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1. INTRODUCTION 

When, with my customary temerity, T announced the title “From Bit-Strings 

to Quaternions” for my contribution to ANPA 12, I thought that another year’s 

work would get me past the high water marks I had set at ANPA 9,10, and 11. 

I was a,ble to wash up over some of the previous material in my presentation at 

ANPA 12, but failed to reach my announced goal. Much of the background was 

set out in a technical note distributed before the conference [l’. Having taken my 

usual drubbing at the conference, I tried to get the material back into shape by 

the end of December with unsatisfa.ct.ory results. I more or less froze the text then, 

but kept working on it into January, and sent out a technical note under the title 

“From Bit Strings to Quaternions or From here to Eternity?” to reflect what 

little furt.her progress I had made on whnt was threatening to become a task of 

Sisyphus [21. Wha.t became clear during that effort, though probably not sufficiently 

reflected in the words distributed, wa,s tha.t I would never achieve my goal along the 

route I was pursuing. One basic rea.son for my failure is that I keep forgetting that 

in a discrete and finite coordinate system, there is no way to build in trun.sZationaZ 

invariance. Consequently there is no wa.y to arrive at 3-vector or 4-vector addition 

in a discrete setting along the lines I was pursuing. That question had been raised 

for me a year ago by Stan Gudder. I admitted then I had not met his problem. I 

still have not. However, the approach sketched in the second chapter might allow 

one to discuss “translational invariance” as a cyclic invariance restricted to one or 

two of the longest wavelengths in the problem, reflecting the phase invariance of 

quantum mechanics. We would also have to be able to extend the space (up to 

some pre-a.ssigned bound) by bit-string conca,tenation. We will see whether or not 

this works another time. Fortunately most of the practical physics requires only 

discretIe versions of Lorentz transformations (both discrete velocity “boosts” and 

non-commuting finite angu1a.r rota.tions), and requires little more than the tools I 

have a.lrea,dy developed. 

I a,m currently actively pursuing an axiomatization of finite particle number 
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(initially single particle) relativistic quantum mechanics in collaboration with Pat 

Suppes. The next chapter, entitled “WORK TN PROGRESS: discrete quantum 

mechanics” gives some insights I have come across along the way. My intent will 

be to get a simple axiomatization relying on discreteness but not on bit-strings 

a,nd end up with the discrete versions of the Schroedinger and Dirac free particle 

equations discussed at ANPA WEST 6. 0 nce this is accomplished, I can then 

- as in DP13’- spell out what significa,nt details of particle physics I hope to 

model before going on to our new theory. The third chapter explains how far I 

got toward constructing quaternions from bit-strings. As usual, I conclude with 

an overall table of results achieved (in my opinion) by discrete physics as of this 

writing. 

2. WORK IN PROGRESS: discrete quantum mechanics 

2.1 THE SYSTEM TO BE MODELED 

The stra.tegy now proposed is to start with an orthogonal system in 3+1 di- 

mensions with integer coordinates. When we go from the model to physical inter- 

preta.tion, the spatial interva,l between coordinates will be h/me and the temporal 

interva.1 h/m,c 2. We are interested in the interval between an event at (zy, x;, 2:; to) 

a.nd a second event at (xI,x~,x~;~). Since, for the moment, we are interested in 

time-like sepa,rated events, we require tha.t the velocity so specified be a rational 

fra.ction between -1 and +1 whose components are given by 

pi I= 
Xi - X0 

t - toa 
(24 

The restriction to rational fractions aTlows us to specify a period which defines 

points at events separated by this velocity can occur, called T, a.nd 3(T-2) possible 

integers n,i in the range 0 < n; < T that qlruntize the velocity components using 
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the definition 

%?; := S(l + pi) (2.2) 

Then we can specify the relation between the events by 

t = to + NT; xi = XP + PiNT (2.3) 

Neglecting the fraction to/NT, it is clear t,hat N is simply the number of periods 

separat,ing the two events. We emphasize tha,t in our approach the characteristic 

cyclic (“wave”) character of quantum mechanics stems directly from the digitiza- 

tion and the definition of velocity. 

Two facts of the utmost importance follow from the adoption of this starting 

point. The first is that the ratio of the momentum components to the energy can 

be defined independent of the number of periods (provided it is greater or equal to 

one) simply by taking 

pit = PiE (2.4) 

This definition specifies a unique “origin” in momentum space, because if pi = 0 

for all three components, E = mc 2. The second fact is that a.ngular momentum, 

ei = XjPk - Xkpj (2.5) 

like the coordina.te components themselves, does depend on the (currently unob- 

’ serva.ble) para.meters xi. We note tha.t they will ultimately supply an unobservable 

pha,se factor in the wave function - which was the starting point of my S-Matrix 

gloss on Tom Phipps deriva.tion of quantum mechanics back in 1972. They also 

show how the connection bet,ween la,ck of commutation between either the angular 

momentum components or position and momentum will enta,il the other result as 

a. simple a.lgebra.ic consequence, as already noted in another connection in FDP”‘. 
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Two problems remain. One is the fact tohat we cannot use the Pythagorean sum 

of squa.res to define the square of the radia.1 distance, the square of the energy, or the 

squa,re of the angular momentum without lea.ving the integer domain. We suspect 

that the simplest way to proceed will be find a way to derive the relationships 

L2 = w+ 1); 4 I e, I +e; L,L* = (ere,)(e+ I me,) (2.6) 

from which the quantum mechanical version of the Pythagorean relation follows, 

na.mely 

~[L-L+ +L+L-]+e; = ~~ (2.7) 

I think this can be done by using the Zl.tterbeulegung minimal motion on the grid 

to constSruct minimal rotations. Then the definition 

L* = L, f iL, (2.8) 

will be a convenient way to bring in the algebraic meaning of the imaginary in 

what is to begin with a clear geometrical picture. With our quantized velocities, a 

similar trick will quantize our Lorentz transformations, as we discuss below. 

