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INTRODUCTION 

CP-asymmetries in B” deca.ys into a final CP eigenstat,e are free of hadronic 

uncertainties if amplitudes which depend on only a single CKM phase dominate the 

decay process. A clean measurement of the three angles of the unitarity triangle 

(see Fig. 1) is thus made possible!” Within the standard model, most processes get 

contributions from both tree-level and penguin amplitudes!’ In b 4 0% processes 

(e.g. B + +1(s) both amplitudes carry the same CKM pha.sc; extracting sin 2/3 

from this asymmetry is free of hadronic uncertainties. In b + tliid processes (r.g. 

B -+ KT) the two amplitudes carry different CKM phases. It is expected tha,t the 

contribution from the penguin amplitude is small (a few percent), but it could be 

larger than the naive expectation if the matrix element for the penguin operator 

is enhanced; extracting sin% from this asymmetry may suffer from ha.dronic un- 

certainties if this is indeed the case. For b --f U’LLS processes (e.g. B -+ lir) the 

situation is even worse: not only do the the tree and penguin amplitudes carry 

different CKh4 phases, but also they are expected to be comparable in ma.gnitude 

(the tree process is strongly CKRI-suppressed). It has oft,en been sta.ted that clean 

information on CKM parameters cannot be extracted from this asymmetry. 

Gronau a.nd London’31 have shown how to separate the CKM phase of the t,ree- 

level B + 7r7~ process from any penguin conta,mination. This is done by means 

of isospin analysis of various (charged and neutral) B decays into TX. This will 

allow a det.ermination of the pha.se Q completely free of hadronic uncertainties, 

independent of the size of the penguin amplitude!’ Nir and Quinn”’ have la.ter 

shown tha.t a more complica.ted isospin a.na.lysis could be used to separa.te the tree 

contribution to the asymmetry in modes such as B -V li’r, t.hus allowing a clean 

measurement of o from these modes as well. 

In this work we attempt to complete the discussion for all relevant types of 

decay modes. For completeness, we briefly review previous results, namely t,hc 

isospin analysis of the ?r7r and I<x modes, and combine them with our own analysis 

of additional modes. We explicitly discuss pp, pr and Kmr. These analyses include 

2 



various new ingredients: combinations of angu1a.r and isospin analyses; pentagon 

relations among decay amplitudes; and the study of three body decay modes. 

In addition we show how to measure the magnitude of the penguin contribution 

(for example, in the TTW mode) and we suggest ways of testing the validity of our 

approach through sum rules which will be subject t.o experimental check long before 

CP asymmetries are actually measured. 

We begin by reviewing the analysis of Gronau and Londont3’ for XT. We use a. 

nota.tion which is convenient for the general case. 

The B+ and B" decays into final KT states proceed through the quark subpro- 

cess 

The Hamiltonian is of the form 

giving 

‘H IB+) = ‘H I$, ++) =&b/2 l&l) + (AI/~ - &43,2) 11, 1) , 

'H~~0)=~~~,-~)=~A~,2/~,O)+~(A,,,+A,/2)~l,O)+~A,,~~~O,0). 
(3 

There are three relevant final wr states: 

17r+7r"> = 12, l), 

ir+x-> =&?,O) + &lO,O), 

17r07r0) =fij2,0) - &O,O). 

(4) 
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We a.re interested in calculating the amplitudes A+‘, A+- and Aoo where 

AC - (xixjlqBi+j). w 

While t.he isospin states in Eq. (3) are four-quark states, the sta.tes in Eq. (4) a.re 

two-meson states. The transition between the two necessarily involves ha.droniza- 

tion and other rescattering effects, which introduce both a phase shift and a form 

fa.ctor. In the general case, there is one independent amplitude AJ,?~, for each pos- 

sible combination of {It,If}, transition isospin a.nd final sta.te isospin (including 

the spectator quark), respectively. The a.mplitudes AI,,~, differ from the transition 

amplit,udes AI, in tha.t they include the effects of rescattering and hadronization 

processes. 

Note, however, that in the jlrn case there is no If = 1 stat.e because it is 

forbidden by Rose symmetry for an angular momentum zero system of two pions. 

