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1 -Introduction 

A stringent requirement in the design of accelerating cavities for high inten- 
sity storage rings is the prevention of bunch-to-bunch beam instabilities due to 
the excitation of Higher Order Modes (HOM) by the beam itself. The conditions 
for the onset of these instabilities can be formulated in terms of the frequency 
behavior of the longitudinal and transverse beam coupling impedances 111. 
These conditions show that instabilities are highly probable when the 
impedances exhibit closely spaced sharp resonance peaks, like those due to the 
HOMs of the accelerating cavities. The primary cure for preventing coupled 
bunch instabilities consists in eliminating or smoothing these peaks, without 
lowering the longitudinal impedance of the fundamental (accelerating) mode. 
In existing machines this is accomplished by providing the accelerating cavities 
with HOM dampers, most of them consisting of absorbing loads connected to 
the cavity through waveguide sections and suitable irises or loops. The wave- 
guides are dimensioned in order to place their cutoff frequency between the fre- 
quency of the fundamental mode and the frequency of the first HOM. In this 
way-the dampers do not appreciably affect the Q-factor of the fundamental 
mode, whereas the Q-factors of HOMs are lowered to different extents, depend- 
ing on their coupling with the propagating waveguide mode(s). 

For these reasons-a very effective damping of HOM can be achieved only by 
a substantial coupling between the waveguides and the cavity, which, in turn, 
requires that they are connected together through large apertures. 
Unfortunately, the design of the overall structure, and in particular the calcula- 
tion of the coupling impedances at the beam harmonics, is a difficult task. In 
fact, the coupling impedances cannot be obtained straightforwardly from the 
most popular electromagnetic packages, like ARGUS and MAFIA, which are 
used for the analysis of three-dimensional resonators, since they are limited to 
Dirichlet and Neumann boundary conditions, and cannot take into account the 
presence of the dissipative loads at the end of the waveguides. Following a pro- 
cedure recently proposed by Kroll and Yu [2], it is possible to obtain, at least for 
the first HOMs, the reduction of the Q-factors due to the loading by the wave- 

-guide(s). This is accomplished by considering, for each mode, the shift of its res- 
onance when the waveguide are short-circuited at different distances from 
the cavity. In cases where the field pattern inside the resonator does not change 
much when the shorts are replaced by absorbing termination, the reduction of 
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the Q’s can give the reduction in the coupling impedances. Unfortunately, the 
higher the coupling (and thus the more effective the damping), the harder it is 
to justify the above assumption, thus preventing the effective use of Kroll’s 
method to determine the impedance in heavily damped cavities. 

HOM-free accelerating structure have been studied at the Department of 
Electronics of the University of Pavia (Italy) during the last two years, originally 
in the framework of a consulting agreement with the Sot. SINCROTRONE 
TRIESTE. In a recent paper [3], a strategy was suggested for realizing non con- 
ventional resonators (named “Single Trapped Mode Resonators”, or STMR), 
which are more similar to a symmetric waveguide junction terminated by ab- 
sorbing loads, than to a cavity with dampers. The central region of these struc- 
tures, where the beam interaction takes place, communicates with the wave- 
guides through very large apertures. With a careful dimensioning of the whole 
structure it is possible that the central region traps a single high-Q resonating 

. mode (used for the acceleration) whereas, above the frequency of this mode, no 
other high-Q resonance is possible due to the strong coupling to the loads. As a 
result, the longitudinal and transverse beam coupling impedances are very 
small and smooth at any frequency, except for the single peak of the longitudi- 
nal impedance at the resonating frequency of the trapped mode. 

A detailed analysis of a specific kind of STMRs has been carried out, and will 
be published in a forthcoming paper [4]. It refers to cylindrical (two-dimen- 
sional) resonators (see fig. l), consisting of a circular inner body connected 
through very large apertures to three rectangular waveguides, having the same 
height of the central body, radially oriented and symmetrically placed around 
the z-axis. The structure has a 3-fold symmetry and exhibits three symmetry 
planes passing through the z-axis, and one symmetry plane perpendicular to 
the same axis. The key point of that analysis is the development of an algo- 
rithm which yields the transverse and longitudinal beam coupling impedances 
as a function of the frequency, starting from the resonating frequencies and 
from the modal fields of the resonator obtained replacing the absorbing termi- 
nation with shorts. Although the algorithm was developed with particular ref- 
erence to the case of planar resonators, the theoretical approach is quite general, 

.-and can also be applied to different, more complicated geometries, such as 
those of the accelerating structure recently proposed for the asymmetric LBL- 
SLAC B-Factory [S]. 
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_ __ .- 
This report is primarily intended to describe the modifications to the exist- 

ing algorithm needed to take into account the three-dimensional geometry of 
the structure. It also presents the code POPBCI (Post Processor for Beam 
Coupling Impedances calculation), which implements the algorithm. POPBCI 
can be used to post-process the data from any three-dimensional electromag- 
netic code able to calculate the first resonating frequencies and modal fields of 
the lossless cavity obtained replacing the waveguide absorbing terminations 
with shorting plates. It gives the real part of the beam coupling impedances at 
any frequency up to a maximum value of 0.7 - 0.8 times the frequency of the 
highest resonance considered. Since the effect of the apertures between the ac- 
celerating structure and the beam pipe is neglected, the obtained results are 
meaningful only up to the cutoff frequency the beam pipe; however, at higher 
frequencies, the HOM suppression is enhanced by the additional energy leakage 
through the beam pipe. 