Aga.in, beca.use the Pythag0rea.n theorem doesn’t work, we will in general ha.ve 

a radial length r and a velocity /3 referring directly to the paxticle motion and not 

to the components, which must also carry the same period: 

r=ro+PNT (2.9) 

The definition of event in the bit-string theory, if it is to provide momentum 

conserva,tion, requires the periods of two int,eracting particles to be commensurable 

and in inverse ratio to their masses. For consistency the origin of coordinates must 

be sepa.ra.ted from the first event an integral number of periods corresponding to 
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some mass ma which engaged in an event at the origin a.nd in the event that 

produced the pa,rticle m at (~0, yo, ~0, to). Consequently 

(2.10) 

We emphasize that in discrete physics 3-momentum conservation arises from 

the definition of event and the consequent requirement of the commensurability of 

periods, n,ot from tra.nslational invariance. The appropriate form of “translational 

invariance” will be reflected in the arbitrariness of the integer No. Provided we 

sta.y within the event horizon and the most massive elementary particle has a mass 

sufficiently small compared to the mass of the matter within the event horizon, 

there a,ppears to be no difficulty in constructing an effective Ilpwurd “translational 

invaria.nce” within a bit-string theory by appropriate concatenations (see section 

on bit-strings below). The next step is to look at boosts and rotations. 

2.2 BOOSTS: THE “COUNTER PARATIIGM" REVISITED 

In our discussion of the “Counter Pa.radigm” in DP, pp 90-91, we noted that 
“ 
“‘, we will have to provide more and more precise definitions of these criteriu 

[relating 3- a,nd 4- vertices at certain TTCT<s to the space-time volumes of laboratory 

counters] us the analysis develops. ” 

Physicists a.re a,ccustomed to “looseness of fit” between the mathematics (rep- 

resentationul jrumework, R), the connection to quantitative laboratory measure- 

ment (rules of correspondence, proceduruk jrumework, P), and the objectives of the 

process (epistemologicul jrumework, E), whatever names they use for these three 

essential ingredients in the modeling of the practice of physics. In my view only 

many recursions through RPE in a.ny order can be expected to yield satisfactory 

results. This looseness generates considerable criticism from some members of 

ANPA wherever I start. As a physicist, I have been more comfortable starting 

with E, roughing out the mathema,tics R. enough to make a first stab at connecting 
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to laboratory practice (including the way algebraic formulae and monte-carlo pro- 

gra.ms a,re used to compaae theoretical predictions with digital laboratory results, 

i.e. “counter data”) P, and then recursing to E to get an estimate of where we 

a.re; I can then ask what it might be profit,able to scrap before going on. This has 

landed me in mathematical difficulties, sometimes over my head. 

My initia.1 thoughts about how to connect the “counter paradigm”15’ to Stein’s 

“random walk” mode1[6-81 were very na.ive. Recently I have been trying to come to 

grips with some of the difficult aspects, - after Karmanov[‘] had suggested that 

we might be able to go directly from a “Stein-like” model to a discrete version of 

the l+l Dirac Equation without going to a.n infinitesimal step-length “limit”. 

The na.ive counter paradigm amounts to saying that when we have two se- 

quential counter firings a distance L apa.rt with time separa.tion T attributed to a 

single pa.rticle of ma.ss m, we can a.ssocia,te the invariant interval c2r2 = c2T2 - L2 

between these events with a labeled bit-string. The label, according to rules that 

I a.m still developing, specifies the ma.ss. If the string a(S; m) is of length S and 

ITa.mming measure u(S;m) = Ia(S; m)l, we take the time to be T = Sh/mc2 

a.nd the distance to be L = [2u(S;m) - S](/~/mc) it follows that the velocity 

V := L/T = PC = [F - l]c. In pra,ctice we cannot meaaure the dimensions of 

a counter to an integral number of Compton wavelengths h/m.c; the time resolution 

of the counters is alwa.ys much coarser than h/me 2., These practical constraints 

define an ensemble of strings and not a single string. Further, simply specifying the 

string length and the Hamming measure a.lso defines only an ensemble of strings 

which may be genera.ted in va,rious ways. Pa.rt of the problem my lectors have with 

my exposition is that my language has often led them to identify a particle with 

a single labeled string rather than with these context-dependent ensembles. I am 

so used to employing this type of short-ha.nd in going from model to experimental 

context and back that I tend to forget how often I need to remind others (and oc- 

casionally even myself) h ow inextrica.bly this empirical context is connected to the 

model itself, however “mathematical” the representation of the model may look. 
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Once my model is spelled out this way, it is easy to think of the ensemble of 

strings a.s a “ra.ndom walk”, or rela.tivistic ZitterbewegzLng, in which the particle 

takes a step either along or a.gainst a line connecting the two counters, each step 

executed a.t the velocity of light, defining a causal trajectory in l+l space-time 

genera,ted by the construction of any particular string as a Bernoulli sequence. 

This is where the trouble sta.rts. Such a model, in the large number case, would 

approximate a relativistic diffusion equation and not the Schroedinger equation. 

One ca.n use it to derive the Lorentz transformations, as Stein did initially, by 

treating the step-length as the uncertainty in position; a rigorous derivation along 

these lines is given by McGoveran in FDP. But this is still a long cry from quantum 

mechanics. 

Stein atta.cked this problem in his most recent published paper ““. He distin- 

guished qua,ntum events from classical coincidences in such a way that the quantum 

process corresponds to a single step, and in this way was able to prove that in his 

model a. Gaussian distribution exhibits the characteristic “wave packet spreading” 

of (non-rela.tivistic) quantum mechanics. We convinced John Bell that Stein had in 

this way constructed the solutions of the Schroedinger equation for Gaussian wave 

pa.ckets, and I am willing to argue tha.t he did indeed derive the l+l free particle 

(non-rela,tivistic) S .h d g c roe in er equation in this way. Feynma.n and Hibbs’“’ get 

the rela.tivistic Schroedinger a.nd Dirac equa.tions out of a similar model, by taking 

the counter-intuitive leap of treating the step-length as imuginury! We will discuss 

why tha.t works from our point of view on a.nother occasion [12’. Adequate treatment 

requires much more care than the na,ive model we have sketched in this section. A 

preliminary treatmentn31 cla.imed that I ha,d derived the Feynman imaginary step 

length prescription, but this claim should be treated with caution. 

In my first a.pproa.ch to the Lorentz tra,nsformations (DP pp 91-93) for the 

interval connecting coordinates (0,O) to (z, t) in the forward light cone (in units 

of h/me for z and It/mc2 for t) I used z = au(S) - S, t = S, and asked for a 

transforma,tion from (z; t) to (2’; t’) which keeps 72 = t2 - x2 = 4u(S)(S - u(S)) 
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inva.ria.nt. This can be generated by 

(t’ + 2) = p(t + 2) = p 2u(S); (t’ - 2’) = p-yt - z) = p-l2(s - a(S)) (2.11) 

or in terms of T-Iamming measure and string length by 

u’(S’) = p u(S); s’ = yps; yp = $= + p-l] (2.12) 

One difficulty with this route to the Lorentz transformations, which Karmanov 

realized (Ref. 9) but I d d i not, is that if we are to retain connection to bit-string 

opera.tions ~$7 must be integral. This cla.shes with our definition of length, time 

a.nd velocity based on h/me. This ea.rly a.pproach (unfortunat,ely now enshrined in 

DP) is a.bandoned in this pa.per. 

