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Abstract

The beam-beam interaction with a crossing angle and with a compensating crab
angle is simulated and treated partially analytically. The crab angle is obtained by
transversely deflecting cavities in one case and by a dispersion in the accelerating
cavities in another case. Resonances which are excited by the action of the crab
cavities are investigated. Tolerances for the cavity voltage and for the betatron
phases between the cavities and the interaction point are discussed.
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1 Introduction

In very high luminosity storage rings a large number of colliding bunches is desir-
able, and this requirement leads to a crossing angle configuration. The advantages
of a crossing angle over head-on collision are a better shielding of the detectors from
synchrotron radiation, a larger separation of the beams at the parasitic crossings
and a greater independence of the optics in the two rings.

In the double ring DORIS I, however, it was found [1] that a crossing angle excites
synchro-betatron resonances which are determined by

kvg + mv, = n (1)

where k, m and n are integers and v4 and v, are the betatron frequency (in the
plane of the crossing angle ) and the synchrotron frequency in units of the revolution
frequency. These resonances are spread over the whole tune diagram and reduce the
beam-beam limit and the currents.

With crab crossing the bunches are tilted so that they collide head-on. If the
tilt angle is made by transversely deflecting cavities these cavities must have a
betatron phase distance of £7 /2 or an odd multiple of it from the interaction point
to produce a bump for the tilt. This kind of crab crossing was first proposed as
a way to increase the luminosity in linear colliders [2] and was then proposed for
storage rings in order to avoid the synchro-betatron resonances [3]. In low energy
storage rings the number of transversely deflecting cavities which are necessary for
the crab angle is sufficiently small so that they will not occupy too much space or
increase the impedance of the ring too much.

A second method to obtain a tilt angle was proposed in [4]. The orbit displace-
ments at the interaction point are produced by a large dispersions in accelerating
cavities on both sides of the interaction point so that no additional cavities are nec-
essary. According to a somewhat modified theory the maxima of the two dispersions
must have a phase distance from the interaction point of = or an odd multiple of
7 on one side and a phase distance of 27 or a multiple of 27 on the other side of
the interaction point. The position of the cavities is then arbitrary, and one can use
several cavities distributed over a larger region of betatron phase.

Since crab crossing has not yet been verified in an existing storage ring it was
studied by means of computer simulations for transversely deflecting cavities and
for round beams [4]. In particular, errors of the voltage of the crab cavities and of
the betatron phase between cavities and interaction point were simulated in order
to find the tolerances for these parameters. Numerical estimates were also made in
[6]. In this note simulations for both methods of crab crossing are discussed, and
the simulations are done for flat beams with an aspect ratio of 25: 1.



S 2 Transversely deflecting cavities

2.1 Transformation of the coordinates

The changes of the coordinates in a crab cavity were calculated by
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where ¢ is half the crossing-angle and V' # 1 describes the deviation from the
. correct value. f,. and J; are the amplitude functions at the crab cavity and at

the interaction point, respectively. The energy change follows from the transverse
—_ kick and from Maxwell’s equations [5]. If the phase advance to the interaction point
is 7/2 and if V is 1, 62’ gives §z* = ¢ s at the interaction point and that means
that the bunch is tilted by an angle of ¢. At the second cavity, after another phase
advance of 7/2, the tilt angle is zero and the remaining betatron angle of —éz’ is
compensated by a kick of the same strength and of the same sign as in the first
cavity. Also the energy change (Eq.(6) ) obtained in the first cavity is compensated
in the second cavity since z has now the opposite sign.

The change of the betatron -angles and of the energy due to the beam-beam
interaction is given by

-~ Bréa’ = 2n&, fo(z + ¢, y) (4)
Bydy' =278, fy(z+ ¢, y) (5)
] §E = ¢ E 8z’ (6)

_ where ¢, and ¢, are the space charge parameters and the functions f, and f, are
integrals given by
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with r. = electron radius, V, = number of particles per bunch, v = relative particle
energy and og.s = (/02 + ¢202. The integrals are solved numerically, tabulated and
interpolated linearly for each passage of a particle.

