 

are visible. The transverse x*‘p” amplitude, which is proportional to 

cos 4, accounts for this distribution. Since the sign of this amplitude 

reverses from C$ = 0 to q5 = r, there is more constructive interference 

near f$ = 7r. 
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Figure 5. Scatter plots for the K x ?r x- final state. (a) i??r- vs. (7r+7rD)2 mass --O++ 

for data. (b) ?n- vs. (T+T-)Q~ mass for data. (c) ?x- vs. (7r+7r-)2 

mass for Monte Carlo. (d) 17” I- vs. (r+r-)high mass for Monte Carlo. 

Figure 6. Scatter plots for the ?x+T+T- final state. (a) ??r- vs. ?(a+x-)loW 

mass for data. (b) ?x- vs. ??(n+a-)l+ mass for data. (c) ?T- vs. 

li”C ?r+?r-)loW mass for Monte Carlo. (d) ?T- vs. P(r+*-)hiph mass 

for Monte Carlo. 

Figure 7. Invariant mass projections for the D+ + ~n+a+x-- final state. 

Figure 8. Invariant mass projections for the D+ + K-?r+r+?r' final state. 

Figure 9. Scatter plot of K-xc mass vs. cos &TV, where 19vv is the angle between 

(Pi- - 5”:) and (iGo - p’,;). 

Figure 10. Invariant mass projections for the Do + ?n+~-?r’ final state. 
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