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Abstract 

-. 

The beam-beam interaction with a crossing angle and with a compensating crab 
angle is simulated and treated partially analytically. The crab angle is obtained by 
transversely deflecting cavities in one case and by a dispersion in the accelerating 
cavities in another case. Resonances which are excited by the action of the crab 
cavities are investigated. Tolerances for the cavity voltage and for the betatron 
phases between the cavities and the interaction point are discussed. 
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1 Introduction 

In very high luminosity storage rings a large number of colliding bunches is desir- 
able, and this requirement leads to a crossing angle configuration. The advantages 
of a crossing angle over head-on collision are a better shielding of the detectors from 
synchrotron radiation, a larger separation of the beams at the parasitic crossings 
and a greater independence of the optics in the two rings. 

In the double ring DORIS I, however, it was found [l] that a crossing angle excites 
synchro-betatron resonances which are determined by 

kup + mv, = n (1) 

where k, m and n are integers and ~0 and u, are the betatron frequency (in the 
plane of the crossing angle) and the synchrotron frequency in units of the revolution 
frequency. These resonances are spread over the whole tune diagram and reduce the 
beam-beam limit and the currents. 

With crab crossing the bunches are tilted so that they collide head-on. If the 
tilt angle is made by transversely deflecting cavities these cavities must have a 
betatron phase distance of f7r/2 or an odd multiple of it from the interaction point 
to produce a bump for the tilt. This kind of crab crossing was first proposed as 
a’ way to increase the luminosity in linear colliders [2] and was then proposed for 
storage rings in order to avoid the synchro-betatron resonances [3]. In low energy 
storage rings the number of transversely deflecting cavities which are necessary for 
the crab angle is~sufficiently small so that they will not occupy too much space or 
increase the impedance of the ring too much. 

A second method to obtain a tilt angle was proposed in [4]. The orbit displace- 
ments at the interaction point are produced by a large dispersions in accelerating 
cavities on both sides of the interaction point so that no additional cavities are nec- 
essary. According to a somewhat modified theory the maxima of the two dispersions 
must have a phase distance from the interaction point of 7r or an odd multiple of 
K on one side and a phase distance of 2~ or a multiple of 2x on the other side of 
the interaction point. The position of the cavities is then arbitrary, and one can use 
several cavities distributed over a larger region of betatron phase. 

Since crab crossing has not yet been verified in an existing storage ring it was 
studied by means of computer simulations for transversely deflecting cavities and 
for round beams [4]. In particular, errors of the voltage of the crab cavities and of 
the betatron phase between cavities and interaction point were simulated in order 
to find the tolerances for these parameters. Numerical estimates were also made in 
[6]. In this note simulations for both methods of crab crossing are discussed, and 
the simulations are done for flat beams with an aspect ratio of 25 : 1. 
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2 Transversely deflecting cavities 

. 2.1 Transformation of the coordinates 

The changes of the coordinates in a crab cavity were calculated by 

g=;jg (3) 

where $ is half the crossing--angle and V f 1 describes the deviation from the 
correct value. pZ. and pz are the amplitude functions at the crab cavity and at 
the interaction point, respectively. The energy change follows from the transverse 
kick and from Maxwell’s equations [5]. If the phase advance to the interaction point 
is r/2 and if V is 1, SZ’ gives SZ* = $.s at the interaction point and that means 
that the bunch~ is tilted by an angle of 4. At th e second cavity, after another phase 
advance of r/2, the tilt angle is zero and the remaining betatron angle of -6x’ is 
compensated by a kick of the same strength and of the same sign as in the first 
c;avity. Also the energy change ( Eq.(6) ) o bt ained in the first cavity is compensated 
in the second cavity since x has now the opposite sign. 