As in the rest of the ring, the coordinates between the crab cavities and the
interaction point are transformed linearly. v, is 0.06 and v, which has no influence
on the horizontal synchro-betatron resonances, is 0.23. The ratio of bunch length to
beam width is 54 and the ratio of the betatron oscillation energy to the synchrotron
oscillation energy [5] is (02am R)/(B5vs0?) = 0.01. Most of the simulations are done
for 3000 revolutions and with 98 particles. Quantum fluctuation and damping are
neglected since the rise times on a resonance are shorter than the damping time.
Also the betatron phase variation seen by a particle due to its longitudinal motion
is neglected, i.e. it is assumed that the ratio of bunch length to 85 is small. This is
the worst case since for a larger bunch length the space charge forces are distributed
over a larger betatron phase and the excitation of higher order resonances will be
compensated partly [7].

2.2 Eigenvalues of the transformation matrix

In order to investigate the influence of the crab cavities on the beam stability
without beam-beam interaction we consider the linear motion of the particles by
means of the matrix formalism. The synchrotron and betatron oscillation can be
described by the four coordinates z, #, s and § where & and 3 are given by

o AFE anRAE
~ ’ ~ m
& = azx T § = -
) + 5, g vio, E

with @ = —f'/2, a,, = momentum compaction factor and R = mean machine radius.
The transformation matrices for the transversely deflecting cavities are then given

by

0 0
Mcl,2 _ 0 gtl,Bﬂm
q911,2 0 0

where gy » is the longitudinal gradient of the transverse kick. The matrices for the
sections between the cavities are given by

1 0 0
X (9)

0
0
0
1

V1,2 COS P12 V1,2 5111 1,2 0 0
M _ | —vi2singry  v1,2€08 @12 0 0 (10)
s1,2 — .
0 0 COS ¢1,2 - 8in 'l/)Lg
0 0 sinyr2  cosy 2

where vy 5 is /B12/B21 and 1, and 3 5 are the betatron and synchrotron phase

advances, respectively. The synchrotron frequency is assumed to be small and the
sign of ) depends on the sequence of the coordinates s and 3. Since we assume that
there is no curvature between the cavities we set ;=0 and 13 = . The product of
the four matrices is then



Mt = M32M02M.91Mc1 (11)

cos sin ¢ by sin ¢ + v b, sin g 0
—sing cos by cos ¢ + v1 by cos g 0
—~gsiny(gn + vagrz cos 1) —Rysinyy  cos — by Ry sin —sin
g cos (g + vagspcospy)  Ricostp sin v + by R; cos @ cos

with © = @1 4+ @2, bi2 = gu2y/B12 and R, = quagsinp;. The four eigenvalues
exp{tius 2} of M; are given by

208 fi19 = cOS 4 costp + \/(cosg‘o —cos ) — gsinepsing (b% + b2 + 2b, b, cos 4,91)

(12)
with B
2cosp = 2cos Y + gbyby sin ¢ sin ¢y
f1,2 can become complex and the eigenvalues of M; can get an absolute value larger

than one if sin ¢ is positive, i.e. in the case of a difference resonance [8]. sin ) ~ 1)
= 27y, is always positive. The width of the resonance is then with ¢ = 27év,

- bv, = :l:\/q(b%—{—b%-I—lel)Q coscpl)/27r (13)

The resonance vanishes for b; = by or g;11/B1 = gi21/B2 and , = =, 37, etc. The
resonance width for errors of the gradients, the amplitude functions and the phase
distances are given by

bvy = :}:\/(}|gt1\/a—gt2\/ﬂ>2l/27r, dv, = igtﬁe

with g.v/B = g1vBi = gia/Bz and € = 1 /27 — 1/2.

2.3 Simulation results

Fig.1 shows the increase of the horizontal betatron amplitudes as a function of
the horizontal betatron frequency in the case of a horizontal crossing angle. The ini-
tial amplitudes are 6 o,. For perfect compensation the synchro-betatron resonances
vanish completely. The remaining resonances are the quarter resonance and some
other resonances which are excited by the nonlinear beam-beam forces.

Fig. 2 shows the increase of the vertical amplitudes as a function of the vertical
betatron frequency in the case of a vertical crossing angle of the same magnitude
(2x7.5mrad). For perfect compensation the synchro-betatron resonances vanish
again completely. Without compensation the increase is larger than for the horizon-
tal crossing angel since the normalized crossing angle ¢ 0,/0, is larger by a factor
of 25. For the same normalized crossing angle of 0.4 and ¢ = 0.3 mrad the increase
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is of the same order of magnitude as for the horizontal crossing angle as shown in
Fig.3.