. Sec. 2 is devoted to the evaluation of the axial component of the electric 
field induced by the beam, which is used in Sec. 3 and 4 to derive the expres- 
sions of the longitudinal and transverse impedances. The code POPBCI is de- 
scribed in details in Sec. 5, and some numerical tests are reported in Sec. 6. 

Using POPBCI it is possible to optimize the performances of the accelerating 
structure: in fact, as it is shown by the examples reported in Sec. 6, it is possible 
to design the whole structure, in particular the shape of the region between the 
central body and the waveguides, in order to obtain the best trade-off between 
the HOM damping and the impairment of the longitudinal shunt impedance 
of the accelerating mode due to the insertion of the waveguides. 

2 - Evaluation of the field generated by the beam 

Let us consider the structure shown in fig. 2: it consists of a central body 
connected through large apertures to three waveguides, symmetrically placed 
around the z-axis. The ports S I, S,, S, are defined on the waveguides. The struc- 
ture has a 3-fold symmetry and exhibits three symmetry planes passing 
through the z-axis. The field will be studied in the volume V bounded by the 
conducting walls and by the ports SI, SZ, S3. The effect of the apertures between 
the accelerating structure and the beam tube is neglected, so that the obtained 
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res&s are meaningful only up to the cutoff frequency the beam tube. In the 
volume V the current density of a beam harmonic is represented by 

J = I, f(x,y) e-jhz u, (1) 

where: h is the wavenumber of the harmonic ( h = o/velocity of particles); 24, 
is the unit vector of the z-axis; I, is the current intensity flowing across the z = 0 

-- 
plane; f is a function of the transverse coordinates differing from zero only 
near the z-axis, in the small region crossed by particles. We have: 

- 

s fdxdy = 1 xfdxdy =x s yfdxdy = ij 
s S s 

-- where S is the section of the beam pipe and x, y are the coordinates of the beam 

- . axis, which are very small with respect to the transverse dimension of our 
structure. These coordinates will be considered zero in order to find the fields 
useful for the evaluation of the longitudinal impedance, whereas they will dif- 
fer from zero in the case of the calculation of the transverse impedance. 

According to the theory of cavity resonators (see [6] for instance) and assum- 
ing perfectly conducting walls, the electric field E and the magnetic field H in 
the bounded region .V can be represented by the eigenvector expansions 

E= 

H= 

77 
cs fi iki v fi.J dV + 

-c 
jkqJI%.JdV + ki$m/ttxE.HidS, 

V 
&i 

1 srn 

i k; - k2 @a) 

c 

ki JEi’JdV - z$mJnxE.XdSm 
V %I 

i; - k2 JEi (3b) 
i 
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_- where: vectors fi are the irrotational electric eigenvectors; vectors 9i are the ir- 
rotational magnetic eigenvectors; vectors Zi and Hi are the electric and the 
magnetic divergenceless eigenvectors respectively; ki is the resonating 
wavenumber of the i-th mode of the ideal cavity obtained when the ports are 
shorted, numbered in the non decreasing order; q = 377 L2 is the characteristic 
impedance of vacuum; n is the outward unit vector normal to a port. 
Eigenvectors are normalized according to 

-- 

f fi . fi* dV = 1; s 9i . gi* dV = 1; I Ei . Zi*dV = 1; J Hi . Hi” dV = 1 (3~) 
V V V V 

It is remembered that, apart from the normalization, Ei and Hi coincide with 
the electric and the magnetic field of the i-th resonating mode of the ideal cav- 

.- ity of volume V. _~ - _ 
Expressions (3) show that the field induced by the beam inside the volume 

V is determined by J (the current density exciting the structure) and by n x E at 
the ports, i.e. the electric field transverse to the waveguides. This field, in turn, 
depends on the beam current and on the boundary condition due to the absorb- 
ing terminations. 

The field in the waveguides can be considered as superimposition of TE and 
TM guided modes. For this reason the transverse electric and magnetic field at 
the m-th port E(y) and drn) T can be represented as follows: 

H(T) = 
P 

XI’ m) 
P P hP 

0 
tz x E(‘;t’ i# 

ml = 
P P hP 

0 
(4) 

where h, denotes the magnetic modal vector of the p-th mode, satisfying the 
ortho-normalization condition 

s hp. h,*dS, = fipq (Spq = Kroneker’s symbol) (5) 
st?l 

and I’;‘,#;’ represent the mode current and the mode voltage for the p-th 
mode at the m-th port (note that throughout this report superscripts refer to 
the ports, whereas subscripts are usually modal indices). In the summations (4) 
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TE&d TM modes are labelled using a single index, and are numbered accord- 
_- ing to the non-decreasing order of their cut-off frequency. Though the summa- 

. tions should consist of an infinite number of terms, the first P  terms only are 
retained, corresponding to the modes which propagate or are only a little below . 
cutoff at the maximum frequency of interest. In fact, these are the only modes 
that have a significant amplitude at the ports. 