The change of the betatron .angles and of the energy due to the beam-beam 
interaction is given by 

-. P& = 276 f& + $ s, Y> (4) 

PjsY' = 2744 fY(X + 4 s, Y) (5) 
SE = $ESx’ (6) 

where & and &, are the space charge parameters and the functions fZ and f, are 
integrals given by 

l-2 
fz = --E- 

l-v J ( exp 
0 

-aX - j!Q 4% 

l-2 
fy = yv 

l-v J ( bX dX 
exp -aX - - > 

0 1-x &7J” 

(7) 

(8) 

and 

UY 1 X2 2)=- 
Czef ’ 

a=- 
2 UZef - u; ’ 

b=L y2 L,y = 
fe Nb@,*,y 

2 a&f - 0; ’ 2VGef,y(%f + GJ> 
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.-. with r, = electron radius, Nb = number of particles per bunch, y = relative particle 
energy and g,,f = ,/m. Th e integrals are solved numerically, tabulated and 
interpolated linearly for each passage of a particle. 

As in the rest of the ring, the coordinates between the crab cavities and the 
interaction point are transformed linearly. V, is 0.06 and vy, which has no influence 
on the horizontal synchro-betatron resonances, is 0.23. The ratio of bunch length to 
beam width is 54 and the ratio of the betatron oscillation energy to the synchrotron 
oscillation energy [5] is (a~2a,R)/(p* Z~&) = 0.01. Most of the simulations are done 
for 3000 revolutions and with 98 particles. Quantum fluctuation and damping are 
neglected since the rise times on a resonance are shorter than the damping time. 

- Also the betatron phase variation seen by a particle due to its longitudinal motion 
is neglected, i.e. it is assumed that the ratio of bunch length to ,BG is small. This is 
the worst case since for a larger bunch length the space charge forces are distributed s-f 
over a larger betatron phase and the excitation of higher order resonances will be 
compensated partly [7]. 

- 
.- _ _ . 2.2 Eigenvalues of the transformation matrix 

In order to investigate the influence of the crab cavities on the beam stability 
without beam-beam interaction we consider the linear motion of the particles by 
means of the matrix formalism. The synchrotron and betatron oscillation can be 
described by the four coordinates Z, 2, s and s” where 2 and s” are given by 

- 
with o = -@‘/a, CL~ = momentum compaction factor and R = mean machine radius. 
The transformation matrices for the transversely deflecting cavities are then given 
bY 

MC172 = [ ,g!l,2 g)J ; ; j (9) 
where gtr,2 is the longitudinal gradient of the transverse kick. The matrices for the 
sections between the cavities are given by 

/ v1,2 cos cpl,2 742 sin 54,2 0 0 \ 

Ivl -q2 sin 591,2 VI,2 cos p1,2 0 0 al,2 = i 0 0 ~0s $1,2 - sin $1,~ 
(10) 

0 0 sin ~42 cos $1,2 

I 

where v1,2 is &2/&1 and 54,~ and $ r,2 are the betatron and synchrotron phase 
advances, respectively. The synchrotron frequency is assumed to be small and the 
sign of $ depends on the sequence of the coordinates s and s”. Since we assume that 
there is no curvature between the cavities we set ?&=O and $2 = $. The product of 
the four matrices is then 
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cos $0 sin ‘p bl sin cp + v1 b2 sin (p2 0 

= - sin ‘p cos $2 bl cos ‘p + vl b2 cos (p2 0 
-9 sin ti(9tl + v29t2 cos cpl) -& sin $ cos$ - br&sin$ - sin I/I 

Q cos $(Yt1 + v29t2 cm Pl) R, cos II, sin$ + blRtcoslC, COSII, 

with ‘p = ‘pr + cp2, b1,2 F gtr,2 PI,2 and Rt = qv2gt2 sin ~1. The four eigenvalues d- 
exp{fipl,2} of Mt are given by 

- 2cosp1,2 = cos$cJ+cos$ zt (cos ye - cos 4)” - q sin I/I sin p (bf + bz + 2bl b2 cos pl) 

(12) 
,-f‘ 

with 
2 cos $ = 2 cos II, + qb, b2 sin $ sin pl 

.- _ . pl,2 can become complex and the eigenvalues of Mt can get an absolute value larger 
than one if sinp is positive, i.e. in the case of a difference resonance [8]. sing M II, 
= 27ru, is always positive. The width of the resonance is then with Sv = 27rSv, 

su, = idq(b:. + b; + 2& ~0s 94/27r (13) - 

The resonance vanishes for bl = b2 or gtI,& = gt2& and p1 = r, 37r, etc. The 
resonance width for errors of the gradients, the amplitude functions and the phase 
distances are given by 

with YtJP = Ytrfi = gtz& and E = v1/27r - 112. 