In Fig. 4 the increase of the amplitudes is plotted for a crossing angle of 1.5 mrad
and a normalized ¢rossing angle of only 0.08. The increase is clearly smaller but
there are still many synchro-betatron resonances which will reduce the lifetime of
the beam if the aperture of the ring is not very large.

In all the following figures, the horizontal amplitudes are shown for a horizontal
crossing angle of 2x7.5mrad. Fig.5 shows the root-mean-square deviation of 1200
particles having a Gaussian distribution at the beginning. In contrast to Fig. 1 the
rms value or the beam width blows up on only a few synchro-betatron resonances.
Only the first satellite of the integer and the two lowest satellites of the third order
resonance (v, = (1 +v,)/3) enlarge the beam width noticeably. The reason for
this behavior is the fact that there are always particles with increasing amplitudes
and those with decreasing amplitudes depending on the phase between betatron
and synchrotron oscillation. For small excitations the increase and the decrease
compensate each other. This means that the synchro-betatron resonances do not
influence the luminosity very much but reduce the lifetime of the beams.

Fig. 6 shows the dependence of the maximum amplitudes on the cavity voltage
around the resonance v, = (1 + v,)/3 for an initial amplitude of 3,. The voltage
is varied in steps of 10% of the completely compensating value in both cavities at
the same time. In this case a small crossing angle remains at the interaction point
which is equal to the crossing angle times the relative error. If only one cavity has
an error the residual angle is smaller [5] but a tilt angle of the order of the residual
angle will oscillate around the ring.

The dependence of the maximum amplitudes on the phase distance of the trans-
verse cavities from the interaction point is shown in Fig.7 for initial amplitudes of
6 0. In the frequency region considered here several synchro-betatron resonances
are very close to each other. The strongest resonances are v, = (1 —v,)/5 = 0.1880
and v, = (1 +2v,)/6 = 0.1866 but there are also the resonances v, = (1 4 5v,)/7 =
0.1857, v, = 1/8 4+ v, = 0.1850 and some other higher order resonances. Here again
equal errors on both sides of the interaction point are assumed which are varied in
steps of 3.6°. If the two cavities have position errors the beams will not only collide
with a small angle but a small tilt angle will also oscillate around the ring. The
error of the tilt at the interaction point can be compensated by varying the voltage
of the two cavities which increases, however, the oscillation of the tilt around the
ring.

In Fig. 8 the maximum amplitudes as found in Fig. 6 are plotted as a function of
the cavity voltage for two different initial amplitudes. It shows that the dependence

is stronger for larger amplitudes. Fig.9 shows the dependence on position errors for
the same resonance.

Figs.10 and 11 show the dependence of the maximum amplitudes on the cavity
voltage and on position errors for the resonances considered in Fig.7. The depen-
dence is stronger in this case where several resonances are very close to each other.
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It will be difficult to compensate these resonances, and these few frequencies must
be avoided.

Table 1 shows the tolerable errors of the cavity voltage and the phase distance
for two synchro-betatron resonances.

Az | 10 % | 50% | 100%
AU|25%  05%|10% 2% [30% 8%
Ap | 15 05 | & 10 | 25° 25°

Table 1: Increase of amplitudes for different errors of the cavity voltage U and the
phase distance ¥ on the two resonances 3v, — v, =1 and 5v, + vs = 1.

Figs. 12 and 13 show the maximum betatron amplitudes with the beam-beam
interaction turned off on two satellites resonances of the integer. The voltage in
only one cavity is changed in steps of 1% of its nominal value from 90 to 100%.
Whereas on the sum resonance v, + v, = integer ( Fig.12) the amplitudes approach
an upper limit they increase continuously with the error on the difference resonance
vy — v, = integer (Fig.13). In the second case they increase also with the num-
ber of revolutions since on the difference resonance the particle motion is unstable

(Eq.(12)).

2.4 Dispersion in transversely deflecting cavities

If there is a dispersion at the crab cavity one has to distinguish two cases. If the
dispersion is produced outside of the crab bump it will not excite synchro-betatron
resonances since this dispersion has the same phase advance as the betatron oscil-
lation and the two kicks will compensate each other. If the dispersion is produced
between the two cavities the two kicks will not compensate each other and a satellite
resonance of the integer can be excited which gives an exponential increase for the
difference resonance (v, — vs=integer ) and an exchange of oscillation energy on the
sum resonance ( v, + vs=integer) [8].