From (4) and (5) we have: 

-- 4 ip = H(y). h, dS, s (64 
- sm 

v(m) = 
P s (n x E(T)) . h dS P m (6b) ,-- 

sm 

- 
.- The modal currents and voltages, due to the absorbing terminations, must 

-. be related by the following relations: 

4 
!P 

T 
= Yp (7) 

-. 
where Yp is the admittance of the termination for the p-th mode. Using (3b) to 
express H(F) in (6a), and taking into account exp. (1) and (4) we can write: 

where: 

y(mn) = 1 
PQ cs 

jk?7 i s, 
9i ’ hp dsrn s 9i ‘hq dS, + 

stl 

jk 
c 

77 i 

Hi . hp dSm s Hi. hq dS, 
sm sn 

k; - k2 

(8) 

@a) 
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ki Hi . hp dS, s 24, 'Eif e -jhz d v 

. . 
y-(m) = sm V 

P c 
i k; - k2 

Introducing the boundary condition (7) into (8) we obtain: 

-- Y* z’p” + 
I 1 

where 

Z(m) 
P = v’;‘lIo 

(9b) 

(10) 

,-e 
(11) 

- is the transimpedance between the beam current and the mode voltage of the .- _~ -. p-th mode at the m-th port. Writing eq. (10) for all the ports and the modes we 
obtain a system consisting of 3xP equations from which we determine the 3xP 
unknown transimpedances. Once the transimpedances are known, it is possi- 
ble--to obtain the electric field generated at the ports by a given beam current 
and thus, making use of exp. (3), to determine the electromagnetic field every- 
where. The z-component of the electric field is important for the calculation of 

-. the beam coupling impedances; it is given by: 

E, = -FC u,.fi Ju,.jifPhZdV - 
i V 

jkq s U, . Eif e 

I,CU,*Bi ’ 

-jhzd V + ki$ mk p Z(y) J Hi . hp dSm 
I 1 Sm 

k; - k2 (1.2) 
i 

The slow convergence of the summations involving the index i, both in (12) 
and in (9a,b), makes the use of the algorithm described so far almost impracti- 
cal, since it would be necessary to evaluate numerically a large number of irro- 
tational and divergenceless eigenvectors. In [4] a procedure is presented, which 
transforms the above-mentioned summations into much more rapidly con- 
verging ones, well suited to the implementation of an efficient numerical code. 
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- The-procedure basically consists in extracting, from the slowly-converging 

_-. series, their limits when k -+ 0. These limots are then re-expressed in a more 
convenient way. Following that procedure, not reported here for brevity, exp. 
(9a,b) can be approximated as follows: 

.- 

s Hi . hp dSm s Hi. hq dS, 
y(mn) 

P4 = jBp srnn &q + 
$ sm 

c 
sn 

k; (k; - k2) 
(Ha) 

q i 

Hi . hi AS, s uz ‘Eif e-jhzdV 

Ttrn) = V 
P k2 c sm 

i ki (kf - k2) 

_ . 
where: 

,-W’ 

(13b) 

) (if p-th mode is a TE mode) (142) 

(if p-th mode is a TM mode) (14b) 

In exp. (14) k, is the cut-off wavenumber of the p-th mode. It can be shown 

that exp. (13) are very accurate if the lengths of the lateral waveguides are 
2 z/k,,. 

Since the electric field is to be determined in the axial region only, exp. (12) 
can be transformed as follows: 

Ez = E4sz - jqk3 IOx ” . ‘i Juz . Ei f Ljhz dV - 
i kT (kT - k2) v 

Hi . hp dSm (15) 

- 

where Eqsz , which represents the quasi-static approximation of E,, is given by: 
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-. Eqs,=-~~u,-f,~~,.fifejhzdV-jk~I,C yJ~~.Bifhi~‘dV (16) 
i V i i V 

-. Using exp. (13-16) in place of (9),(10),(12) is far more convenient: in fact the 
series in (13) and (15) converge much faster than the original ones, because 

- their terms go to zero as fast as k-t or k-f. This permits one to truncate them, 
retaining only a limited number of terms. Moreover, the knowledge of the ir- 

.- rotational magnetic eigenvectors is not needed, whereas irrotational electric 
eigenvectors contribute to Eqs, only. On the other hand, the quasi-static field 
EqSz in the axial region is practically unaffected by the waveguides: therefore, as 

discussed in detail in [4], it can be evaluated approximately, without making 
use of (16), considering a simpler structure where the apertures connecting the 
central body to the waveguides are replaced with electric walls. As a matter of 

.- fact, in the following sections it will be shown that Eqsz contributes to the cou- _. _ . 
pling impedances only through a slowly-varying reactive term, and therefore it 
is not of prime concern in the evaluation of the effect of HOM on coupled 
bunch instability, since the condition for the beam instability [I] involves only 
the- real part of the coupling impedances. 