2.3 Simulation results 

Fig. 1 shows the increase of the horizontal betatron amplitudes as a function of 
the horizontal betatron frequency in the case of a horizontal crossing angle. The ini- 
tial amplitudes are 6 gZ. For perfect compensation the synchro-betatron resonances 
vanish completely. The remaining resonances are the quarter resonance and some 
other resonances which are excited by the nonlinear beam-beam forces. 

Fig. 2 shows the increase of the vertical amplitudes as a function of the vertical 
betatron frequency in the case of a vertical crossing angle of the same magnitude 
( 2 x 7.5 mrad ). For perfect compensation the synchro-betatron resonances vanish 
again completely. Without compensation the increase is larger than for the horizon- 
tal crossing angel since the normalized crossing angle 4 IY~/~~ is larger by a factor 
of 25. For the same normalized crossing angle of 0.4 and $ = 0.3mrad the increase 
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is of the same order of magnitude as for the horizontal crossing angle as shown in 
Fig. 3. 

In Fig. 4 the increase of the amplitudes is plotted for a crossing angle of 1.5 mrad 
and a normalized crossing angle of only 0.08. The increase is clearly smaller but 
there are still many synchro-betatron resonances which will reduce the lifetime of 
the beam if the aperture of the ring is not very large. 

In all the following figures, the horizontal amplitudes are shown for a horizontal 
crossing angle of 2 x7.5 mrad. Fig. 5 shows the root-mean-square deviation of 1200 
particles having a Gaussian distribution at the beginning. In contrast to Fig. 1 the 
rms value or the beam width blows up on only a few synchro-betatron resonances. 
Only the first satellite of the integer and the two lowest satellites of the third order 
resonance ( u, = (1 k us)/3 > enlarge the b earn width noticeably. The reason for 
this behavior is the fact that there are always particles with increasing amplitudes 
and those with decreasing amplitudes depending on the phase between betatron 
and synchrotron oscillation. For small excitations the increase and the decrease 
compensate each other. This means that the synchro-betatron resonances do not 
influence the luminosity very much but reduce the lifetime of the beams. 

Fig. 6 shows the dependence of the maximum amplitudes on the cavity voltage 
around the resonance uZ = (1 + us)/3 for an initial amplitude of 3 g,. The voltage 
is varied in steps of 10% of the completely compensating value in both cavities at 
<he same time. In this case a small crossing angle remains at the interaction point 
which is equal to the crossing angle times the relative error. If only one cavity has 
an error the residual angle is smaller [5] but a tilt angle of the order of the residual 
angle will oscillate around the ring. 

The dependence of the maximum amplitudes on the phase distance of the trans- 
verse cavities from the interaction point is shown in Fig. 7 for initial amplitudes of 
6a,. In the frequency region considered here several synchro-betatron resonances 
are very close to each other. The strongest resonances are u, = (1 - us)/5 = 0.1880 
and u, = (1 + 2u,)/6 = 0.1866 but there are also the resonances u, = (1 + 5u,)/7 = 
0.1857, u, = l/8 + u, = 0.1850 and some other higher order resonances. Here again 
equal errors on both sides of the interaction point are assumed which are varied in 
steps of 3.6”. If the two cavities have position errors the beams will not only collide 
with a small angle but a small tilt angle will also oscillate around the ring. The 
error of the tilt at the interaction point can be compensated by varying the voltage 
of the two cavities which increases, however, the oscillation of the tilt around the 
ring. 

In Fig. 8 the maximum amplitudes as found in Fig. 6 are plotted as a function of 
the cavity voltage for two different initial amplitudes. It shows that the dependence 
is stronger for larger amplitudes. Fig. 9 shows the dependence on position errors for 
the same resonance. 