A second difficulty with this approach is that the string length is changed, 

while it would be natural for us to keep the string length fixed, and generate 

transforma.tions under this restriction. This observation, together with the way 

qua.ntized angula,r momentum works in ordinary quantum mechanics, provided me 

with the clue to the solution. 

Note tha,t the classical connection between the Lorentz tra.nsformation param- 

eters p a,nd y, i.e. y2(1 - p2) = 1, d e fi nes a circle of unit radius: p2 + + = 1. But 

we wish to exclude the light cone by the smallest experimental resolution which 

we can measure in the system at hand; we t’ake this to be Ap = l/S. We can now 

replace the classical definition by the quantum definition p2 + y2 = 1 - $. Then 

the imeger relations which we need are: 

1 
p := T; ; := ?; n; + n; = S(S - 1) (2.13) 

As in the angular momentum case, we can keep S(S - 1) [rather than e(e + l)] 

inva.ria.nt when we transform either p or y a.nd compute the squa,re of the other 

from a difference of squares. In general np, ny and S cannot all three be integral; 



this has been known since the time of Pytha.goras. In a bit-string theory, S must 

be integral, so we have a choice. If we use velocity resolution as above, it must 

be np; the alternative of requiring ny integral amounts to specifying the smallest 

mass we will consider. If we want to transform from a system in which the velocity 

is ,B = n.a/S to a. system in which the velocity is ,B’ = np,/S, the transformation 

velocity /3~ = nL/S is readily computed from 

np = 
n,p + nL 

S2 + npnL 
(2.14) 

The usual form of the Lorentz transformation follows immediately, as can be readily 

verified. 

2.3 BIT-STRINGS 

We specify a bit-string 

a(S) = (eTe;...ez...e;) (2.15) 

by its S ordered elements 

e% E 0,l; s E 1,2, . . . . 5’; 0, 1, . . . . S E ordinal in,tegers (2.16) 

and its norm by 

/a(S)1 = EfzIe~ = u(S) (2.17) 

This is the usual Hamming measure for bit-strings. Define the null string by O(S), 

ef = 0 for all s a.nd the anti-null string by l(S), ei = 1 for all s. 

Define discriminution (@) by 

es “* := (et - ei)2; a $ b := (...ef”“...e;‘“) = b $ a (2.18) 

from which it follows that 

a$a=O; a@O=a (2.19) 

Note that our definition di$ers from the usual symmetric di’erence, +a, XOR, 
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OREX, . . . in that the “0” ‘s and “1” ’ s in. the string are not simply arbitrary 

dic1~otom.ou.s symbols, “bits” in the computer sense, existence symbols in the logical 

sense, . . . . they are ordinal integers. This allows us to sum them to get the Ham- 

m,in,g measure. Th is also emphasizes the fact that we have assumed that ordinary 

in,teger arithmetic up to some finite ordinal named in advance is understood. We 

do not construct it, nor do we treat our bit-strings as binary numbers. 

Define a(S) by 

Z:=a$l; hencea$B$l=O (2.20) 

Distinct strings which are discriminately independent, or d.i., a.re those which when 

combined by discrimination in all possible non-repetitive ways do not produce the 

null string. Discriminately and anti-discriminately independent strings, or d.i.a.d. 

st,rings a.re d.i. strings which also do not produce the anti-null string. 

Since discrimination is only defined for bit-strings of the sa.me length S, we can 

often omit reference to the string length, a.s we have done above. However, when 

the norm and the anti-null string are involved we need to know the string length. 

In pa.rticular 

[l(S)/ = S; Iii(S)1 = S - a(S) 

For two strings a(Sa), b(Sb) we define concatenation (II) by 

4lb ek := et, s E 1,2, . . . . S a; 4lb ek =eg, jEl,2 )...) Sb,Ic=Sa+j 

a(Sa)llb(Sb) = (.... el...e:,)/I( . . . . eg...ek,) (2.22) 

Hence 

= ( . . . . . . . e$‘” 4lb 
““*eS,+Sb > (2.23) 

a(&> + b(Sb) := la(sa)llb(sb)l = ib(sb>lla(s~>l (2.24) 

but note that in general allb # blla. 

(2.21) 
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2.4 ROTATIONS 

In ordinary one particle relativistic quantum mechanics, the space-time refer- 

ence fra.mework is assumed understood as t,he normal classical continuum of special 

relativity. Here we cannot afford that luxury. Instead we start with two bit-strings, 

a reference string R(S) and the string of interest a(S) which are subject to the 

constra.ints 

S > R := R(S) > a := a(S) > 0 (2.25) 

and select a third integer or half-integer parameter pa which lies in the range 

+,l,~+; (2.26) 

Note that the integer and half-integer ca.ses for pa are mutually exclusive. This 

parammeter can be related to the two strings by adopting a sta.ndard representation 

for them: 

R(a,p,) = l(t - pL, - a)llO($ + ~l~)lll(R- t + ~~>llO(~o> 

a(R;a,p,) = l(i - pu - a)/@ + ~-l~>llO(R - 5 + pu)llO(nO> (2.27) 

R(a,pu) CD a(R;a,pu) = O(t - /la - a)[@ + pu>lll(R - t + pu)llO(no> 

Where 

no = S - [R + ; + pa] > 0 

determines the string length. Note that this positive integer pa.rameter is arbitrary 

so long as the other conditions are met. Further, so long as the same permutation 

of the positions s E 1,2,3, . . . . S is applied to all three strings, the properties of 

interest for this minimal structure a.re unchanged. It is the existence of these S! 

permutations that lead to a different count for our probabilities than one would 
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obtain by thinking of the strings as Bernoulli sequences ‘141. We expect to see in 

due course that this arbitrariness in the string length can replace the accepted ar- 

bitrariness of the phase pasameter in the quantum mechanical wave function. We 

expect to show that the dependence on string length in our theory will be negli- 

gible for large enough string lengths in the physical situations currently accessible 

technologically. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Define 

[A-A+](a,pa) := (i + pu)(t + 1 - ~a) = i(E + 1) + Pa - Pf 

[A+A-](a, IL,) := (g - p.)(; - 1 + /la) = g(g + 1) - /la - pi 

Hence 

Al := :[A-A+ + A+A-](a,pu) = t(i + 1) - ~3 

(2.28) 

(2.29) 

Much could be accomplished by working out the implications of this definition., 

and givin.g it a geometrical in,terpretation, in terms of a 3+1 orthogonal mesh with 

integer spacin.g. 