- 3 - Calculation of the longitudinal beam coupling impedance 

The longitudinal beam coupling impedance is defined as 

E.J”dV E, f eihZdV lQ1 (17) 

where E is the electric field generated by a centered beam. Substituting (15) into 
(17), and denoting by Ei the z-component of Ei, we have: 

IJEif khzdV I2 
.- Z,, = jXqs,, + jk% c 

V 

k; (k; - k2) + i 
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where 

(18b) 

Note that, according to exp. (16), XqS,, is a real quantity, so that its contribution to 

the impedance is purely reactive. ,-I)’ 
Let us consider the volume integrals in (18a). They appear in rapidly con- . 

verging series, where only the first resonating modes are involved. Due to this 
fact, it is possible to assume that the transverse variations of Ei are smooth in 

.- _ -. the beam region so that, in calculating the above integral, it is possible to use 
the approximation: 

where ~3~ = J/aU and the subscript “o”, from now on, denotes quantities evalu- 
ated at x = y = 0 . Using this approximation and remembering the properties of . - 
the function f it is easily shown that: 

L 

s 
Ei f e jhzdV = s (Ei ), e jhZdz + 

V 0 
L L 

37 s (dxEi.Jo e jhzdz + ij s (J’Ei), e jhZdz (19) 
0 0 

where L represents the length of the interaction region. For a centered beam 
X=iJ=O,andwehave 

L 

s “if e jhzdV = J (Ei)o e jhZdz 
V 0 

(20) 
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.%~p. (9), (lo), (13), (14), (18a) and (20) permit to evaluate the longitudinal 

_- shunt impedance (a part from the quasi-static term). In practice, the series in- 
volving cavity modes are truncated, retaining the first M terms. The rapid 
convergence of these series assures that the calculation is very accurate up to a -. 
frequency about 0.7 times the resonating frequency of the highest mode consid- 
ered. 

In the case of a centered beam it is possible to reduce exp. (10),(13) and (18a) 
to simpler ones. In fact, as discussed in more detail in [41, the modes of the 
short-circuited structure can be classified according to their symmetry with re- 
spect to the axis and to one of the symmetry planes passing through the wave- 
guides. We have “symmetric” modes (having a three-fold symmetry with re- 
spect to the z-axis) and “asym&etric” modes (all other modes); in each one of 
these two categories we can further distinguish modes exhibiting either a mag- 
netic wall condition (“even” modes) or an electric wall condition (“odd” 

-. modes) on the symmetry plane. Therefore anyone of the modes can be classi- 
fied into one of the following four categories: SE, SO, AE, AO. The only modes 
having (Ei)o # 0 are the SE modes; thus only terms corresponding to SE modes 
can be retained in the modal series in (13) and (18a). When this is done, the in- 
tegrals over the ports in (13) and (18a), for a given pair of cavity and waveguide 
modes (involving the i-th cavity mode and the p-th waveguide mode), yield 

- the same value, independently of the port where they are evaluated. Moreover 
the transimpedances Z(F) for the p-th mode do not depend on m, and we have: 

z(‘) 
P 

= z(2) = $3) E z 
P P P 

Therefore, taking into account exp (20), it is possible to transform exp. (18a) 
as follows: 

‘,, = jx% + jpq$i k2cL?i’ii) + 3 k2 $ i k ,kTi k2J ip Sip zp (21a) 
i i i i I 

where 
L 

Di = (Ei j. e -jhzdz 

s, = d; . hpdS1 
Sl 
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Eansimpedances Zp are determined solving the following set of equations, 

_-. which are derived from (10) and (13): 

Wp + jBp) Zp + 3 
Sip Siq 

i kf (k; - k2) 
z, = 

= p E SipDi 

I i ki (kz - k2) 
(p = 1,2,...,P) (22) 

Note that in exp. (21a) and (22), thanks to symmetry, the summation over the 
ports has been replaced by the multiplicative factor of 3. This reduces the order 
of the system (22) from 3xP to P, thus saving computer time and storage. 