Figs. 10 and 11 show the dependence of the maximum amplitudes on the cavity 
voltage and on position errors for the resonances considered in Fig. 7. The depen- 
dence is stronger in this case where several resonances are very close to each other. 
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_-. It will be difficult to compensate these resonances, and these few frequencies must 
be avoided. 

. Table 1 shows the tolerable errors of the cavity voltage and the phase distance 
for two synchro-betatron resonances. 

AZ 1 10% I 50% I 100 % 

AU 1 2.5% 0.5% 1 10% 2%130% 8% 
A$ 1 1.5“ 0.5” 1 8” 1” 1 25” 2.5” 

Table 1: Increase of amplitudes for different errors of the cavity voltage U and the 
phase distance II, on the two-resonances 3u, - u, = 1 and 5u, + u, = 1. 

,-f 

Figs. 12 and 13 show the maximum betatron amplitudes with the beam-beam 
interaction turned off on two satellites resonances of the integer. The voltage in 
only one cavity is changed in steps of 1% of its nominal value from 90 to 100%. 
Whereas on the sum resonance uz + u, = integer ( Fig.12) the amplitudes approach 
an upper limit they increase continuously with the error on the difference resonance 
uz - u, = integer (Fig.13). In the second case they increase also with the num- 
ber of revolutions since on the difference resonance the particle motion is unstable 
( Eq.W) >. 

2.4 Dispersion in transversely deflecting cavities 

If there is a dispersion at the crab cavity one has to distinguish two cases. If the 
dispersion is produced outside of the crab bump it will not excite synchro-betatron 
resonances since this dispersion has the same phase advance as the betatron oscil- 
lation and the two kicks will compensate each other. If the dispersion is produced 
between the two cavities the two kicks will not compensate each other and a satellite 
resonance of the integer can be excited which gives an exponential increase for the 
difference resonance ( uz - us=integer ) and an exchange of oscillation energy on the 
sum resonance ( u, + u$=integer ) [8]. 

If a bend between the two cavities produces a dispersion of a few centimeters, the 
effect due to this cause must be compared with that from the dispersion in the main 
accelerating cavities where a spurious dispersion of a few centimeters usually cannot 
be avoided. Since the excitation of synchro-betatron resonances is approximately 
proportional to the dispersion as well as to the gradient of the voltage [8], the 
excitation in the accelerating cavities will be larger than the excitation in the crab 
cavities by an order of magnitude. In any case, the first satellite of the integer must 
be avoided. 
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3 Dispersion in accelerating cavities 

-.f 3.1 Transformation of the coordinates 

The tilt angle can also be produced by an energy change at a position with a 
dispersion [5]. At first the tilt angle was calculated due to a change of the betatron 
coordinate x given by 6x = -DSE/E. However, this is only half the effect. There 
is also a change of the betatron angle x’ due to the derivative of the dispersion given 
by Sx’ = -D’SE/E, and the total change can be written in the form 

Sx = -D-g (14) 7 6” = -i,SE X 
E 

with the abbreviations 

2 = ax+px’, B = aD+pD’ 
.- _ . 

Since in a straight section the dispersion is a free betatron oscillation we can write 

D = +os(y) (16) 7 b = -afisin(cp) 

where a is a constant and v is the betatron phase advance and is measured from a 
position where b is zero and D is positive. A change of the betatron coordinates 
produced at position sl yields at’the interaction point 

6~3 
6~: = -al@ co&a + Ay,) E 

(19) 
where Avr is the phase advance between the energy change and the interaction 
point. Since the sum ‘pl + Ayr does not depend on the phase where the energy 
was changed the position of the cavity is completely arbitrary within the straight 
section. 

The tilt angle is 6x*/s which gives, with (pl + Aq, = r, a,flgel where gel is 
the longitudinal gradient of the energy change in the cavity. If the tilt angle is half 
the crossing angle one gets 

If we compare the gradients in the accelerating cavities and in the transversely 
deflecting cavities which are necessary for the crab crossing we get gel/gtl = ,&/Dl 
where equal amplitude functions for both cases are assumed and the dispersion is 
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evaluated at its maximum. The necessary gradient in the accelerating cavities is then 
larger by about an order of magnitude than in the transversely deflecting cavities. 