3. BIT-STRING COORDINATES 

3.1 GREIDER’S QUATERNIONS 

Our objective in this cha.pter is to map bit-strings onto quaternion coordinates 

which aae integral, or rational. Our strategy is to construct the ingredients used 

by Greidern5’ in his systematic development of the scalars, 4-vectors, bivectors, 

trivectors and pseudoscalars needed in relativistic quantum field theory. We choose 

his approach beca.use he has demonstrated that ambiguities in formulating the free 

field conservation laws using the tensor notation are uniquely resolved within his 
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formalism; further, his approach can readily be extended to general relativity. He 

sta.rts from the basic bivector product 

e,e, + euep = 0; p # u; p, u E 0, 1,2,3 (34 

and the scalar products 

.I2 = ez2 = es2 = -eo2 = +1 (3.2) 

He defines a 4-vector v by its projection onto this basis, i.e. 

v := v”eO + vlel + v2e2 + v3e3 = (vl, v2, v3; v”) = (i?; v”) (3.3) 

from which the Lorentz-inva.riant (space-like positive) 4-vect,or product 

a2 := 2. g- a”bo (3.4) 

follows immediately. Note Greider’s arbitra.ry choice of a spa,ce-like metric for u2 

ra.ther than the time-like positive metric 

72 := -a2 = aobo - a’. c W-9 

which I prefer. We note here that Phipps[16’ points out that “time-dilation” and 

“mass-increase” for time-like intervals connected to a single particle have ample 

empirical confirmation, but that “length contraction” has no corresponding direct 

empirica. evidence to support it. Clea,rly evidence against the “Lorentz contrac- 

tion” of rigid rods would prevent us from using the facile g2 = -r2 assumption we 

employ in this paper. 

Greider remarks that “The four basis vectors ccl are pa.rt of the 16 linearly 

independent elements that form the (Dira.c) C4 algebra, and the VP are scalar 

coefficients. The other 12 elements of Cd are obtained by multiplication of the 

e,;...” Note that the finite length of the unit basis vectors can be thought of as a 

first step toward quantization. 
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In the past I have sometimes simplified my notation a(S) for a bit-string of 

length S by dropping the dependence on S. Since this could create confusion with 

Greider’s notation for a 4-vector, I will try not to do so in wha.t follows. In order to 

distinguish Greider’s space-like metric (Eq.‘s 3.2 - 3.4) from the standard notation 

for on-shell 4-vectors p in momentum spa.ce P71 we write 

p := (p”,p1,p2,p3) = (EJ~‘); p2 = E2 --+ p’= rn2 

Although our strategy for ma.pping bit-strings onto quaternions works in a 

formal sense, we do not in this way succeed in achieving translational invariance or 

vector a.ddition. As we roughed out in the la.st chapter, bit-string operations should 

suffice to describe finite and discrete rota.tions and boosts using strings of fixed 

length. Further, bit-string concatena.tion a.llows us to define multiplication of a 

single bit-string by positive a.nd negative integers and their combina.tions, including 

the sca.lar “0”. This makes our coordina,te desciption meaningful, provided we can 

supply a macroscopic (“labora.tory”) definition of the directions of the vector basis 

strings. I believe this will suffice for the physics modeling I have done and intend 

to do. I suspect that my failure to construct the full vector addition in our theory 

has deep roots, but these ca.nnot be explored in this paper. 

3.2 AMSON INVMUANCE 

My tactical motivation for mapping bit-strings onto quaternions is explained 

a.t the start of Sec. 3.1; basically, Greider’s approach to the free field equations 

provides us with a familiar point of depa.rture, which we can qualify as we go along. 

My ea.rlier philosophical motivation for mapping bit-strings onto quaternions came 

primarily from AmsonL1’] invariance. This sta.rted long ago when I found it useful 

to obtain “anti-pa.rticles” by discrimina,ting with the anti-null string. 

It is often emphasized in discussions of bit-strings tha.t so long as the two 

symbols used in the ordered string a.re distinct, the choice of what symbols to use 
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is arbitrary. Hence there is a basic symmetry in the representational starting point 

of a t,heory modeled using bit-strings. John Amson emphasized this fact by raising 

the ba.sic question of where these two symbols come from in the first place. His 

a.nswer was the “Bi-Orobourous”, which is supposed to make them self-contained. 

If we define “discrimination” by 

a$a:=O=b$b; a$b:=l=b$a 

where a and b a.re the two arbitrary, distinct symbols already mentioned, it is clear 

that the two additional symbols “0” and “1” are also arbitrary. Using them to 

replace a and b in a system whose notation is still fluid can be dangerous. If I 

understand John Amson correctly, keeping one pair fixed and interchanging the 

other pair changes one system into its “dual” system. Then, if I am still on track, 

this ba.sic symmetry can be colla.psed by taking either the a and b or the 0 and 

1 as the completed hierarchy in one representation and its dual representation a.s 

the initial arbitrary, distinct symbols and sta,rting all over again. 

Once we have collapsed the notation by replacing a and b by 0 and 1, we ob- 

tain the usual XOR of computer pra,ctice in which the symmetry between the two 

symbols is broken, in that the “0” in the definition refers to the symbols being 

“the same” and the “1” to their being “different”. I suspect that this asymme- 

try is related to Parker-Rhodes’ starting point in Agnosia[“’ and The Inevitable 

Universe [201, where he distinguishes between the ontological sta.tement “something 

exists” a.nd the information-theoretic statement, “this ontological statement con- 

veys no information”. 

I make my definition of discrimination still more concrete by defining bit- 

strings a.s strings of dichotomous symbols ordered by the ordinal integers. I take 

the normal a,rithmetic properties of the int,egers - both with regard to addition and 

to mult,iplication - as “given” up to some integer fixed in advance. By identifying 

the dichotomous symbols in the strings - t,he “0” and “1” - as ordinal integers, 
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I make what I cla,im to be a consistent st,ep, provided I define discrimination by 

b :@’ := (b; - b:)2; b,” E 0,l; s E 1,2,3, . . . . . 5 

ra.ther than using the “symmetric difference ” definition given a.bove, or some binary 

equivalent. This possibility was, like many other things, one that Clive Kilmister 

and I ran into together when working in his office at King’s nearly a decade ago. 

