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ABSTRACT 

We investigate the flavor asymmetry of the qq sea in a (uu)- 
proton for QCD 1+1 with SU(2)-color. The excess of ii over d 
which apparently seems to be in conflict with the exclusion prin- 
ciple is explained by taking the color degrees of freedom into 
account. By computing color factors for the relevant perturba- 
tion theory diagrams we show that the non-abelian sea quarks 
behave effectively similar to abelian bosons. For the magnitude 
of the flavor asymmetry of the sea we predict scaling proportional 
to the ratio of the quark Compton wavelength to the proton ra- 
dius. We show that the sign of the asymmetry in QC&+r is 
different from the sign measured in 3 + 1 dimensions. 

From an analysis of the violation of the Gottfried sum rule’) it is known that 

the proton contains more d than 21 quarks (see e.g. Ref. 2). This property of 

antiquark distributions is conjectured to be a consequence of the Pauli principle3) 

The argument is based on the observation that there are more u than d quarks in the 

valence configuration of the proton. Thus the exclusion principle apparently forbids 

more states with additional u quarks (from uti pair creation) than with additional 

d quarks. From this simple reasoning one might conclude that the dominance of 

d over ti in the proton is an obvious consequence of the Pauli principle. Similar 

conclusions can be reached by looking at the’ pion cloud of a nucleon (see e.g. Ref. 
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4). The basic argument proceeds as follows: The main contributions to sea quarks 

in a nucleon arise from TN intermediate states. For the proton the only possible 

nN states are 7r”p and r+n. Since the 71’ contains the same ammount of u and 2, 

whereas the w+ contains only d (at least in a valence quark picture) one expects 

more d than U contributions from the pion cloud. For more details we refer to Ref. 

4 and references therein. 

The purpose of this talk is to show that the excess of d over ii in the proton 

is not as natural as it seems to be if one follows these arguments. We will provide 

an example where the above reasoning seems to apply, though the actual effect 

will go into the opposite direction, i.e. more u than d will be present in our 1 + 1 

dimensional toy model. To avoid any misunderstanding we should emphasize that 

we do not claim that the above arguments are wrong in QCD3+1. In fact they 

reproduce the experimentally observed trend. However, we think that the validity 

of these arguments should be checked more carefully to see why they are successful 

in QCD3+1 but fail in QCDl+l. 

.The model we are considering is QCD in l+l dimensions. For simplicity we 

work with SU(2) color#l and two degenerate flavors. The valence configuration of 

our “proton” consists of (uu) in a color antisymmetric state. Certainly the above 

reasoning would predict an excess of d over u in the (uu)-proton. We investigated 

this system by using the method of Discrete Light-Cone Quantization (DLCQ). 5’6) 

In this approach the hadronic wave function is expanded in terms of Fock states 

at equal light-cone time. For fixed quantum numbers the expectation value of the 

light-cone Hamiltonian is minimized by varying the wave functions in the various 

Fock components. The resulting eigenvalue equation is solved by discretization in 

momentum space and subsequent matrix diagonalization. In the numerical work 

we restricted ourselves to two classes of Fock states, the valence configuration and 

the Fock component with one additional sea quark pair. For the values of the 

coupling constant considered (g2CF/r 5 mi) th is is justified since already one uu 

or dd pair appears only rarely. If taken into account, higher Fock components are 

in general negligible for ground state hadrons in QCDl+l.‘) 

#l As far as the flavor asymmetry of the sea in QCD 1+1 is concerned there is nothing special 
about NC = 2. In fact one obtains similar results for NC = 3. However, NC = 2 is much 
easier to deal with numerically as well as conceptually since fewer degrees of freedom have 
to be considered. 
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The numerical results for various quark masses (m = m, = md) are shown in 

Table 1. 

Table 1 

Total admixture of ii and d quarks and flavor asymmetry of the sea for various 

quark masses. 

1 (m%/g2Cjg 1 1. 1 10. 1 100. 1 1000. 1 

1 ii = I$ dx fii(x) 1 0.18. 1O-2 1 0.17. 1O-3 1 0.45. 1O-5 1 0.75. 1O-7 1 

d = so] dx &(x) 0.91 . 1O-3 0.11 . 1O-3 0.35. 1O-5 0.62. 1O-7 

(u - ct,/$ (u + 2) 0.66 0.42 0.29 0.096 

The results for the flavor asymmetry of the sea are quite surprising. First, 

and most important, its sign is positive. In the SU(2)c (uu)-proton, it is more 

likely to find uu sea quarks than it is to find dd sea quarks. Although the total 

number of u and d quarks is small for the quark masses considered, the relative 

flavor asymmetry of the sea reaches 2/3 for strong coupling g2CF/m27r = 0( 1). 