We assume that the dispersion vanishes at the interaction point. A dispersion _.. 
with the same phase at the interaction point ( with respect to the phase in the cavity ) 
will reduce the tilt angle and a dispersion with an opposite phase will increase it. 

At the second cavity the transformation of the change produced at the first cavity ‘- - 
gives 

where A’p:! is the phase advance from the interaction point to the second cavity. 
The change in the second cavity is given by 

sx1 = --al fi cos(yl + Av, + AV2) !$ 

szl = .I& sin(yl + A(p, + Acp2) $! 

(21) 

(22) 
,.-- 

d- 
SE2 

6x2 = -a2 p2 cos(cp2) 7 (23) 

(24) 
where (p2 is also measured from a position where D vanishes and D is positive. The 
changes in the two cavities compensate each other if the two conditions are satisfied: 

SE1 al. = 
E 

4 -l)“az!$ (25) --‘ 

-. ~2 = y1+Am+Ap2+n~ (26) 
Here n is an integer. The sum of the phase advance between the first maximum and 
the interaction point ( ‘pl + A’pl ) and of the phase advance between the interaction 
point and a maximum on the other side ( Acp2 - v2 ) must be equal to a multiple of 
7r, i.e. the phase difference between the two dispersions must be equal to nr. 

The energy changes are given, in linear approximation, by the longitudinal po- 
sition of the particle times the gradient of the voltage: 

SE1 - = gels1 E 

SE2 ( AE 
- = ye2 

E 
~1 - AX - B12 - CX~C(- E + Yei%)) 

(27) 

(28) 
where cyl is the momentum compaction factor for this section, C is the circumference 
and Al and Bl determine the path lengthening due to the betatron oscillation (see 
Appendix A). Since there is no path lengthening in a straight section we may take 
the phase difference Acp between arbitrary points in the straight section, for instance 
between the two maxima, and get: 

Al = 0, 02 B1 = a+? 
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Whereas ol can be minimized or maybe made equal zero, B1 cannot become zero 
and this means that there remains a coupling. 

The following transformations are used for the simulations. At the two cavities 
the coordinates are-changed by 

6~ = -D1,2gel,a s (29) .. . 

E = -&,2 gel,:! s (30) 

SE/E = gel,2 s (31) 

From the cavity to the interaction point the horizontal betatron coordinates are 
transformed linearly with a phase advance of A(pr which is varied around 7r. The 
longitudinal coordinate is changed by 

Ss = -Bl&culCAE/E (32) 

with 

Al is zero since we put the cavities at positions where D vanishes. This simplifies 
the simulations. At the interaction point Eqs.(4), (5) and (6) are applied. From the 
interaction point to the second cavity the transformation is given by 

Ss = -.A2x-B2Ga2CAE/E (33) 

with 
A2 = D2sWb)I~~ B2 = 42~04Av2)/j/%- 

whereas the horizontal betatron coordinates are again transformed linearly with a 
phase advance of Av2 which is varied around 27r. The transformation for the rest of 
the ring is a linear transformation with a phase advance A’p3 = 27ru, - Avr - Aq2 
for the horizontal betatron coordinates. The transformation for the vertical plane 
is always done at the interaction point for one revolution with a phase advance of 
277-u,. The longitudinal coordinate is changed by 

Ss = -A3x - B32 - a&AE/E (34) 

with 

-43 = DZ sin(b)/& B3 = -D2 co@v3)/&i + D&A 

and cr3 = cx, -crl -02. If the total acceleration voltage is not necessary for the tilt 
angle the difference can be added at a position without dispersion which does not 
change the simulation results. 
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3.2 Eigenvalues of the transformation matrix 