-‘4 - Calculation of the transverse beam coupling impedance 

The transverse momentum acquired by a unit charge travelling across the 
interSction structure at the transverse coordinates x,y is equal to cvl (c=velocity 
of light), where the vector vu1 is the so-called deflecting voltage, given by [7]: 

- 

L 

vu1 = vJx,y) = - 1 s V E e jhzdz jk o 1 z 

( Vl denotes the gradient transverse to z). The average value of the deflecting 

voltage due to the interaction between the beam and the accelerating structure 
is: 

V, = I 
S 

fvl dxdy = -h Jf V1 E,ejhZdV 
V 

where E, is the z-component of the electric field generated by the beam itself. 
- In [41 it is shown that, provided the function f is symmetric with respect to 
the point &,ijj, the symmetry of the structure guarantees that a symmetric field 
is generated if the beam is centered (X = y = O), thus yielding a zero deflecting 
voltage. An off-axis beam produces a deflecting voltage which can be consid- 
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- erXas a linear combination of f and ij, provided the beam displacement is 

-. small. Moreover, thanks to the fact that AE and A0 modes (the only modes 
having a non-zero V1 E, in the axial region and then contributing to V, > occur 
in degenerate pair, V, is aligned with the displacement of the beam. Therefore, 

as for the more usual- axisimmetric cavities, also in this case it is possible to 
write: 

v, = -jZ,I,(?5u, + iply) (23) 
.- 

where uX and uY are the unit vectors in the directions of the X- and y-axis. The 
scalar coefficient Z1 represents the “transverse beam coupling impedance”, 

which can be calculated using the formula 

z1 = - &y I f &E, e jhZdV mhd 
0 V 

(24) 

where E, now represents the z-component of the field generated by a beam dis- 
placed in the x direction (y = 0) 

Introducing (15) into (24) we obtain an expression containing rapidly con- 
verging series whose terms depend on the integrals 

L 

s f &Ei e jhzdV = 
s (a E ) e jhzdz x 1 0 

V 0 

which differ from zero only for the AE modes. Therefore only these modes are 
involved in the calculation of (24). Since the electric field at the z-axis is zero 
for these modes, according to (19) we can write 

L 

s f Ei e -jhzdV = X s (&Ei ). e -jhzdz 
V 0 

Using the last two equations, upon substitution of (15) into (24), we have: 
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Z, = jXqsl + jk% c 

(axEi Jo jhz dz 2 

i 
k; ck; - k2) 

+ 
I 

L 

(&Ei j. jhz dz 3 

;xrn$ z(,‘s ti;.hp dS, (25) 
I ki (k; - k2) I I P  s 

m 

where: .- 

hsl = & J f &Eqs, e jhzdV 
0 V 

As in the case of the longitudinal impedance, the quantity XqSl is real, and then 
(m) the quasi-static term in (25) is a pure reactance. Quantities z P  - representing 

.- -.Ztm)/R - 
P 

ar e solutions of a system of equations derived from (lo), which can be 
manipulated, together with exp. (25), in order to take into account the 
symmetry. Following an argument similar to that used in the previous section, 
it is- seen that, due to the symmetry, we have: 

- 
(2) (3) zp =zp ; j- “‘i;.hpdS2 = s bF.hpdS3 

s2 s3 

(ports 2 and 3 are the two ports symmetrically placed with respect to the xz- 
plane, see fig. 2). Then exp. (25) becomes: 

M 

Zl = jXqsl + jk% c 
ldi12 

i I k; (k; - k2) + 

(2 6a) 

where 

di = f (&Ei j. e -jhzdz 
0 

15 
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- -- .-A(m) = ip s z@: . hpdSm (26~) 
irn 

The following set 
quantities z(r): 

of equations, derived from (10) and (13), determines the 2xP 

.- 

jk3 
(Yp + jBp) z$' + 17 

A!?) d . 
= k2 f 

i I k,..(k; - k’) 
(p = 1,2 I..., P; m = 1,2) (27) 

Up to now the effect of wall losses has been neglected. It can be taken into ac- 
.- count using the same approximation which is made in the study of forced -. 

-. oscillation of cavity resonators. This approximation consists in making the fol- 
lowing substitution everywhere in the exp. (21a), (22), (26a) and (27): 

1 1 
k; - k2 + kki 

k: ;t j=- k2 

where Qi is the quality factor of the i-th mode. 

5 - The code POPBCI 

The algorithm described in the previous sections has been implemented in 
the computer code POPBCI (Post Processor for Beam Coupling Impedances cal- 
culation). POPBCI is a post-processor which can use the results of any electro- 
magnetic solver, capable of finding the resonances of lossless cavities, to evalu- 
ate the longitudinal and transverse coupling impedances at specifyed frequen- 
cies. 

- At first the electromagnetic solver is used to analyze the short-circuited 
structure; the length of the waveguides is immaterial, provided they are not 
shorter than half their cut-off wavelength. In the case of rectangular wave- 
guides this criterion leads to waveguides whose lengths are greater than or 
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eqa to their widths. The quantities of interest are those appearing in (21), (22), 
(26), (27) and (28). More specifically the code used for the modal analysis must 
provide, for each mode: 

i) the resonating frequency; 
ii) the Q-factor; 
iii) the distribution along the beam axis of the z-component of the electric 

field (or of its x-derivative, for the transverse impedance calculation); 
iv) the distribution of the magnetic field at the short-circuited ports. 
All these quantities are readily obtainable from the electromagnetic solvers 

commonly used to analyze resonant cavities. Since almost all solvers may ex- 
ploit symmetries, taking into account the considerations in Sec. 3 and 4, it is 
convenient analyze only half of the structure, imposing a magnetic wall 
boundary condition on the xz symmetry plane. This assures that “even” mode 
only are calculated. If the solver does not permit the calculation of 
“symmetrical” or “asymmetrical” modes separately, it is necessary to select the 
two kinds of modes in order to pass to POPBCI the correct data for either longi- 
tudinal or transverse impedance calculation. This can be done very easily, 
looking at the behavior of E, near the axis. 