If a bend between the two cavities produces a dispersion of a few centimeters, the
effect due to this cause must be compared with that from the dispersion in the main
accelerating cavities where a spurious dispersion of a few centimeters usually cannot
be avoided. Since the excitation of synchro-betatron resonances is approximately
proportional to the dispersion as well as to the gradient of the voltage [8], the
excitation in the accelerating cavities will be larger than the excitation in the crab
cavities by an order of magnitude. In any case, the first satellite of the integer must
be avoided.



3 Dispersion in accelerating cavities

3.1 Transformation of the coordinates

The tilt angle can also be produced by an energy change at a position with a
dispersion [5]. At first the tilt angle was calculated due to a change of the betatron
coordinate z given by éz = —D §E/E. However, this is only half the effect. There
is also a change of the betatron angle z’ due to the derivative of the dispersion given
by éz' = —D'6E/E, and the total change can be written in the form

oF . 6F
— _n= 7 = ) — 1
bz D“E (14), 6% T (15)
with the abbreviations
i = az+pz, D = aD + 8D’

Since in a straight section the dispersion is a free betatron oscillation we can write

D = a\fcos(cp) (16), D = —a\/Bsin(cp) (17)

where a is a constant and ¢ is the betatron phase advance and is measured from a
position where D is zero and D is positive. A change of the betatron coordinates
produced at position s; yields at the interaction point

SE
827 = —aiy/B* cos(v1 + Apr) —E—l (18)
~ % . 6E
68 = ayy/B* sin(py + Agpy) Tl (19)

where Ay, is the phase advance between the energy change and the interaction
point. Since the sum ¢; + Ay, does not depend on the phase where the energy
was changed the position of the cavity is completely arbitrary within the straight
section.

The tilt angle is 6z*/s which gives, with ¢, + Ap; = 7, a;\/B*gn where gy is
the longitudinal gradient of the energy change in the cavity. If the tilt angle is half
the crossing angle one gets

¢ = gn /= (D? + D? 20

ga 8, ( 1 2) (20)
If we compare the gradients in the accelerating cavities and in the transversely
deflecting cavities which are necessary for the crab crossing we get gs1 /90 = b1/ D1
where equal amplitude functions for both cases are assumed and the dispersion is



evaluated at its maximum. The necessary gradient in the accelerating cavities is then
larger by about an order of magnitude than in the transversely deflecting cavities.

We assume that the dispersion vanishes at the interaction point. A dispersion
with the same phase at the interaction point ( with respect to the phase in the cavity )
will reduce the tilt angle and a dispersion with an opposite phase will increase it.

At the second cavity the transformation of the change produced at the first cavity
gives

SF
Sz, = —al\/g cos(p1 + Apy + Agps) —E—l (21)
) SF
55}1 = al\/ﬂig s1n(<,01 + AQOl + Agﬁz) 'El— (22)

where Ay, is the phase advance from the interaction point to the second cavity.
The change in the second cavity is given by

Ok
Szq = —ag\/E cos(cpg)—E—2 (23)
SE,

(5.’%2 = ag\/ﬁ—g Sin(gﬂz) _E'_ (24)

where ¢, is also measured from a position where D vanishes and D is positive. The
changes in the two cavities compensate each other if the two conditions are satisfied:

SE SE
2 = 1+ Ap1+Apy +nw (26)

Here n is an integer. The sum of the phase advance between the first maximum and
the interaction point (1 + A1 ) and of the phase advance between the interaction
point and a maximum on the other side ( Agp; — ¢, ) must be equal to a multiple of
7, i.e. the phase difference between the two dispersions must be equal to nr.

The energy changes are given, in linear approximation, by the longitudinal po-
sition of the particle times the gradient of the voltage:

OF

F = 0
OF . AE
TQ = g (31 — Az — B2 — 011C(T + g£181)) (28)

where «; is the momentum compaction factor for this section, C' is the circumference
and A; and B; determine the path lengthening due to the betatron oscillation (see
Appendix A). Since there is no path lengthening in a straight section we may take
the phase difference Ay between arbitrary points in the straight section, for instance
between the two maxima, and get:

A1:0, B]‘—:



Whereas o, can be minimized or maybe made equal zero, B; cannot become zero
and this means that there remains a coupling.