I reiterate here my contention that I see no need for deriving the integers from a 

more primitive starting point so long as my aim is to model the practice of physics 

in such a way as to construct a consistent finite and discrete relativistic quantum 

mechanics. The philosophical point I wish to make about either my approach, or 

John Amson’s, or Fredrick Parker-Rhodes’s, or (so far as I can see) Clive Kilmister’s 

a.nd Ted Bastin’s, is tha,t there is a. tension between the broken symmetry that is 

an inevitable pa,rt of the hierarchy construction as usually presented and the initial 

indistinguishable dua.lity. I find this cont,rast fruitful rather than paradoxical. 

One has a choice here. The asymmetric structure clearly has a great deal to 

do with the hiera.rchical ordering of the scale constants. I cla.im to have gone a 

considera,ble ways toward using this structure to interpret the elementary particle 

quantum numbers, coupling constants and mass ratios. However, conventional 

elementary pa,rticle physics cannot be formulated without ending up with a theory 

in which CP’T is necessarily unbroken, even though C,P, CP (and hence presumably 

7 ) a.re broken both empirically and in the standard model of qua.rks and leptons. 

This was my motivation for invoking “Amson Invariance” a long time ago as the 

symmetry in our theory which allows us t.o model this empirical situation. Early 

on I used discrimina.tion with the a.nti-null string to distinguish “particles” from 

“anti-particles”. In the current paper I show that my definition of coordinates 

provides all these discrete symmetries. I am working out the details of how this 

relat,es, quantitatively, to the way the coupling constants brea.k these symmetries 

in a ma.nner consistent with experiment. 

One important aspect of the theory a.s I am formulating it is that one has the 
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choice between either breaking CP7 or requiring it. This already gives our a,p- 

preach a critical advantage over conventiona. theories. A collea.gue of mine (Helen 

Quinn) asserts “All relativistic quantum field that anyone has written down are 

Lagrangia.n field theories.” Further, a standard textbook by Itzykson and ZuberL211 

states tha.t “In any quantum field theory derived from a Lagrangian, the PCT 

theorem holds”; they provide a proof and references to the literature. Max Dres- 

den informs me that the theorem applies only to local Lagrangian theories, and 

tha.t non-local theories have more freedom. Non-local theories would, necessarily, 

introduce a dimensional parameter for which there is no current experimental mo- 

tivation. In contrast, the hierarchy construction necessarily breaks C’P7 symmetry 

in any application along the lines I have pioneered; the breaking parameter is part 

of the theory. In elementary particle physics it is one part in 2127 + 136. In our 

cosmology it is one part in 2564, which is a good estimate of the empirical breaking 

parameter: the number of baryons per photon. 

Ha.mming measure (number of l’s in a string) necessarily breaks “Amson in- 

va.ria.nce”. This fa.ct motivates dropping Hamming measure in favor of a symmetric 

definition by the way we introduce metric coordinates (see below). In terms of Mc- 

Goveran’s definition of attribute distance, what we do is to use some string with 

an equal number of O’s and l’s as our reference ensemble. (Hamming measure uses 

the null string as the reference ensemble.) This restricts us to using basis strings 

of even length. We find this to be a good move, because it gives us a simple way 

to discuss CP7 inva.ria.nce (see below). 

3.3 ORTHOGONAL BIT-STRING BASIS VECTORS 

In order to give meaning to a vector basis for vectors with integer coefficients 

constructed from bit-strings we sta.rt with a set of D d.i.a.d. vector basis strings of 

the sa.me length S which we call B,(S); Q E 1,2, . . . . . D. Note that, in contrast with 

the d.i. basis strings used in the construction of the four levels of the combinatorial 

hierurchy - which by definition exclude the null string - we exclude the anti-null 

18 



string as well. This suffices for 3-vectors, but for 4-vectors we adjoin the anti-null 

string explicitly as one of the basis vectors: 

Ba(S) := l(S) (3.6) 

Once we have selected a d.i.a.d. basis, our next step in defining bit-string 

coordinates is to construct a meaning for addition of the basis bit-strings and for 

multiplying them by a positive integer. 

B,(S) + Ba(S) := 2B,(S) := B,(2S) := B,(S)IIB,(S) (3.7) 

and hence by recursion 

(n+l)B,(S):= B,(S)IIB,(nS)= B&S)IIB,(S)= B,(S)(n+l) P-8) 

Note that 

InBN(S)I = IB,(nS)I = nIB( = n. R,(S) = B,(nS) = B,(S) n (3.9) 

Consequently we have indeed succeeded in defining the multiplication of a basis 

string by a positive integer. 

In order to extend this definition to negative integers a.nd multiplication by 

zero, We define addition, +, and subtraction,-, of a basis string as follows 

0 := 0 Bn(S) := BN(S) + B,(S) (3.10) 

Hence, since “-“is to have the usual meaning as the inverse of “+“, 

B,(S) = -B,(S) := -Ba(-S) (3.11) 



and by recursive definition similar to Eq. 3.9 

(m f n)B,(S) = mB,(S) f nB,(S) = B,(mS)IIB,(fnS) 

= B,(~mS)IIB,(-nS) = -B,(-S)(m f n), etc. (3.12) 

We have already restricted ourselves to a d.i.a.d. basis because of our de- 

sire to preserve Amson invariance; this motivation also requires us to restrict 

our vector basis strings to strings of even length. For strings of even length (i.e. 

z E positive integer), we call our vector basis strings E,(S), ~1 E 0, 1,2,3... and 

require that 

Er,(S) := l(S); IE;(S)I = ;, i E 1,2,3... 