Furthermore, one can observe that the effect of the antisymmetrization vanishes 

for weak coupling (g2CF/ m2r + 0). This result can be easily understood. The 

momentum spectrum of sea quarks is quite wide-the typical scale being one quark 

mass - whereas the spectrum of the valence quarks is narrow (a typical scale is 

the inverse hadron radius). Only for such sea quarks whose momenta are present 

in the valence quark wavefunction is antisymmetrization important. Thus the 

flavor asymmetry should scale like the fraction of sea quarks with momentum of 

the order of the inverse proton radius; i.e. like the ratio of the quark Compton 

wavelength to the proton radius. For large quark masses we have verified the 

power law (U - d)/(U + 2) cx g2i3rne2i3 implied by such a scaling behavior. 

Let us now return to the more interesting question of the sign of the flavor 

asymmetry. In order to develop some intuitive understanding we concentrate on 

weak coupling (m2r/g2Cp 2 10) h w ere sea quarks can be incorporated pertur- 

batively. More precisely one can neglect all interactions in states containing sea 

quarks and use second order perturbation theory starting from the valence config- 
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uration#2 while producing less than 5% errors for the 7) asymmetries. 

The diagrams contributing to sea quark production within these approxima- 

tions are listed in Fig. 1. 

Figure 1 

Second order diagrams contributing sea quarks to the (uu)-proton. 

a,b) bubble graphs; c,d,e) exchange graphs. 

(a) 03 

(d) 

03 6615Al 

#2 Which is obtained by diagonalizing the light-cone Hamiltonian in the two quark subspace 
of the Fock space. 
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The bubble graphs (Figs. la,b) are the only ones contributing to dd production 

whereas all of them contribute to uu production. Thus, in order to understand 

the difference between dd and uu production it suffices to consider the exchange 

graphs (Figs. lc-e). In QED the exchange graphs differ form the bubble graphs 

only by a sign from Fermi statistics #3 and thus exchange graphs cancel part of 

the contribution from the bubble graphs. This cancellation applies only to quarks 

with the same flavor as the valence quarks and we expect uu to be suppressed 

compared to dd ( we confirmed this numerically). The basic reason is the fact 

that the group theory factors are the same for direct and exchange graphs. More 

precisely the group theory factors in QED are given by the product of charges at 

the photon-fermion vertices, i.e. they are given by #4 

G$ED=~, GbED = -1 

G cld 
QED = ‘7 G&D = -1 

(the letters a-e refer to the graphs in Figs.la-e). The signs simply arise from 

attaching the photons to positively and negatively charged fermions: e.g. the first 

graph in Fig.la and the first graph in Fig.lb differ by connecting the lower photon 

to different valence fermions. Since we had chosen opposite charges for the valence 

fermions this results in opposite signs for the group theory factors of these two 

graphs. Note that graphs which differ only by exchanging two fermion lines (e.g. 

exchanging two fermion lines in Fig.la leads to Fig.1 c or d) have the same group 

theory factor. In QED these statements are almost trivial since group theory 

factors can be evaluated by multiplying some numbers. 

In QCO the situation is quite different since the group theory factors are not 

just products of numbers but rather sums of traces of products of matrices. Thus by 

simply “looking” at the graph it is not so easy to guess the group theory factor and 

calculating them often yields surprising results. The corresponding group theory 

#3 Here we are interested only in a qualitative understanding of the flavor asymmetries. We 
thus neglect the orbital matrix elements which are the same in QED and QCD within the 
order of perturbation theory considered in this work. Of course the numerical results in 
Table 1 contain the orbital part. 

#4 Since QED is confining in 1 + 1 dimensions we assume here that the two valence fermions 
have opposite charges. 
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factors for the graphs in Fig.1 are 

G”QcD = 213, G&D = -213 

G cld 
QCD = -3116, G$cD = 3116. 

Besides the smaller absolute value (which is like a ~/NC suppression) the exchange 

graphs have a negative color factor compared to the direct graphs (and also com- 

pared to the charge factors in QED) w ic compensates for the above mentioned h h 

sign from Fermi statistics. Thus the non-abelian sea quarks, which are of course 

fermions, behave similarly as abelian bosons would do. What happens here is the 

following: when a valence quark emits a qtj pair via one gluon exchange, the color 

group factors at the vertices make it more likely to find the produced quark in a 

color odd state than to find it in a color even state with the valence quark. If 

the sea quark has the same flavor as the valence quark the total wave function 

must be odd under exchange of sea and valence quark; i.e. the spatial part must 

be even in the color odd case (the more likely one) and vice versa. #5 Therefore, 

after “integrating out” the color degrees of freedom, the sea quarks are more likely 

to behave like bosons with respect to the valence quarks. If the spatial part has 

bosonic symmetry there is constructive interference between direct and exchange 

graphs, i.e. there is enhancement compared to distinguishable quarks (the case 

when sea and valence quarks have different flavor). 