We consider now the influence of the dispersion on the stability of the particle 
motion without beam-beam interaction. The synchrotron and betatron oscillation 
are described again by the four coordinates x, 5, s and s”, and the transformation 
matrices for the two cavities are given by 

where ye is the longitudinal gradient of the energy change which is assumed to be 
equal in both cavities. This is not a restriction since different gradients are equivalent 
to different amplitudes of the dispersions which are arbitrary. The matrices for the 
sections between the cavities are given by 

.- _ . 

i 

v1,2 COS (p1,2 v1,2 sin v1,2 0 0 

M es1,2 = 
-q2 sin y1,2 'ul,2 cos Y1,2 0 0 

-42 41,2 1 -cqL'/q 

0 0 0 1 1 

(36) 

-. 

where VI,Z is (‘m 2,1 and yr,2 is the betatron phase advance. We assume a beta- 
tron phase advance of 3~ between the two cavities whereas the phase between the 
two dispersions is arbitrary. A r,2 and B1,2 are given by ( see Appendix A) 

Al = -F-“’ 
1 sP2 ' 

A = -Dlsinp+61COSp fi2 
2 __ 

V2Pl P2 

02 B1 = p+- 
1 VlP2 ' 

The product of the four matrices is 

B2 = 
Drcosy-Drsiny +5 

V2Pl P2 

i 

cos y - vlAl12 sin y - vl Bl12 -11 + VlhlI2 --vJ2~1C/q 
- 

= sin y - vlAlJ2 cosy - vlB1J2 -JI + v1hJ2 -VI JmC/q 
v2A2 - h2A v2B2 - b& -9~~zC + Re -(dz + a&'/q 

-qYeAl -qYeB1 qge(l + h) 1 -9eQlC 

(37) 

with y = yr + (~2 = 3~ + y2 and 
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Il,2 = ge(Dl,2 cos y + &,2 sin Y> , J1,2 = ge(&,z ~0s y - 42 sin Y> 

Re = hlhz -ge(CAz + bJ32), hl,z = 1 - geal,zC + ge(Dl,A1,2 + fi1,2&,2) 

The four eigenvalues exp{~i~l,2} of Me are given by 

- 

2 cos p1,2 = cos p + cos $ f &co, $3 - cos 4)” + s (38) 

with 
2 COS $3 = me11 + me22 , 2 cos 1c) = me33 + me44 

where me;j are the elements of the matrix Me. The most important term is S which 
determines the stability of the motion. It is given by 

s = 2- aeiiae22 + ael2ae21 - ae33ae44 + ae34ae43 + aelsaesl + ae14ae41+ ae23ae32 + ae24ae42 

(39) 

In order to simplify the calculation we define the following quantities 

-Go = Ye 
DlDz + 0102 

V2Pl 
sink, G1,2 = ye 

of,, + q2 DID2 - DID2 
P 

sin y , T = Ye 
1,2 V2Pl 

Then we consider three cases. First we set Gr = G2 = G, = G, i.e. we assume equal 
dispersions in phase and amplitude and get 

S = --2gealCG( 1 - cos up - gea2C - G) (40) 

On the resonance is cos (p = cos $ which gives 

2 ~0s y = 2 - 2gea,C - 2G + gealC(gea2C + G) (41) 

with cy, = or + CQ and S becomes 

S = -g~c$C”G(2 -gec12C - G) (42) 

S is negative for sin y > 0 since geo2C + G is smaller than 2. 

Secondly we consider cy r = 0 and T = 0, i.e. different amplitudes of the disper- 
sions, and get 

S = 2(1 - COSY)(GO - G) + (gea2C + G,)(Gl - G2) (43) 

On the resonance one obtains 

(44) 
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and 
S = -(&K - JGz)Z(Se~,,C - GI) (45) 

which is also negative for sin y > 0. 

Finally we consider the case cur = 0 and Gr = G2 = G + G,, i.e. phase errors of 
the dispersions, and obtain on the resonance 

2~0s~ = 2-(2-T)(gea2C+Go--Tcosp) (46) 

and 
S = -gmC (G - Go) WI 

For S we have neglected all nonlinear terms in G, G, and T. S is negative for 
sin y > 0 since G is larger than G, ( G2 = GE + T2 sin2 y ). 