This fact simplifies the discussion considerably, because 12 = 3/2 transitions 1ea.d t.o 

If = 2 st,ates only, while 12 = l/2 transitions lead to If = 0 st.ates only. Therefore, 

we have two independent amplitudes only, which we define as 

A2 - + $43/2,2 , J Ao - - ;Al,z,o . If 

The va,rious deca,y amplitudes are thus given by 

A+’ =3 4 ‘ 2, 

=A, - Ao, 

(6) 

Aoo =%I2 + Ao. 

Simila.rly, I?’ and B- decay to final 7r7r states through the quark subprocess 
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The B and II- decay amplitudes are given by 

;I+0 =3A 2, 

$ 
iA+- =A2 - jo, 

;ioo =2& + A& 

(9) 

where ;i’j is the amplitude for the CP-c.onjugated process of A’j, e.g. A+’ corre- 

sponds to B- + r-8’. The Ai amplitudes carry weak phases opposite to those of 

A;, but unchanged strong pha.ses. Notice that for ea.ch ca.se, the set, of amplitudes 

forms a. tria.ngle in the complex plane, as seen from the relationships: 

J- 
‘A+- =A+0 _ A00 
2 , 

(10) 

Mea.suring the total rates for B* + ,*x0 gives \A+‘[ and [A+‘[. As for the 

neutral modes, the decay rate into final w+a- is @I 

I?(B$,,(t) + w+n-) = e -I[( lA+-j2 + ln+-12) - ( (A+-I2 - lA+-12) cos(Am.t) 

+2jA+-12a+- sin(Amt)], 

r(B$,,(t) t a+7r-) = e -rltl[(IA+-12 + l/i+-12) + (IA+-I2 - I;i+-l’)cos(Amt) 

-21A’-12a+- sin(Amt)], 

(11) 
and similarly for 7r07ro. Here B$,,,(B$,,,) is ime-evolved sta.te such that B$ys(i = t 

0) and B$,,(t = 0) a.re th e interaction eigenstates B” and I?‘, respectively. M:c 

are interested in determining IA+-/, IAS- and a +-. In any given experiment, the 

total ra.tes give two quantities, but a.dditional experimental information, e.g. timc- 

dependent measurements, is needed to fix all three. For example, in experiment.s 

conduct,ed at the Y(4S), t is the time difference between the t,agging decay of one 

neutral B and the decay into the CP eigenstate of the other, and it runs in the 

range -oo 5 t 2 00. The contribution of the sin(Amt) t,erm vanishes in the 
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total rate, but not that of the cos(Amt) t,erm. Thus, mea.suring the total rates 

for the charged and neutral B decays gives all six magnitudes, IA”1 and jAijl, a.nd 

consequently the shapes of the two triangles can be determined. In addition, the 

time-dependent decay rates into 7rr+r- give the CP asymmetry 

a+-= Im [em2isMg]. 

The phase f$hf is the CKM phase in the B - B mixing amplitude. In principle, 

one could also measure a time-dependent ra.te and extract an a.symmetry for the 

mono channel. However, to determine the CKM pha.se we need only the asymmetry 

for the charged pion channel. This is fortunate, since in t.he 7r”no channel time- 

dependent measurements will be very difficult. 

Let us replace the ba,rred amplitudes by rotated amplitudes 

The phase 4~ is the CKM phase in the tree diagram. The crucial point to notice 

next is that the penguin diagram is purely I = l/2, and consequently only t,rte 

diagrams contribute to AZ. Hence A:! = A:! and the tria,nglc formed by the A’s 

shares a. common side with that formed by the A’s (see Fig. 2): 

The figure thus formed allows us to measure the angle between A+- and A+-, up 

to an overall a.mbiguity which arises from the four possible orientations of the two 

tria.ngles relative to their common side. (Fig. 2 shows one possible orientation.) 

We ca.n rewrite Eq. (12) for the CP a.symmetry as: 

a+- = 1m 
[ 
,-2i(r,+&i-1% 1 . 

Were A0 domina,ted by the tree-level diagram, we would ha.ve (2+-/A+-) = 1, a.nd 

Eq. (15) would reduce to the usual sin 2(4~! + 4~) expression. However, if we can 
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construct the triangles we know both the magnitude and the pha.sc of (A+-/A+-); 

we need not make the assumption of a small penguin amplitude anymore. We 

are able to disentangle the value of (rjbf + 4~) without any uncertainty from the 

unknown penguin contribution to Ao. The four-fold ambiguity from the different 

possible orienta.tions of the triangles could, in general, be resolved if t.he asymmetry 

in the X’K’ mode were also measured, but t.his is unlikely. 