The following transformations are used for the simulations. At the two cavities
the coordinates are changed by

b = —Dl,g gnz2 S (29)
6:% = _-Dl,Q 9@1,2 S (30)
6E/E = g[LQ S (31)

From the cavity to the interaction point the horizontal betatron coordinates are
transformed linearly with a phase advance of Ap; which is varied around 7. The
longitudinal coordinate is changed by

s = —Blil -oleAE/E (32)
with
Bl = Dl/ﬁl

A, is zero since we put the cavities at positions where D vanishes. This simplifies
the simulations. At the interaction point Egs.(4), (5) and (6) are applied. From the
mteraction point to the second cavity the transformation is given by

bs :—A2IE—B2£—OZQCAE/E (33)
with

Ay = Dysin(Agy)/v/B258* By = —Djcos(Agy)/+/ B2

whereas the horizontal betatron coordinates are again transformed linearly with a
phase advance of Ay, which is varied around 27. The transformation for the rest of
the ring is a linear transformation with a phase advance Aps = 27v, — Apy — A,
for the horizontal betatron coordinates. The transformation for the vertical plane
is always done at the interaction point for one revolution with a phase advance of
2nvy. The longitudinal coordinate is changed by

b5 = —A3.’E — Bgi‘ — ag,C’AE/E (34)
with
Az = D, Sin(ASOS)/\/ ﬂ2ﬂ1 By = —D, COS(A993)/ 52/31 + D1/ﬂ1

and a3 = a,, —a; — ay. If the total acceleration voltage is not necessary for the tilt
angle the difference can be added at a position without dispersion which does not
change the simulation results.
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3.2 Eigenvalues of the transformation matrix

We consider now the influence of the dispersion on the stability of the particle
motion without beam-beam interaction. The synchrotron and betatron oscillation
are described again by the four coordinates z, #, s and 3, and the transformation
matrices for the two cavities are given by

1 0 _91121,2 0
0 1 —geD 0

Mfcl,? = 0 0 gll b2 O (35)
0 0 q9e 1

where g, is the longitudinal gradient of the energy change which is assumed to be
equal in both cavities. This is not a restriction since different gradients are equivalent
to different amplitudes of the dispersions which are arbitrary. The matrices for the
sections between the cavities are given by

) V12C0Sp12  VigSingre 0 0
| —vi2singiy vigcospre 0 0

Mz —A; —Bi 1 —aC/q (36)
0 0 0 1

where vy 5 is \/f1,2/621 and ¢y 5 is the betatron phase advance. We assume a beta-
tron phase advance of 37 between the two cavities whereas the phase between the
two dispersions is arbitrary. A;, and B;, are given by (see Appendix A )

Dl Dg Dysinp + ﬁl cos ¢ Dg
Al = —— — ——, Ay = — -
B v1 32 v2 B2
Dl D2 Dl COS @ — Dl Sil’ls& D2
By = 2 +—2=, B, = + =2
! B V15, 2 v Ba

The product of the four matrices is

Ml = Mfs2M£c2MlslMZc1

cosp —v1A1l,  sing —viBil, —I 4 vk, —v1l,00C/q
—sing —vA1Js cosp —vyBiJy, —Ji +vihJs —v1Joa1C/q
vy Ag — ho Ay V2By —hyBy  —gia,C + R, —(ayhy + a3)C/g
—q9: A4 ~qg.B; qge(1 + hy) 1 —giyC

(37)
with ¢ = ¢1 + 93 = 37 + ¢, and
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Ly = ge(Dy2cosp + Dl,z sin ), Jiz = gg(f?m cosp — D1 zsin @)

Ry = hihy — go(D1Az + D1 By), his =1 = gs012C + gs(D12A12 + D12 By )
The four eigenvalues exp{=+iu; 2} of M, are given by

2cos fi19 = cos@ + costh + \/(cosaﬁ —cosP) + S (38)

with
2cosp = my1 + My, 2cost) = myaz + Mgy

where my;; are the elements of the matrix M,. The most important term is .S which
determines the stability of the motion. It is given by

S = 2—an1Ge2 +anaGr — Ars3teas + G403+ Go13031 + Go14Goa + Gra3as32 + Qraaegy
(39)
In order to simplify the calculation we define the following quantities

- D1D2+D1D2 . D%,2+Di2 . D1D2 —Dng
Go = ge sing, Ghg=g—"——sinp, T=g
V201 Bi2 v2

Then we consider three cases. First we set G; = Gy = G, = G, i.e. we assume equal
dispersions in phase and amplitude and get

S = —29,0,CG(1 — cosp — gayC — Q) (40)
On the resonance is cos ¢ = cost which gives
2cosp = 2 —2g40,,C —2G + g1 C(geaC + G) (41)
with a,, = a3 + ag and S becomes
S = —g;aiC*G(2 — grasC — Q) (42)

S is negative for sin¢ > 0 since gya9C + G is smaller than 2.