The present version of POPBCI assumes that the central body is connected to 
rectangular waveguides. Thus the code computes analytically the cut-off 
wavenumber k, and the mode vectors h, for the first P waveguide modes, in 
order to evaluate (14), (21~) and (26~). Anyway, the code can be easily modified 
in order to consider circular waveguides, or even arbitrarily shaped wave- 
guides, provided that k, and hp are calculated numerically. 

The code consists of two separate programs, suited to calculate either longi- 
tudinal or transverse shunt impedances. The general features of the two pro- 
grams are very similar, and they share many common routines. POPBCI is 
written in VAX-Fortran 77, and runs under VAX-VMS operating system. It in- 
cludes some graphic module, based on Tektronix PLOT-10 routines, used to 
show plots of the impedances versus frequency on Tektronix 41xx, 42xx graphic 
terminals or compatible equipments. To assure the portability of the code be- 
tween different operating systems and to permit the use of different graphic 

packages, the input-output and graphic routines are well separated from the 
code that performs the actual calculation. This allows them to be easily replaced 
with other functionally equivalent routines, if the code has to be converted in 
order to run inside different environments. The tasks performed by the most 
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sigzficant routines are shortly described in the following, with reference to the 

.- program for the longitudinal impedances only. More details can be found on 
the comments included in the source code. 

.- 

MAIN - The main program has the very simple task of dimensioning some ar- 
rays used by subsequent routines and to call in sequence the routines to read 
the input data (READ-INPUT-DATA), to define a table of waveguide 
modes (DEFINE-WG-MODES), to calculate the frequency independent co- 
efficients Sip from exp. (21~) (CALC-SMAT) and finally to calculate and plot 

- the longitudinal impedance (CALC-PLOT). All the dimensioning of the ar- 
. rays used throughout the code depend on few parameters, whose values are 

defined in the MAIN program. They are: 
.-e 

- the maximum number of resonances of the short circuited structure; 
- the maximum number of points used to sample E, ; 

.- _ _ . - the maximum number of points used to sample Hi; 
- the maximum number of waveguide modes; 
- the maximum number of frequency points in a plot; 

All these parameters are checked by the subsequent routines and suitable er- 
ror messages are issued if an “out of bound” condition is detected. 

READ-INPUT-DATA - It reads an input file containing all the data passed to 
POPBCI by the electromagnetic solver. The file is a formatted one, in order 
to ease the data exchange between possibly different environments. A free 
format can be used, and is possible to include comment lines in the input 
file. The number of resonances and the number of the points used to sample 
E, and Hi are read at first, together with their coordinates; then the routine 
reads resonating frequencies and Q-factors, and, for each mode, the value of 
E, and of Hi. The magnetic field at the ports is sampled on a possibly 
irregular rectangular grid. 

DEFINE-WG-MODES - This routine defines the indices and the cut-off fre- 
quencies of the first TE and TM modes of a rectangular waveguide. The 
mode generation is stopped when it reaches a cut-off frequency higher than 
the maximum resonating frequency of the calculated cavity mode, times a 
user definable coefficient. This coefficient is 1, at present. The modes are 
numbered according to the non decreasing order of their cut-off frequencies. 
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Ei the case of the longitudinal impedance, the only modes that are consid- 
ered are those having an “even” symmetry (the same symmetry exhibited by 
Hi >. Modal indices, cut-off frequencies and a TE/TM identifier are stored in 
a table. This routine may be replaced by other functionally equivalent rou- 
tines in order to consider waveguides of different cross-section. 

CALC-SMAT - It calculates numerically the surface integrals (21~9, using a 
simple trapezoidal rule. To obtain good accuracy, sufficiently closely spaced 
samples of the vectors Hi must be provided. The values of the waveguide 

- modal vectors hp are calculated analytically in the routine MMFR WG. 

MMFR WG - This routine calculates the magnetic modal fields in a rectangular 
waveguide. The calculation is performed for the p-th mode, at a given point. 
It may be replaced by other functionally equivalent routines in order to 
consider waveguides of different cross-section. 

CALC-PLOT - This is an interactive routine used to define the frequency range 
where the impedances are to be calculated. It permits also to set an accuracy 
flag used by the routine CALC-ROUTINE. This flag affects the accuracy in 
the evaluation of the impedance near the resonance peak(s). The higher the 
value of the accuracy flag, the closer is the spacing in frequency. 