In addition, if we assume the standard model, we can actually extra.ct a mea.- 

sure of the penguin contribution to Ao. Let us distinguish the tree and penguin 

contribution explicitly. We define 

where the subscript P means contributions from penguin processes only. The A*’ 

a.nd Aoo amplitudes can be rewritten as 

Aoo =Too + PO, 

p” $00 + PO, 

where Too contains no penguin contribution (and therefore Too = Too). Note tha.t 

\Pol = Idol. We obtain the following relation: 

IPol = 
I,,@0 - ,@‘I 

&[l - c0S2(4T - $p)j (18) 

The phase q3p is the CKM phase in the penguin diagram. This result is rea.dil*\ 

seen from Fig. 2: The distance between the vertices opposit,e the common side of 

the two triangles is IA” - A”/. It is the ba.sis of an equilateral triangle (dott,ed 

in Fig. 2) with the angle opposite to this basis = 2(& - 4~). The length of it.s 

other two sides is j&l. The qua.ntities on the right hand side of Eq. (18) can be 

determined from the figure, except for (4~ - 4~). However, within the standa.rd 

model, both the penguin amplitude and the mixing amplitude dcpcnd on the same 
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CKM combination, VtzVtd. Consequently, 4~ - tip = 4~ + 4~1 = cr determined 

from the CP asymmetry. We conclude that the full isospin analysis allows a 

determination of [PO] a.nd is, therefore, useful not only for our understanding of 

CP violation but also to test estima.tes of ha.dronic physics. 

There are two kinds of discrete ambiguities in the det.ermination of l&l from 

Eq. (IS): 

(i) The four-fold ambiguity mentioned above reduces to a two-fold a.mbiguit\ 

in the magnitude of pa. The two solutions will probably differ significa.ntly. 

Since theoretical estimates indicate that IF’0 I should be small, this will suggest 

which solut.ion is preferred. 

(ii) There is an additional discrete ambiguity in the det.ermination of 4~ + 4~ 

even in the case of A+- = A+-. H owever, this a.mhignity can, in principle, 

be resolved using additional data.17’ 

B decays into final pp states proceed via the same quark subprocess, 6 + ii~d 

or b --f uGd, as into final 7rr states. Thus, the Hamiltonian is the same as in Eq. 

(2). With an appropriate angular a,nalysisr’ one ca.n separate the CP-even final 

states from the CP-odd ones. By Bose symmetry, the J = 0 pp states are isospin- 

even since L = S and (-l)(L+s+l) is the symmetry of the syst,em under particle 

interchange. Thus there is no I = 1 final st.ate for B + pp, and an isospin a.nalysis 

of the pp system can be done in exa.ctly the sa.me way as for 7r7r. There are four CP 

a.symmetries to be measured: p”po(CP = +), p”po(CP = -), p+p-(CP = +) and 

p+p-(CP = -). I n each of these channels, time-integrated B$,yq and BpOhys decay . - 
rates are needed to construct the triangles, but a time-dependent measurement is 

needed for the CP asymmetry. We would then obtain four measurements of the 

CKhl phase (Y that are completely free of hadronic uncerta.inties. 

In the pp case there is not as much difficulty in measuring the time-dependent 

rate for any cha,nnel as there is in the 7r07ro case. Possibly, all four measurements 

8 



ca.n be made, thus resolving the discrete ambiguities. However, a.ngular analysis 

is needed for the neutral channels, which will require somewhat higher statistics 

than for the 1r~- case. To decide which cha.nnel is more useful, we need to know the 

branching ratios. 

The underlying quark subprocess for t,his channel is b + 6~s. Here the t,ree 

diagrams a.re strongly CKM-suppressed, so contributions from tree and penguin 

processes are believed to be comparable, or possibly the penguins may even domi- 

nate. A simila,r analysis to that applied above for ?T?T can be ma.de. The transition 

isospin can be either Ii = 0 or 1. The final four quarks can ha.ve isospin If = l/2 or 

3/2. Thus there are three independent amplitudes: A0,1/2, Al,l/2 and A,,s/z. These 

A~J, amplitudes again incorporat,e the change in magnitude as well as the strong 

phase shift corrections to AZ, due to hadronization and rescat)tcring effects. \Ve 

find it convenient to define the following a.mplitudes which absorb Clebsch-Gorda,n 

coefficients: 

There are two possible cha.rge assignments for the x and the 1; for exh decay, so 

there are four amplitudes for B” and B+ decays: 

Aij - (xiI~jlqBi+i) . 