Then we can define the components afi of any string of length S by 

(3.13) 

a’ := la(S) $ EP(S)I - S/2 (3.14) 

from which it follows that 

(E,‘)fi = ;; (Eo)’ = 0 = (Ej)O, i E 1,2,3... (3.15) 

Thus, any “spa.cial” vector basis string E;(S) can be said to be orthogonal to the 

“temporal” vector ba.sis string Eo(S). I n order to have orthogonal coordinates in 

a D + 1 space, we must obviously require tha.t 

(Ej)j = l&g, 2,j E 1,2 )...) D (3.16) 

We discuss below how this requirement ca.n be met. Once we have established an 

orthogonal basis of dimensionality D using strings of length S, we can extend the 

system to include a larger number of coordinates by the “length multiplication” 
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described above. This is simply an (upward) scale change because once this is 

applied to all the vector basis strings, it is easy to show that 

(na(S))p = (a(nS))p = nap (3.17) 

Our mapping of basis vector strings onto basis vectors can now be written as 

;w + e, (3.18) 

and for repetitive vector ba.sis strings 

-$E,W) + e, (3.19) 

3.4 How MANY DIMENSIONS? 

McGoveran (FDP, Theorem 13) has shown that any discrete space of D “homo- 

geneous and isotropic” dimensions synchronized by a universal ordering operator 

can have no more than three indefinitely continuable dimensions; three separate 

out a.nd the others “compactify” a.fter a surprisingly small number of constructive 

opera.tions. The proof starts from the a.ssumption that we have D independent gen- 

era,tors of sequences of two dicotomous symbols. The sequences share a common 

ordinal integer n which is “0” when the sequences start (“initial synchronization”) 

a,nd which counts the number of symbols which have been a.dded sequentially to 

each sequence; the basic assumption is that whatever method we use to gener- 

a.te the sequences cannot allow any subset, of the d = 1,2, . . . . D generators to be 

distinguished from any of the rest other tha,n by this arbitrary numbering. 

For example, we could run the generators until we had produced sequences all 

D of which a.re discriminately independent at a length which we could call NL, 

the ZubeZ length. Then which we call d = 1,2,3, . . . . D is an arbitrary replacement 

for these generated sequences; this is the way part of PROGRAM UNIVERSE I 
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operates (cf DP). In Parker-Rh o d es terminology, these D sequences are indistin- 

guishables with cardinality “D” and ordinality “1”. In our context, this is what we 

mea,n by “homogeneous and isotropic dimensions”. This allows us to invoke a result 

proved by Feller[221 for D independently generated Bernoulli sequences (i.e. arbi- 

trary sequences of the symbols 0, 1). Feller proved that the probability that after n 

synchronized trials all will have accumulated the same number of “1” ‘s is less than 

n-$(0-1). [Th e exact expression for this probability is &C;=l(.&)D.] Con- 
-3 sequently the probability of this criterion being met vanishes like n 2 for D = 4, 

and increasingly ra.pidly for higher numbers of independently generated sequences. 

McG0vera.n met various objections to this interpretation in Ref. 1, Appendix II. 

For completeness, I quote the releva,nt pa.ssa.ge here. 

‘Now regurdirzg the di*gicuZty of giving finite combinatorial meaning to Feller’s 

Theorem vis-a-vis statistically unlikely circumstances. While I cannot avoid the 

statistical character of the proof, I can rem.ove the problem of combinatorial inter- 

pretation. This problem arises because of the way Feller invokes convergence and 

di$eren.ce theorems and therefore limit theorems. The usym.ptotic continuation of 

the com,binutoriuZ terms of the series seems to be essential. However, one need not 

resort to this method to see the validity of the theorem. 

“In particular, suppose that a 3 + n space has been generated up to some fi- 

nite extent. Becuuse of the proba.biZities involved, the most dense constructible 

l-dimensional d-subspuce will have u denser sequence of metric points than ev- 

ery constructible Z-dimensional d-subspace, and the most dense 2-dimensional d- 

subspace denser than every 3-dimensional d-subspuce. However, this situation 

reverses at d-dimensions so that the m.ost dense 4 + n-dimensional d-subspaces 

are n.ow ordered as more dense thun, every 5+n-dimensional d-subspuce (where n 

is un element of 0, 1, 2, . . .)! This m,euns that every 4 + n-dimensional d-subspuce 

is sepuruble into u number of isotropic and homogenous 1, 2, and 3-dimensionul 

d-subspaces, but NOT into isotropic and h,omogenous 1, 2, 3 and d-dimensional 

d-snbspaces. 
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I‘ L gain, 2  there m ight be  some (and indeed perhaps a  large number)  of “excep- 

tionul” generators of homogeneous and isotropic m-dimensional d-subspaces with 

n  > 3. The algorithm for this generator would be deterministic. However, it is 

my cZa,im that no  such deterministic azgorithm can be correct for other reasons as 

expluined regarding “urbitruriness” and the very definition of ordering operator in 

Fonndutions: the complexity of the ulgorithm for an  ordering operator is such that 

it cunn,ot be  given a  juZZ interpretation within the generated system. 

“For PU, the generators of our d-space, therefore, are of such complexity that 

the “next” metric murk cannot be  represented in terms of all those generated so jar. 

This precludes the possibility that the generat ion of the space is deterministic in the 

wuy required: numely that we can predict deterministically from the d-space gener- 

ated so fur und the distribution of metric marks where/when the next metric mark 

will be  generated. Every c-dimensional cl-space with n  > 3  is not ulgorithmicly 

extensible within the system. It is therefore subject only to statistical charucterizu- 

tion. I realize this is not a  formal urgument and hope to make it formal in my next 

ma jor e$ort: Foundat ions II. 

“Not long ago I question.ed Pierre’s reference to “McGoverun’s Theorem” re- 

gurding there being only three conserved unique quantum numbers (which I take 

to mean that only three quuntum units or parameters are possible for global de- 

scriptions and what you mean by Pierre’s conservation theorem). I subsequently 

con.vinced myself that it was OK, with the fourth number  being only a  locally us- 

uble number.  If th.is fourth number  is color, we have “color conjinement” and 

“usymptotic f reedom”. Conservation is not the issue here. ( Indeed I insist that 

nothing ever gets “conserved” but that sim,iZur structures are recursively generated 

so that u  “conserved property” is found to huve the same “vulue” over some causal 

trajectory-see A NPA 11 paper.) 

“The argument is simple. PU generates strings with arbitrary quantum num- 

bers (&N’s hereinafter) selected from all those allowed. W e  can imagine a  gen- 

eration u?hich orders the sets of strings with QN’s of each type: a  set of strings 
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ordered by spin QN, another by angular momentum, etc. We now synchronize the 

generators so th,at a d-space is constructed with a diagonal of n strings, one with 

each of these QN’s and therefore n-dimensions. Feller’s Theorem now applies. 

“I agree that synchronizution is the bridge between combinatorics and geometry 
- al Zeust that is why and how I have used it.” 

This theorem has a. powerful corrola,ry in our bit-string coordinate context. Eq. 