CALC-ROUTINE - The main task of this routine is to change adaptively the 
frequency step between successive impedance evaluation, in order to 
achieve a good accuracy near sharp resonance peaks and to save computing 
time away from resonance, where the impedance variations are smooth. As 
a result, the frequency values are not regularly distributed. The routine calls 
the function ZL, which returns the value of the impedance. Frequency and 
impedance values are stored for the subsequent plotting. 

ZL - This function is used as a driver to the routines which perform the 
impedance calculation at a specific frequency: it calls CALC-DMAT to eval- 
uate integrals (21b), ZSOLVER to solve the system (22), CALCZLM to calcu- 
late exp. (21a) (a part from the quasi-static term) and eventually returns the 
longitudinal impedance. The calculation of the quasi-static term (18b) can be 
added to this routine, if needed. 
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CALC-DMAT - It calculates numerically the integrals (21b), using a simple 
trapezoidal rule. To obtain a good accuracy, a sufficiently closely spaced sam- 
ples of the vectors E, must be provided. _I 

.- 

ZSOLVER - It solves the complex linear system (22) in order to find the tran- 
simpedances Z, . The values of Yp and BP are calculated in the routine 
WGYIN and WGYQS respectively. The solution of the system is performed 
using a standard routine of the NAG Mathematical Library. It is also possible 

- to consider the case of the short-circuited structure (loads replaced by shorts), 
by setting all the transimpedances to zero. 

CALCZLM - This routine evaluates exp. (21a), apart from the quasi-static term 
(18b). 

WGYIN - It calculates the quantity Yp , i.e. the input admittance of the p-th 
mode, at a given frequency (below or above the cut-off of the mode). At pre- 
sent, the routine can model an infinite hollow waveguide, or a termination 
consisting of possibly lossy dielectric uniformly filling the waveguide, start- 
ing from a section at a given distance from the port. The effect of more com- 
plicated termination can be considered, or even measured data can be in- - 
eluded, by performing suitable changes to the routine. 

WGYQS - This routine calculates the quantity BP , according to (14), at a given 
frequency. 

PLOTTING-ROUTINE - This output routine permits the interactive plotting 
of the impedances calculated by CALC-RO UTINE. All the calls to the 
graphic package used in this code are in this routine. 

6 - Numerical tests 

The code POPBCI has been checked by running many test examples 
concerning different accelerating structures. Two codes were used in the modal 
analysis of the shortrcircuited structure: a general purpose 3-D electromagnetic 
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solver (ARGUS) and a specialized 2-D package (PAGODA) developed at the 
Department of Electronics of Pavia [8]. In all numerical calculations the wall 
losses were taken into account, considering the conductivity of copper. 

The first example concerns the Y-shaped resonator show in fig. 3: It consists 
of a pill-box connected to three rectangular waveguides through axial slots. The 
structure is two-dimensional, since its cross-section does not vary along the z- 
axis. For this reason it was analyzed by means of the 2-D code PAGODA. 
Different structures with increasing values of the slot width W  have been ana- 
lyzed, in order to consider increasing values of the coupling to the waveguides. 
The length of the structure was the same (L = 50 mm) for all the computations. 
Resonances up to 3 GHz were computed; up to this frequency only resonances 
with no axial variation may occur. Perfectly matched terminations were con- 
sidered. Figures 4-8 show the plots of the longitudinal impedance versus fre- 
quency for W=40 mm, W=60 mm, W=100 mm, W=150 mm and W=ZOO mm 
respectively. Actually, this last case refers to the case where the waveguides are 
connected directly to the pill-box, without any slot. In each figure the upper 
plot refers to the structure with loads replaced by shorts, the bottom plot to the 
structure connected to perfectly matched terminations. In all plots, impedances 
are reported in a logarithmic scale, normalized to 0.675 Mohm, i.e. to the longi- 
tudinal impedance of the fundamental mode of the pill-box. From figures 4-8 it 
can be seen that a very small HOM damping is obtained using the smallest slot, 
whereas the 60 mm slot yields an attenuation of about 15 db, and the 100 mm 
slot gives an attenuation of about30db. A little additional damping for the 
monopole modes is obtaining by further enlarging or even removing the slot 
completely (fig. 7,8). The same figures show the impairment of the longitudi- 
nal impedances of the fundamental modes due to the increased coupling. Fig. 9 
summarize the results, giving the monopole HOM attenuation (in db) and the 
percentage lowering of the fundamental mode shunt impedance (referred to 
the plain pill-pox) as a function of the slot width, normalized to the waveguide 
width. 

Fig. 10 and 11 show the transverse impedance of the structure of fig. 3, in the 
case of a slot width of 100 mm and 150 mm respectively. The reference 

-impedance is 8 Kohm/mm, i.e. the transverse shunt impedance of the first 
dipole mode in the pill-box. Dipole HOM damping ranging between 24 and 
30 db is obtained. 
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-The effect of an imperfect match of the waveguides is reported in fig. 12, 

which refers to the structure with a 250 mm slot. The waveguides are filled 
with a lossy dielectric (er = 9, tan 6 = 0.01 @ 3 GHz), starting from a section 
placed at a distance of 200 mm from the ports. Fig. 12a refers to the longitudinal 
impedance, whereas fig. 12b reports the transverse impedance. It is noted that 
the increase of the impedance values is fairly small. 