They can be written as 

A”+ = u - W, &A+’ = v + kv, 

A00 = u + Iv, &A-+ = v - Iv. 
(21) 

Since these four amplitudes are given in terms of only three isospin amplitudes 

there is once again a single relationship between them, and a similar rela.tion holds 
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for the j amplitudes defined from the barred amplitudes by Eq. (13): 

Aoo + &A-+ =A”+ + &A+‘, 
jpo + &A-+ =p+ + &p. (22) 

Thus, each set of four amplitudes forms a quadrilateral in the complex plane. 

hlea.suring the various decay rates gives all eight ma.gnitudes, (A’jl and IA”jl. 

In addition, the time-dependent decay rates into 7r”lils give the CP asymmetry 

The pha.se 4~ is the CKM phase in the li - 17 mixing a,mplit.ude!’ To extra.ct 

(Y = $A{ + 4~ + 4~, one needs to determine Ano/Aoo. While I~““/Aool is known 

from the decay rates, arg(Aoo/Aoo) can be determined only with further isospin 

analysis, as explained below. 

The crucial point to notice now is that the penguin amplitude contributes only 

to It = 0 transitions. Thus, only IV ha.s any penguin cont,ribut,ion while U and V 

have contributions from tree dia.grams only. This gives two further relationships 

between the two qua.drilaterals: 

A00 + Ao+ =A”0 + A”+, 

Aoo + &A-+ =joo + &A-+. 

As can be seen from Fig. 3, the relationships (22) and (24) are sufficient to de- 

termine Aoo/Aoo and hence to extract the CKM phase of the tree diagram from 

the measured CP asymmetry (23). A more detailed a.na.lysis of the TIC mode is 

given in ref. [5]. It also explains how to extract the magnitudes of penguin and 

tree a.mplitudes for this mode. 
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We note that the eight decay rates are functions of four independent complex 

amplitudes, U, V, W and I/?r. Since one overall phase is irrelevant, there are 

seven para.meters determining eight decay rates. Therefore, this model predicts a 

rela.tion between these eight decay rates. To derive this sum rule, we first writ.e 

the expressions for the differences between CP-conjugate decay ra.tes: 

IA”+12 - l;r”+j2 = 111’12 - lk12 + 2U . (Ii,’ - W), 

+{lA+ol2 - li+O12} = ljjr12 - llV12 - 2v - (IV - W), 

lAoo12 - lAoo12 = lW12 - p^iq2 - 2u * (Ii’ - W), 
(25) 

a{ lA-+12 - l&+12} = [WI2 _ llV12 + 2v * (IV - W), 

where t,he dot product denot,es the symmetrized scalar product of two complex 

vectors, 

2AsBsA*B+B*A. (26) 

The four CP-conjugate differences vanish if CP is conserved in the decays, but 

they are different from zero for the general case of CP violation. Note that the 

form of Eq. (25) d p e en d s only on the following very general a.ssumptions: 

1. Isospin invariance for all strong final state intera.ctions. 

2. The weak Hami1tonia.n can produce only It = 0 a.nd 11 = 1 transitions. 

3. The weak phase is the same for all 1t = 1 transitions. 

For the standard model, where there a.re contributions from penguin and tree 

dia.grams, the above assumptions hold since penguin diagrams contribute only to 

It = 0 transitions and all tree contributions have the same weak pha.se. Combining 

these equations gives the sum rule, 

IA”+12 _ l;i”+12 + lAoo12 - lAool” = ;(lA+0l2 - l,ij+O12 + lA-+12 _ l&+12). (27) 

All the CP-conjugate differences vanish if there is no penguin contribution, since 

then a.11 the amplitudes have the sa.me weak phase. In that case the sum rule 
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is trivially satisfied. If there are appreciable penguin contribut.ions, the sum rule 

becomes nontrivial. Since bra.nching ratios will be measured before time-dependent 

asymmetries, these data will show immediately whether there is a.n appreciable 

penguin contribution. If indeed there are appreciable penguins, the sum rule will 

test whether the very general assumptions above are valid!“’ 