Secondly we consider oy = 0 and T' = 0, i.e. different amplitudes of the disper-
sions, and get

S = 2(1 —cos)(Gy — G1) + (gesC + G )Gy — Gy) (43)
On the resonance one obtains

2cosp = 2 —2¢g40,,C + G, —2Gy — G, (44)
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and
§ = ~(/G1 =[G} (gramC — G1) (45)

which is also negative for singp > 0.

Finally we consider the case a; = 0 and Gy = G = G # G, i.e. phase errors of
the dispersions, and obtain on the resonance

2cosp = 2 — (2 —=T)(gea2C + G, — T cos ) (46)

and

S = —ganC (G -G,) (47)

For S we have neglected all nonlinear terms in G, G, and T. S is negative for
sin > 0 since G is larger than G, (G? = G% + T?sin’¢).

On the resonance S becomes negative in all three cases and this means that on
a difference resonance (sing > 0) the phase p of the eigenvalues becomes complex
and their absolute values become larger than one. Therefore, an error in amplitude
or phase of the dispersion and also a momentum compaction between the cavities
causes an exponential increase of particle amplitudes on the difference resonance.

3.3 Simulation results

The simulations show that the compensation of synchro-betatron resonances
with a dispersion in accelerating cavities gives similar results as the compensation
with transversely deflecting cavities. The compensation as shown in Fig.1 is also
obtained with a dispersion in accelerating cavities and it is not necessary to show all
the plots again. The dependence on errors is similar in both cases. As an example
Fig.14 shows the dependence of the maximum amplitudes on phase errors of the
dispersions on the same resonances which are considered in Fig.7. The phases on
both sides of the interaction point are changed in steps of 3.6° as in Fig. 7. The ratio

D/+/BzePs is 0.5 and the bending is assumed to be zero.

Figs. 15 and 16 show the maximum amplitudes as a function of the cavity voltage
and phase errors. The dependence is roughly the same as in the case of transversely
deflecting cavities shown in Figs. 10 and 11.

4 Conclusion

The simulations as well as the experiments with DORIST have shown that the
synchro-betatron resonances excited by the beam-beam interaction with a crossing
angle reduce mainly the lifetime and do not affect seriously the beam size or the
luminosity. Three parameters are important. The reduction of the lifetime is de-
termined by the normalized crossing angle ¢ 0,/0,, the beam-beam space charge
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parameter £, and the physical or dynamical acceptance of the ring. If the normal-
ized crossing angle is not larger than 0.5, the space charge parameter not larger than
0.03 and the acceptance not smaller than 15 o, it should be possible to suppress al-
most all synchro-betatron resonances with reasonable tolerances for the transversely
deflecting cavities or the dispersive cavities. If the acceptance is in the order of 20
to 30 o, an operation with crossing angle but without crab cavities seems feasible.

There are only a few resonances for which a compensation is difficult, these
resonances should be avoided. One of these resonances is the first satellite of the
integer v, = n+v, on which the amplitudes increase exponentially for the smallest
error of the crab parameters, with and without beam-beam interaction. Since an
unavoidable spurious dispersion in all cavities causes the same effect this does not
pose additional restriction.
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Appendix A

The path lengthening between two arbitrary positions s; and s; is given by [8]

$2 32
dL = /fda: /\@
s1 p 51 P

where p is the radius of curvature. Eq.(Al) can be written as

cos(p)do (A1)

dL = cos(py + 7v / vep ——cos(®y)do — sin(py + 7v / VB sin(®y)do (A2)

with
D1y = 012(0) = ¢(0) —p(s1,2) — 7V -
If f(o) is a periodic function with a period length of C one obtains:
52 s14C 524C s24C
= / F(0)e® @ dy = / Fei®idy — / Fe®do + / Fei® do
51 s1 s2 s1+C
40 . . . s2+C .
= / fe®ido — e“"r““/ fe*2do + €™ I (A3)

- 4
and

s14+C
1 . S . . . s2+C .
= ——— ™' ( / fe’cl)lda—e“”_“"l/2 fe’q)"‘da) (A4)
82

2sin(7v)