Fig. 14 refers to the Y-shaped resonator of fig. 13a. It has the same cross-sec- 
tion of the structure used to obtain the plots of fig 8, but the length of the struc- 
ture was increased to 200 mm. This is the shape originally considered in [3,41. 
This structure was first analyzed using the 2-D code PAGODA, considering res- 
onances up to 3 GHz. Fig. 14a reports the spectrum of the longitudinal 
impedance of the short-circuited structure, normalized to the value of the lon- 
gitudinal impedance of the fundamental mode in the pill-box. Note the in- 
crease in the mode density, with respect to the corresponding plot of fig 7a, due 

. to the increase of length (in this case many resonances with axial variations oc- 
cur up to 3 GHz). The longitudinal impedance for the matched structure is 
plotted in Fig. 14b. The residual peaks are due to modes having one or more ax- 
ial variations, but having a transverse magnetic field distribution equal to the 
one of the fundamental mode. These modes, as discussed in 141, remain trapped 
because they cannot couple to the loads due to the cylindrical shape of the 
structure. To damp these modes too it is necessary to perturb the cylindrical 
shape. Two possible solutions are shown in fig. 13b, where the pill-box is con- 
nected to waveguides which are slightly offset in the axial direction, and in fig 
13c, where the waveguides have been bisected by a metal septum. Actually, in 
this last case the pill-box is connected to six waveguides, and the algorithm re- 
quires minor modifications. The modal analysis of these structures has been 
performed using the 3-D code ARGUS, looking for resonances up to 1 GHz 
only. This permits the investigation, in reasonable CPU times, of the damping 
of the first HOM still trapped in the matched cylindrical structure. 

To compare the result of the two codes, ARGUS was used at first to analyze 
also the cylindrical structure of fig. 13a. The resulting longitudinal impedance, 
normalized to the value of the longitudinal impedance of the fundamental 

-mode in the pill-box, is plotted in fig. 15a (short-circuited structure) and in fig. 
15b (matched structure). Comparing these plots with the frequency behavior, 
up to 1 GHz, of the longitudinal impedances plotted in fig. 14, it is noted a fairly 
good agreement between the results using data from the two different codes. 
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Thedifference in the value of the longitudinal impedance of the accelerating 
mode (3.5 Mohm using the data form PAGODA, 4.37 Mohm using the data 
from ARGUS) derives from the fact that ARGUS yields a Q-factor for that 
mode which is about 1.25 times the value calculated by PAGODA. As a result, 
the longitudinal impedance calculated using the data from ARGUS is higher 
than the one of the simple pill-box, which is clearly an unrealistic result. 
Anyway, in both cases a sharp peak around 920 MHz survives in the longitu- 
dinal impedance of the matched structure, corresponding to the frequency of 
the first mode having an axial variation. 

- Fig. 16 shows the longitudinal impedance of the structure obtained by offset- 
ting the waveguides by 30 mm (see fig. 13b). An attenuation of about 25 db for 
the 920 MHz mode can be observed comparing the plot in fig. 16a (short-cir- 
cuited structure) and fig. 16b (matched structure). Though quite effective in 
damping the residual peak, the offset waveguides have the drawback of de- 
stroying the symmetry with respect to the plane perpendicular to the beam axis 
(see fig. 1). The structure of fig. 13~ overcomes this drawback, as all the symme- 
tries of fig. 1 are preserved. Its longitudinal impedance is plotted in fig. 17a 
(short-circuited structure); the insertion of the septum in the waveguides low- 
ers the frequency of the first mode with an axial variation to about 900 MHz. 
An attenuation of about 25 db for this mode can be observed in the plot of fig. 
17b (matched waveguides). Higher values could be obtained extending the sep- 
tum closer to the center of the pill-box. 
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Fig. 1 - A cylindrical resonator connected to three rectangular waveguides 

25 



I 

_ -.- 
- 

- 

Fig. 2 - A three dimensional resonator connected to waveguides of arbitrary shape. 
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Fig. 3  - Geometry of the cylindrical structure used in the examples of 
Fig. 4  - 11. Analyses were performed for different values of the 
slot width W  . All d imensions are in m m . 
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Fig. 13 - Geometry of the structures used in the examples of Fig. 14 - 17. A 
.- pill-box (radius = 200 mm, height = 200 mm) is connected to three 

waveguides (200 x 200 mm). a) cylindrical resonator. b) the 
waveguides are offset by 30 mm in the axial direction. c) the 
waveguides are bisected by a septum (thickness = 20 mm, distance 
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Matched ports. The modal analysi’s was performed using the 
three-dimensional solver ARGUS. 
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