All the above discussion can obviously be applied equally well to the channels 

pK and aK*. For the channel p/C*, one needs to use a.ngular a.nalysis in the 

neutral channels (to separa.te a definite CP contribution) in combination with this 

isospin analysis. Note that. the II’*’ is observed both as Ir’,q~’ and I\‘+r- a.nd 

only It’~r’ is a CP eigenstate which exhibit.s CP asymmet,ry. The I<*,F decay 

modes provide a.nother determination of IA”‘) and lAool a,nd a check on systematics 

in time dependent measurements. Unfortuna.tely, the branching ratios for any of 

these cha.nnels (including 7rK) are likely to be very small: a combined angular and 

isospin analysis will be so dominated by the errors in the several measurements that 

it would probably be rendered useless. Additional channels t,hat can be similarly 

analyzed are those with an additional isosinglet meson in t,hc final sta.te. Such a. 

pa.rt.icle does not affect the isospin structure of the amplitudes. As long as the 

CP of the neutral system can be fixed, using angula,r a.nal\:sis where necessa.ry, 

such channels provide furt,her possible measurements of t.he CKM parameter cr. 

Unfortunat,ely, none of these channels is expected to have a large branching ratio, 

so it is unlikely tha,t sufficient data will be available to a.ccnrately construct the 

qua.drilat,erals and extract cr in this way. 

The isospin structure of the channels TD, pD and rD* is exa.ctly the same 

as in the TIC ca.se. (CP asymmetries will be measured wit.h CP eigenmodes of 

Do and Do.) However, here no penguin contributions a.re expected. Differences 

between A’j and A’j processes cannot be explained within the sta.ndard model. 

The IA’jI = IA I 1 t “‘j re a ion can be checked channel by channel and does not require 

any isospin analysis. 
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We can continue to play yet more arcane versions of this game. For B + pr 
we have again It = l/2 or 3/2 and Eqs. (l)-(3) hold. However, here If = 0, 1, 2 

a.re all allowed. Thus we have four independent isospin amplitudes - A112,-,, A1,2,1, 
As/Z,, a.nd A3/2,2 - for B” and B + decays, and a corresponding set for B” and B- 

decays. There a.re five different possible charge assignme& for the pi system, so 

once again there is a single relation between the A’j amplitudes and a. corresponding 

one between the Aij amplitudes. Consequently, each set forms a penta,gon in the 

complex plane. Here the penguins have It = l/2 only and t bus do not contribute 

to the two A3,2,1, amplitudes. Following the steps of previous sections we now 

obta.in: 

IP+rO) =fil% 1) + fill7 1) 7 

IPOT+) =&IT 1) - fill, 1) f 

ip+n-> =&,O) + fillA + &o,o), 

IFn+) =&,O) - &4 + &40), 
(p07r0) =&12,0) - &O,O). 

Now let 

Then 

A+O =4&h/2,2 - ~J$3/2.1 •t J$l,2,17 

A’+ =;&p,~ + &s/2,1 - j/&,2,, , 

A+- =+ $ $A3/2,2 - $A,,, 1 t $A1,2,1 - d- ;A,,, o, -9 

A-+ =$ $ +A3,2 ,2 + $%/2,1 - 3 l/2,1 - IA If ~4,2.0~ 

Aoo =&,2,2 + &b,?,o- 

(28) 

As before, the amplitudes ;i’j correspond to the CP-conjugated processes and 
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jij = e2idv]iij F . or convenience we define the quantities 

S1 shA+‘; S2 E &A’+; 

S3 =A+-; S4 E A-+; Ss G 2/l”; 

and similarly for 3;. Then 

s1ts2 =s3 t s4 ts5, 

s1+ s2 =s3tL?4 + 35. 

w 

(32) 

These are the two pentagon relations. 