3.13 identifies the vector basis string Eo(S) with the unique anti-null string. If we 

identify this with the time direction, then all strings which have the same time 

coordinate t = u’(t) h ave the same Hamming measure 

Ia(S; t)l = t + t (3.20) 

But strings with the same Hamming mea.sure satisfy the condition required by 

McGoveran’s Theorem in Feller’s context (i.e. all have the same number of “1” 

‘s). Consequently, any simultaneous (i.e. sa.me “t”) points in our finite and dis- 

crete space, when constructed from independently generated, but synchronized, 

sequences of dichotomic variables of the same length S projected onto a coordi- 

nate system with D spacia.l dimensions ha.ve a rapidly diminishing probability of 

sa,tisfying this “distant simultaneity” criterion for large t + S/2 a.nd D > 3. The 

critica. D = 3 case does allow what we call here DISTANT simultaneity to be 

defined for la.rge (but finite) t + S/2. 

It is important to realize that this DISTANT simultaneity is non-local in the 

usua,l qua.ntum mechanical sense when we make the interpreta.tion a0 = t, a’ = (a’ = 

x,a2 = y,a 3 = z). We intend to prove that the basic “three-vertices” correspond to 

normal relativistic velocity a.ddition in spite of this non-locality of events. When 

we ma,ke the interpretation u” = E,a’ = p’ = (a’ = PZ,a 2 = py,u3 = pz), and 

impose the 4-event criterion that 4 strings discriminate to the null string, this 

is equivalent to 3-momentum conservation in a,ppropriate contexts, in particular 

when we require the commensurability of the periods and masses of interacting 

particles. 
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Although relativistic S-momentum is conserved, there is no guarantee that a 

3-vertex is “on-shell” in the sense that E2 - p2 = m2 for a,11 the “particles”. This 

fact is the sta.rting point of our finite particle number relativistic scattering theory 

ba.sed on relativistic Faddeev-Yakubovsky equations with exactly unitary (flux- 

conserving) solutions. The asymmetry between the representational properties of 

“position” and “momentum” already implied by the “counter paradigm” is the 

reason why an S-matrix type of approa,ch is natural for us. It is also important 

to realize tha.t our distant simulta.neity is independent of a.ny concept of causal 

continuity of the type usually associated with special relativity, unless or until we 

specify in more detail how the strings are generated. That program universe-type 

genera.tors lea,d to acausal, supraluminal connectivity without allowing supralumi- 

nal signaling ha.s been argued elsewhere P3241 . 

3.5 RATIONAL QUATERNIONS 

Our mapping of bit-strings onto an ort,hogonal coordinate system with spatial 

dimension D works only for even string length and some set of strings which satisfy 

Eq. 3.16. Further, if S/2 is odd, the indistinguishability condition for D > 1 

implied by Eq. 3.16 cannot be met because two bit-strings with odd Hamming 

mea.sure discriminate to a bit-string with even Hamming measure. Consequently 

the simplest basis system we can use for D > 1 must have strings which are 

multiples of some basis of length four. There are (S!)/(+!)’ = 6 candidates for 

the vector basis strings with S = 4, (n = l), but three of these can be obtained 

from the other three by discrimination with the anti-null string, and correspond to 

finite a.nd discrete rotations or reflections of the basis. One allowed basis in three 

plus one dimensions which I have been studying for some time is 

E&S) := n(lll1) = l(nS) 

El(nS) := n(lO1O); E2(nS) := n(lOO1); E&S) := n(llOO) (3.21) 

Since we saw in Sec. 2.5 that we need at most 3+1 dimensions, we will confine 
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ourselves to this system from now on. 

In order to conform to his notation, Clive Kilmister suggests that we use instead 

K&S) := n(lll1) = l(nS) 

K&S) := ~~(1001); K2(nS) := ~~(0101); K&5) := n(OO1l) (K3.21) 

Here I have called his suggestion K,(d), and used my scalar multiplication nota- 

tion. The advantage is that we can then write 

K&S) = n(i4); Ko(nS) = ~~(1234) 

This move looks good; it does not change a.nything below, so far as I can see. 

Another interesting property of these integer quaternions noted by Kilmister 

is that if we compute Hamilton’s “quaternion norm”, i.e. [ui + uf + ui + ui]i then 

“for bit strings of Ha.mming norm n, the square of the qua.ternion norm must lie 

between 4 a,nd 4[1 + n.(n - l)]. Y ou can see this by doing a little algebra which will 

prove that the square of the quaternion norm is exactly 

4 + 4x;=, (nf - B;) 

where 

Bl = bl + bg + . . . 

BP = b2 + b6 + . . . 

a.nd so on. The proof of the inequality then comes easily by looking for the maxi- 

mum of the constra.int under the constra.int Cb; = n.” I am sure that this restric- 

tion on the “Euclidean” norm in 4-spa.ce will have considerable significance once 

we work out the constra.ints due to rotation a,nd Lorentz boost invariance in our 

discrete space. 
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Discrimination of 1, 2, 3 or 4 basis vectors with the anti-null string correspond 

to well known discrete symmetry operations in 3+1 space-time. We list these: 

E~(T-&)’ = 7Eo(nS) := l(d) CD E&S) corresponds to TIME inversion. 

E;(nS)’ = NE;(nS) := l(nS) $ E;(nS) corresponds to MIRROR REFLEC- 

TION across the jrC plane. 

E;,j(nS)’ = IRE;,i(nS) := l(nS)@E;(nS), Ej(nS) corresponds to ROTATION 

through 180° around the k axis in either sense. 

E;,j,k(nS)’ = PE;,j,k(nS) := l(nS) $ El(nS), Ep(nS), Es(nS) corresponds to 

SPACE inversion - the PARITY opera,tion. 

We empha.size the fact that our construction leads immedia.tely to the dis- 

crete space-time symmetries P,7 including the degenerate rotation and reflection 

options. Once we have discussed particulate qmntum numbers, it will be easy to 

extend our discussion to C and the role CP7 invariance plays in our discrete theory. 