On the resonance S becomes negative in all three cases and this means that on 
a difference resonance ( sin y > 0) the phase p of the eigenvalues becomes complex 
and their absolute values become larger than one. Therefore, an error in amplitude 
or phase of the dispersion and also a momentum compaction between the cavities 
causes an exponential increase of particle amplitudes on the difference resonance. 

-3.3 Simulation results 

The simulations show that .the compensation of synchro-betatron resonances 
with a dispersion in accelerating cavities gives similar results as the compensation 
with transversely deflecting cavities. The compensation as shown in Fig. 1 is also 
obtained with a dispersion in accelerating cavities and it is not necessary to show all 
the plots again. The dependence on errors is similar in both cases. As an example 
Fig. 14 shows the dependence of the maximum amplitudes on phase errors of the 
dispersions on the same resonances which are considered in Fig. 7. The phases on 
both sides of the interaction point are changed in steps of 3.6” as in Fig. 7. The ratio 

Dl&% is 0.5 and the bending is assumed to be zero. 

Figs. 15 and 16 show the maximum amplitudes as a function of the cavity voltage 
and phase errors. The dependence is roughly the same as in the case of transversely 
deflecting cavities shown in Figs. 10 and 11. 

4 Conclusion 

The simulations as well as the experiments with DORIS I have shown that the 
synchro-betatron resonances excited by the beam-beam interaction with a crossing 
angle reduce mainly the lifetime and do not affect seriously the beam size or the 
luminosity. Three parameters are important. The reduction of the lifetime is de- 
termined by the normalized crossing angle $gp/oZ, the beam-beam space charge 
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parameter & and the physical or dynamical acceptance of the ring. If the normal- 
ized crossing angle is not larger than 0.5, the space charge parameter not larger than 
0.03 and the acceptance not smaller than 15 uz, it should be possible to suppress al- 
most all synchro-betatron resonances with reasonable tolerances for the transversely 
deflecting cavities or the dispersive cavities. If the acceptance is in the order of 20 
to 30 oz an operation with crossing angle but without crab cavities seems feasible. 

There are only a few resonances for which a compensation is difficult, these 
resonances should be avoided. One of these resonances is the first satellite of the 
integer v, = n+v, on which the amplitudes increase exponentially for the smallest 
error of the crab parameters, with and without beam-beam interaction. Since an 
unavoidable spurious dispersion in all cavities causes the same effect this does not 
pose additional restriction. 
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Appendix A 

The path lengthening between two arbitrary positions s1 and s2 is given by [8] 

dL = 
s2 

J :da = "'fl 
P J - cos(y)da 

31 Sl 
P 

(Al) 

. 

where p is the radius of curvature. Eq.(Al) can be written as 

dL = cos(cpl + TV) "'m J -cos(Ql)da - sin(vi + TV) "'KP 
P J - sin( fDl)du 

Sl Sl P 
with 

%,2 =--%,2(g) = p(a) - v(q2) -77-v 

If f(c) is a periodic function with a period length of C one obtains: 

s1+c s2-bc 

.- _. _ . I = s2f(u)eimdu~du = J j-@da _ s~cfei@ldg + J @@‘da J Sl Sl s2 ‘v+c 

and 

s1+c 

fei%da _ ei92-i91 J “+’ fei@2da 
s2 

- 
With f(a) = ,/m/p(a) and 

so PS s+c D(s) + a(s) = J .w(:xr,{+m -v(s) -rv)}dg 2sin(7rv) s 

one gets 

= DI sin(rv) - bl COS(TV) + 02 sin(Acp - TV) + fi2 cos(Acp - TV) 

dz l/K 

+ i 
DI COS(TV) + Bl sin(rv) D2 cos(Ay - TV) - fi2 sin(Acp - TV) 

JPI 
-i 

d7G 
with AP = (~2 - ~1. Eqs.( A2) and (A6) yield 

dL = &cos(~~ + TV) Re{ I } - &sin(pl + TV> rm{ I > 

W) 

W) 

W) 

( fw 

w-9 

= -DI Sin(w) - I& COS(~~) + D2 sinh + Ay) + B,z cos(vl + AV) 
dz G-2 
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If we introduce 
. 