Now let us distinguish tree and penguin contributions explicitly. The penguin 

operator is purely I = l/2, so we define 

Pl =3 (Al/2,,)p; 

PO = - fi (4,?.o)p 7 

(33) 

where the subscript P mea,ns contributions from penguin proccsscs only. The five 

vectors can be rewritten as 

s1=T+Ot2P 17 

S2 = T O+ - 2I3, 

s3 = T+- + Pl $ PO, (31) 

S4 = T- $41 -wo, 

S5 = To+ + T+’ - T-+ - T+- - 2Po, 

where the quantities T’j conta.in no penguin contributions. Similar rela.tions hold 
e 

for Si. Not,e that T’J = T”j. Therefore, linear combinat,ions of Si which are 

Pj-independent equal the corresponding S’i combinations: 

Sl + s2 =s1 t 32, 

S1 - 2s3 - $j =,?I - ‘ki$ - 35. 
(3.5) 

hieasuring the ten decay rates gives all ten ISil and [-“il. Thus we can (in 

principle at lea.st) measure the lengths of all the sides of both pentagons. This 

14 



plus the conditions above determines the figure up to one parameter, which we can 

take to be the length of the penguin independent quantity Sr + S2. There a.re also 

three time-asymmetric quantities which ca.n be measured in the three channels for 

neutral B-decays. One of these is the usual CP-asymmetry: 

The other two give”’ 

a+- =Jm [ es2i(~hJ+~T~!?.!] - s sin((j+-), 

a-+ =Im [ es2iC~M+~T~?i] G f$ sin(b-+). 

(36) 

(37) 

Defining cr - -(#M t do), we can determine 

600 =k + $5 - 45, 

6+- =2a t 64 - 43, (3s) 
6-+ =20 t $3 - 44, . 

where 4; = arg(S;), Ji = arg(Si). F rom t,he difference 6+- - 6-+ we can extract 

arg[(A-+A-+)/(~+-A+-)], which th en allows us to fix the one remaining free 

para.meter and hence determine (S,/S5). Th is, in turn, will allow us to convert the 

measurement of uoo without a,pproxima.tion into a measurement of 4~ -I- f&r. 1111 

t,his requires solving a number of higher order algebraic equa.tions with constants 

that are the various measured quantities. Errors on these quantities make this 

analysis ina.ccura,te. Perhaps the most likely outcome will be that t.he construction 

of the two pentagons will give a measure of the possible magnitude of penguin 

contributions; if they are in fact small compared to the tree amplit,udes then t,he 

two pentagons will match within errors. In this case the naive analysis which 

assumes uoo = sin 2a will be the best we can do. The figure ca.n be used to provide 

an estima.te of the possible error in that assumption. 
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For three-body decay modes like B ---t J<rr7r there are many more amplitudes 

and more decay modes and the analysis is more complicat,cd blrt, possible. Such 

analyses may be useful because they include quasi-two body final sta.tes like I<*71- 

or Kp without the necessity of separating out nonresonant background. Here a 

combination of isospin and angular analyses can be useful. These final sta.tes can 

be cla.ssified in terms of their total isospin and the isospin of any two particle 

subsystem, which we choose to be the two pions. 

It is instructive to first consider the relationship between angu1a.r dependence 

and isospin in this system. In the ~7r rest frame the z-axis ca.n be chosen along 

the K-direction. States with isospin I,, = 1 have their amplitudes odd in cos 0 

with respect to this axis, while states with I xx = even have even angular momema. 

and hence their amplitudes are even in cos 19. Hence angular analysis can select 

cornrihutions tha.t are purely IXx = 1, purely I,,= even or cross terms between 

them. This selection between odd and even I,, also selects quant.ities of definite 

CP for the Ks~~+x- channel. Angular analysis is unnecessary for the J\rsx”rro 

stat,e which is a.lrea.dy a. CP eigenst.ate with I,,= even. 

There are six isospin amplitudes A(It, IRK, If). The t,hree amplitudes wit’h 

I,, = 1: A(O,l, i), A(l,l, 3) and A(l,l, $), f orm a system which is equivalent t,o 

the Kn system. The same method of analysis as for Ii’s can therefore be applied 

to all ICmr of I,, = 1 without separating out, the rho resonance. For the even I,, 

channels, the situation is even better. The three amplitudes: A(O,O, i), A(l, 0,;) 

and WA $), P ara,meterize six channels: Z?’ + IC’OT+T-, Ii”d’a”, Ii’+?r-w” and 

B+ + Ii’+n+a-, K+r”xo, Ii-“a+~o. Th e resulting relationships a.re: 
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A(It’“.rr+~o) = -A(K+f-x0) = X, 