With f(o) =+/8(c)/p(c) and

D(s) +iD 2815((:3/) / 1(0)exp {i(p(0) - ls) — m)}dor  (45)

one gets

I = ge—im (Dl +:D, ing D2+ Zb2)

VBT TR
Dy sin(nv) — Dy cos(nv)  Dysin(Ap — 7v) + Dy cos(Ap — 7v)
B V
; D, cos(nv) + Dy sin(nv) . D, cos(Ap — nv) — Dysin(Ap — 7v)
VB VP
- with Ay = @3 — 1. Egs.(A2) and (A6) yield
dL = +fecos(py +mv) Re{I} — \/esin(py + wv) Im{I}
- e (—D1 sin(py) — D, cos(¢p1) N Dy sin(er + Ap) + D, cos(py + Aap))

+

e VP
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(A7)

If we introduce

T, = \/%COS(%), i = —\/aSiﬂ(%)

and define A; and B; by
dL = Ayzy + B2y (A8)

we obtain finally N .
_ Dysin(Ayp) + D; cos(Agp) Dy

A A9
' e By (49)
Dsysin(Ap) — Dycos(Ag) Dy
1 v A (410)
If we define A; and B, by B B
dL = A1 o + B1 .’2’2 (All)
we obtain . 5
< Dy sin(Ap) — Dycos(Ap) Dy
1 VB 3 (412)
- _ Dy cos(Ay) + D, sin(Ag) D,
B, = - — Al3
1 ViR 5 (413)
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Fig.1 Maximum horizontal amplitudes vs horizontal tune with a horizontal cross-
ing angle of 2¢ = 15mrad (¢ o,/0, = 0.4)
a) without crab cavities, b) with transverse crab cavities

Fig.2 Maximum vertical amplitudes vs vertical tune with a vertical crossing angle
of 2¢ = 15mrad (¢ o,/0, = 10.)

a) without crab cavities, b) with transverse crab cavities

Fig.3 Maximum vertical amplitudes vs vertical tune with a vertical crossing angle
of 2¢ = 0.6 mrad (dos/oy, = 0.4)

a) without crab cavities, b) with transverse crab cavities

Fig.4 Maximum horizontal amplitudes vs horizontal tune with a horizontal cross-
ing angle of 2¢ = 3mrad (¢o,/0, = 0.08)
a) without crab cavities, b) with transverse crab cavities

Fig.5 Root mean square deviation vs horizontal tune
a) without crab cavities, b) with transverse crab cavities

Fig.6 Maximum amplitudes vs horizontal tune on the resonance v, = (1 + v,)/3
for different voltages of the transverse crab cavities varying from 0 to the nominal
value.

Fig. 7 Maximum amplitudes vs horizontal tune on several resonances for different
voltages of the transverse crab cavities varying from 0 to the nominal value.

Fig. 8 Maximum amplitudes vs voltage of the transverse crab cavities for two initial
amplitudes (30,,60, ) on the resonance v, = (1 + v,)/3

Fig.9 Maximum amplitudes vs phase distance of the transverse crab cavities from
the interaction point for two initial amplitudes (3c,,60, ) on the resonance v, =

(14 v,)/3
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Fig. 10 Maximum amplitudes vs voltage of the transverse crab cavities for two initial
amplitudes (30,60, ) on the resonances shown in Fig. 7

Fig.11 Maximum amplitudes vs phase distance of the transverse crab cavities from
the interaction point for two initial amplitudes (3o, 60, ) on the resonances shown

in Fig.7

Fig. 12 Maximum amplitudes vs horizontal tune for different voltages in one trans-
verse crab cavity varying from 90% to its nominal value on the satellite resonance
Ve +Vg=mn

Fig. 13 Maximum amplitudes vs horizontal tune for different voltages in one trans-
verse crab cavity varying from 90% to its nominal value on the satellite resonance
Up — Vs =1

Fig.14 Maximum amplitudes vs horizontal tune on several resonances for different
voltages of the accelerating cavities varying from 0 to the nominal value.

Fig.15 Maximum amplitudes vs voltage of the accelerating cavities for two initial
amplitudes (30,60, ) on the resonance shown in Fig. 14

Fig. 16 Maximum amplitudes vs phase distance of the dispersion in the accelerat-
ing cavities from the interaction point for two initial amplitudes (30,60, ) on the
resonances shown in Fig. 14
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