To go from here to rational quaternions is immediate. Simply define 

eP 2 = 1 - &(Er(nS))’ (3.22) 

which insures tha.t our basis vectors satisfy Eq. 3.2. We ca.n now follow Greider 

by a.dopting the constraint given by Eq. 3.1; then use the components ufi given by 

Eq. 3.14 to define a 4-vector given by Eq. 3.3. If the integers we start with do not 

provide a fine enough mesh t,o describe the phenomena we are modeling, we can 

rescule as expla.ined above; if we wish to replace integer coordinates by rational 

coordinates with a smallest aliquot part l/NZ named in advance we can divide all 

components by this factor. This measure can be fixed in particle physics in the 

contest of anticipa.ted experimental resolution. If we wish to use a time-like rather 

than a space-like metric, all we need do is change the sign of Eq. 3.22, 

(ep2)’ = &(E,(nS))’ - 1 (3.23) 

So fa.r a.s coordinate description goes, this completes our ma.pping of bit-strings 

onto quaternions. 
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Having gone this far, a temptation for both physicists and continuum mathe- 

maticians is to view this ma.pping of the bit-string spatial coordinates as an embed- 

ding in &, and of the quaternion coordina.tes as an embedding in the space-time of 

special relativity. Then coordinate transformations could be carried through in a 

conventional way. But this would cut the umbilical cord connecting the mapping 

to bit-strings. This can easily be seen by trying to go ba,ckward after a coor- 

dina.te traasformation and ask what this corresponds to in terms of bit-strings, 

which was one of Ka.rma.nov’s criticisms of the original derivation of the Lorentz 

boosts (Ref. 9). So we have to do more work on coordinate transformations in 

order to discover which can be expressed in terms of bit-string operations and 

which cannot. This is well worth the effort, since the bit-string generated “space” 

is much sparser in “points” than pedestria.n “discretizations of the continuum” 

might lead one to expect. This fa,ct could provide us with a start toward under- 

standing in a new way why our theory gives us the limiting velocity of relativity 

and the non-commutativity of quantum mechanics without producing at the same 

time “self-energies” which go to infinity in physically interesting situations, and 

like horrors. 
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PREDICTIONS MADE BY DISCRETE PHYSICS 
April, 1991 

For background see papers by H.P.Noyes and D.O.McGovera,n: “An Essay on 
Discret,e Physics”, Physics Essays, 2, 17-100 (1989) and SLAC-PUB-4528; “Foun- 
dations for a Discrete Physics”, SLAC-PUB-4526; and “Discrete Gravity”, Physical 
Interpretufions of Relutivity Theory, 11, hl.C.Duffy, ed., Imperial College, London, 
1990, pp 196-201 and SLAC-PUB-5218. 

Empirical Input 
c, t, a.nd mp as understood in the “Review of Particle Properties”, Particle Data 

Group, Physics Letters, B 239, 12 April 1990. Numbers are quoted in the format 
[ ( )] = empirical value (error) or range. 

a GV = 13.3(3) from R.A.Arndt ef.uZ., . Phys. Rev. Lett., 65, 157 (1990). 
F.Sammarruca and R.Ma,chleit (BUZZ. Am.er. Phys. Sot., 36, No. 4 (1991)) note 
most modern models for the nuclear force use the strong empirical p coupling and 
therefore require GzN > 13.9; the smaller vector-meson-dominance-model value 
for p is compatible with the Arndt value.] 

COUPLING CONSTANTS 

Coupling Consta.nt Ca,lcula.ted Observed 

G-1 tr.C 
G [2127 + 1361 x [l - &] = 1.693 37.. . x 1O38 [1.69358(21) x 1O38] 

Gprn,i/fic [2.562fi]-’ x [l - &] = 1.02 758.. . x 1O-5 [1.02 682(a) x 1O-5] 

sin20iyeak 0.25[1 - &]’ = 0.2267.. . [0.2259(46)] 

c-x-‘(m.,) 137 x [l- &I-’ = 137.0359 674.. . [137.0359 895(61)] 

as(d) 1-m, 
7 - mN [? ?] 

G”,N [(e)2 - 113 = [195]$ = 13.96.. a[13, 3(3), > 13.9?] 

MASS R.ATIOS 

Mass ratio 

A!fPlanck 2 [ 1 fLC 

rnscale := Gm2 

mplme 

Calculated 

[2127 + 1361 = 1.70147 x 103* 

137* 

g&g-$ 
= 1836.15 1497.. . 

275[1 - &] = 273.12 92. . . 

274[1 - &]= 264.2 143.. . 

3 * 7 * 10 = 210 

Observed 

mpTOtOn M mSCak 

[1836.15 2701(37)] 

[273.12 67(4)] 

[264.1 373(6)] 

[206.768 26( 13)] 
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General structural results 
0 3+1 asymptotic space-time 
l comhina.torial free particle Dira.c wave functions 
l supraluminal synchronization and correlation without supraluminal signaling 
l discrete Lorentz transformations for event-based coordinates 
l relativistic Bohr-Sommerfeld qua.ntization 
l non-commutativity between position and velocity 
l conserva.tion laws for Yuka.wa vertices a,nd 4- events 
l crossing symmetry, CPT, spin and statistics 
l “Fields” replaced Wheeler-Feynman “a,ction at a distance” 

Gravitation and Cosmology 
l consistent formulation of gravita.tional charge 
l electromagnetic and gravita.tional unification 
l the three traditiona. tests of general relativity 
l event horizon 
l zero-velocity frame for the cosmic background radiation 
l mass of the visible universe: (2127)2m, = 4.84 x 1O52 gm 
7 fireball time: (2127)F-/ mpc2 = 3.5 million years 
l critical density: of Rv;, = p/pc = 0.01175 [0.005 5 flvi, _< 0.021 
l dark matter = 12.7 times visible matter [IO??] 
l baryons per photon = 1/2564 = 2.328.. . x 10-r’ [2 x 10-r’?] 

Unified theory of elem.entary particles 
l qua.ntum numbers of the standard model for quarks and leptons 
with confined quarks and exa.ctly 3 weakly coupled generations 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

gravitation: fic/GmE = [2127 + 1361 x [l - &] = 
1.70147.. . [l - &] x 1O38 =1.693 37.. . x 1O38 [1.693 58(21) x 1O38] 
wea.k-electromagnetic unification: 
Gp;/h.c = (1 - &)/256”fi = 1.02 758.. . x 1O-5 [1.02 684(2) x 10-5]; 
sin20Weal; = 0.25(1 - A)” = 0.2267.. . [0.2259(46)] 
M$ = m/1/2G Fsin20W = (37.3 Gev/c2sin 0~)~; Mzcos 0~ = Mw 
the hydrogen atom: (E/~c~)~[l + (1/137N~)~] = 1; p = m,mp/(mp + m,) 
the Sommerfeld formula: (E/~c~)~[l + a2/(n + Jm)2] = 1 
the fine structure constant: d = 1-13T = 

?GiT 
137.0359 674. . .[137.0359 895(61)] 

q/m, = m = 1836.15 1497.. . [1836.15 2701(37)] 

m$/m, = 275[1 - &] =273.1292... [273.12 67(4)] 
msO/m, = 274[1 - &]= 264.2 1428.. [264.1 373(6)] 
crS(mz) = 3 

(G2,lV m.xo)2 = (2mP)2 - m$, = (13.868.. mTo)2 
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