A(It’+w+n-) = -&Y - Y + 2, 

A( K”~+~-) = + $‘- + f’ + 2, 

A(I~+T’TT’) = -$- + Y - 2, 

A(I~“~o~o) = +;,Y - Y - 2, 

(39) 

where 

X = &(lJ, 9, Y = iA(l,O, $), 2 = &A(O,O, i). (40) 

These amplitudes represent any projection chosen to select only even 7rrr angular 

moment,um and hence even I,,. Not,e that, penguins cornribute only to the quantit.y 

2, neither to X nor to Y. The relationships in Eq. (39) can be represented by 

triangles in the complex pla.ne. These triangles are are complct,ely determined (as 

in the 7~ ca.se) once all decay ra.tes and hence the ma.gnitudcs of the amplitudes 

a.re known. Similar relationships a.pply for t,he related amplitudes for Do a.nd B- 

decays. Thus the asymmetry mea.surement.s in the Ii’,gr~ system can aga.in (at lea.st 

in principle) be converted to clean mea.surements of CKAI mat,rix elements, even 

though a-priori the tree and penguin contributions are comparable in magnitude. 

The cross terms between even a.nd odd I,, can readily be sclccted by int,egra.t- 

ing a.ga.inst any odd function of cos 8, or by ta.king the forward-backward asym- 

metry. Let us denote such a quantity by F(Kmr) (F denotes the CP-conjugat’e 

process). The isospin analysis implies further conditions on these quantities, e.g. 

F(IPa+7r”) - F(I&r+2) = F(K+7r-?r”) - I’( K+7r-a”). (41) 

Both sides of Eq. (41) va.nish separa.tely if there are not bot.h t.rce and penguin 

contributions. 

The above rela,tionship can also be expressed in an unintegrated form. We 

consider pa.rticu1a.r momenta for the pions in the final sta.tes conta.ining two pions 
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with total charge fl. The state r+(p1)r”(p2) is distinguished from the state 

~‘(pl)r+(p2). The relation (41) can be rewritten in the form 

~Ao+o12-l~o+o12tIA+-o12-l~+-o~2 = lAoo+~2-l;i00+~2tIA+o-I"-I~+o-~2, (13) 

where Aijk denotes A[~(‘T~(P~)T~(P~)]. A s with the sum rules given above for the 

d’ syst,em, the relationships (41) and (43) can be derived under a. very general 

set of a.ssumptions and become trivial if the penguin contribut.ions vanish. Thus 

they provide tests that can probe the penguin contribution More sufficient data 

is available to make the CP viola.tion studies. 

As in the case of the Kn system, all the above discussion applies equally if t.11~ 

li is replaced by a D. However, in that ca.se there are no penguin contributions. 

Consequently, no asymmetries are expected in the charged B dec.ays, while those 

in the neutral B decays are directly rela.ted to the CKhf paramet.ers (once a state 

of definite CP is selected by a.ngu1a.r a.nalysis). Isospin analysis does not a.dd new 

informa.tion in this case. 

CONCLUSIONS 

We have shown that the method of isospin analysis introduced by Grona.u and 

London’31 to eliminate ha.dronic uncerta.int.ies in CP asymmctrics in B -+ WA is, 

in fa.ct, very genera,1 and can, in principle, be a.pplied to many channels. It,s use- 

fulness depends on obta.ining good mea.surements for a whole set of isospin-rela.ted 

quantities. This, in turn, will depend on branching rat.ios and on t,he availahlc 

experimentma techniques. We present here the generalizations of the method to 

other channels in the hope that there will be some cha.nnel in which a large enough 

branching ra,tio and a full set of observable decays will make it, useful. It is clear 

from the cases presented here that the applicability is, in principle, very broad, 

but the practical usefulness remains to be seen. It is a tool worth considering once 

sufficient data is accumulated. 
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FIGURE CAPTIONS 

Fig. 1: The unitarity tria.ngle. A relevant B” decay mode is indicakd for the 

angle involved in the corresponding CP asymmetry. 

Fig. 2: The two triangles of B -+ YW. Not,e that A+’ is a. common basis. The 

dotted triangle serves to find the magnitude of the penguin contribution. 

Fig. 3: The two quadrilaterals of B -+ KT. Note that U -t- V is a. common 

diagonal, while the non-common diagonals bisect each oihcr. 
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