4 = Jz-OS(Y1) , Z1 = -&sin(vl) 

and define Al and B1 by 
dL = Al z1 + B1 Z1 

we obtain finally 
A = DZ sin(Ay) + b2 cos(Acp) bl 

1 -- 
m Pl 

B 
1 

= .h sin(&) - 02 cos(Ay) ) 4 
l/m Pl 

If we define Al and B, by - - - dL = A1 x2 + BlZ2 
.- _ . 

we obtain 
A 

1 
= DI sin(Ap) - bl cos(Ay) I b2 

m P2 
(A13 

B1 = 
Dl cos(Ap) + & sin(Aq) 02 -- 

m P2 

WV 

W) 

Pw ,-f 

(A131 1. 
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_- Fig. 1 Maximum horizontal amplitudes vs horizontal tune with a horizontal cross- 
ing angle of 24 = 15 mrad ( C$ CT~/LT, = 0.4) 
a) without crab cavities, b) with transverse crab cavities 

Fig. 2 Maximum vertical amplitudes vs vertical tune with a vertical crossing angle 
of 24 = 15mrad ( $a,/a, = 10. ) 
a) without crab cavities, b) with transverse crab cavities 

Fig. 3 Maximum vertical amplitudes vs vertical tune with a vertical crossing angle 
of 24 = 0.6 mrad ( 4 CT~/CT~ = 0.4) 
a) without crab cavities, b) with transverse crab cavities 

--f‘ 

Fig.4 Maximum horizontal amplitudes vs horizontal tune with a horizontal cross- 
ing angle of 24 = 3 mrad ( $gS/gZ = 0.08) 
a) without crab cavities, b) with transverse crab cavities 

- 
Fig. 5 Root mean square deviation vs horizontal tune 
a) without crab cavities, b) with transverse crab cavities 

Fig. 6 Maximum amplitudes vs horizontal tune on the resonance V, = (1 + v,)/3 
for different voltages of the transverse crab cavities varying from 0 to the nominal 
value. 

Fig. 7 Maximum amplitudes vs horizontal tune on several resonances for different 
voltages of the transverse crab cavities varying from 0 to the nominal value. 

Fig. 8 Maximum amplitudes vs voltage of the transverse crab cavities for two initial 
amplitudes ( 3a,, 6g,) on the resonance V, = (1 + ~,)/3 

Fig. 9 Maximum amplitudes vs phase distance of the transverse crab cavities from 
the interaction point for two initial amplitudes (3a,, 6cr, ) on the resonance v, = 
(1 + v&/3 
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Fig. 10 Maximum amplitudes vs voltage of the transverse crab cavities for two initial 
amplitudes ( 3aZ, 60, ) on the resonances shown in Fig. 7 

. 

Fig. 11 Maximum amplitudes vs phase distance of the transverse crab cavities from 
the interaction point for two initial amplitudes (3a,, 6a,) on the resonances shown 
in Fig. 7 

Fig. 12 Maximum amplitudes vs horizontal tune for different voltages in one trans- 
verse crab cavity varying from 90% to its nominal value on the satellite resonance 
v, $ v, = n 

..-f‘ 

Fig. 13 Maximum amplitudes vs horizontal tune for different voltages in one trans- 
verse crab cavity varying from 90% to its nominal value on the satellite resonance 

.- _ _ . VX -us=72 

Fig. 14 Maximum amplitudes vs horizontal tune on several resonances for different 
voltages of the accelerating cavities varying from 0 to the nominal value. 

-. 
Fig. 15 Maximum amplitudes vs voltage of the accelerating cavities for two initial 
amplitudes ( 30,,~6a, ) on the resonance shown in Fig. 14 

Fig. 16 Maximum amplitudes vs phase distance of the dispersion in the accelerat- 
ing cavities from the interaction point for two initial amplitudes ( 3a,, 60, ) on the 
resonances shown in Fig. 14 
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