Besides the (uu)-proton for SU(2)c we investigated uii and dd sea quarks in 

uti mesons for general NC. Furthermore we estimated the effect for the SUc(3) 

proton. In these examples the sign of the asymmetry of the sea is always the same 

although its absolute value decreases like ~/NC. 

One might be tempted to generalize these results to QCDs+l. This would 

however contradict the experimental results.2)These clearly show an excess of d 

over ii in the proton. We will not try to resolve this problem here but simply 

point out several important differences between this work and QCDs+l. Due to 

the running of the QCD coupling the sign of $7(-q is reversed; although the 

color factors are the same in l+l and 3+1 dimensions, radiative corrections tend 

#5 Remember there is no spin in 1 + 1 dimensions. In QCDs+l one has to take spin degrees 
of freedom into account which complicates the discussion. We don’t know how this changes 
the results. 
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to favor dover u in the real proton 7) and perturbation theory in &CDs+1 predicts 

the correct sign for the asymmetry. Most importantly however the predicted result 

is much smaller than the experimentally observed asymmetry 8) though there is 

some uncertainty in the extrapolation of the data to small x.‘) Thus it is not 

clear at the moment whether the observed excess of d over u in the real proton is 

a nonperturbative effect. Furthermore, it would be very interesting to see which 

effect or which degrees of freedom are primarily responsible for the sign reversal in 

the asymmetry if we go from 1 + 1 to 3 + 1 dimensions and to get some intuitive 

understanding about the underlying mechanism. As we have already pointed out, 

the most obvious difference between 1 + 1 and 3 + 1 dimensions is the spin, which 

does not exist in 1 + 1 dimensions. One might think that inclusion of spin degrees 

of freedom might reverse the effect studied here. In principle this is possible but 

we do not know what really makes the difference between real experiments and our 

1 + 1 dimensional results. However, we would like to emphasize that if the spin 

degrees of freedom account for the basic difference between &C&+1 and QCDs+r, 

then the naive argument based on the Pauli principle must be wrong for QCD3+1 

also since spin plays no role whatsoever in the argument. 

In the meson cloud model the situation is much clearer and it seems that we 

have found an effect which reverses the asymmetry if we go from 1 + 1 to 3 + 1 

dimensions. In order to show this we will investigate the consequences from another 

important difference between &C&+1 and &C&+1 in the appendix. In QCDl+l 

the 77 meson is almost degenerate with the pion, i.e. there the 77 cannot be neglected 

in the meson cloud of a nucleon. We will show that inclusion of the 7 reverses the 

sign of the asymmetry in QC&+l. In 3 + 1 dimensions the large 77 mass makes 

this meson much less important for radiative corrections than the 7r and we can 

safely omit the q. In other words, if we would include the 7 in 3 + 1 dimensions 

this would not make much of a difference. 
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APPENDIX: the contribution from the 77 in QCDl+l 

The disagreement of our findings with the naive meson cloud is so surprising 

that we will try to resolve the apparent contradiction. In l+l dimensions there is 

no spin (because there are no rotations), i.e. there is nothing like a nucleon but 

only A’s. Thus let us modify the mesonic argument such that it applies to those 

baryons and consider the 7r admixture to a A+ state which can couple to r-A++, 

7roA+ and a+A”. 

The (very naive, as we will see) argument here would be: The w”A+ con- 

tributes the same ammount of u and 2; the 7r+A” (which contributes only d) would 

be favored compared to r-A++ (which contributes only U) because of isospin 

Clebsch-Gordan coefficients and altogether one expects more d than U. However 

our numerical estimates have shown that there is actually more u than d in this 

state, i.e. even in this simplified hadron model there seems to be a contradiction. 

Let us see what went wrong with the naive TA argument. The most important 

mistake has been made by neglecting the q meson which is almost degenerate with 

the 7r” in 1 + 1 #‘3 dimensions. Since the 7 has similar flavor content as the 7r” 

there will be important interference effects between these i+7 mesons. If we assume 

that rl and 7r are degenerate (which is an excellent approximation in &C&+1) we 

can talk about uu and dd mesons instead. In order to understand the effect of 

the 7 let us neglect antisymmetrization for the moment (which means we should 

get the same amount of ?i and d if we sum up all contributions). From quark 

counting it should be clear that the coupling of a A+ to a uu is twice as large as 

to dd, i.e. considering neutral mesons only we get an excess of uii. Actually, if one 

neglects antisymmetrization this compensates exactly the excess of dd from the 

other 7rA states. If one takes antisymmetrization into account then uii mesons are 

even more favored. The basic reason is that the spatial wavefunction of the A is 

#6 The basic reason is that the axial U(1) current is not anomalous in QCDl+l. Intuitively 
one can understand this by looking at the discrete quantum numbers of these mesons. Both 
mesons have (P, C) = (-, +) in 3 + 1 dimensions and (P, C) = (-, -) in 1 + 1 dimensions 
(in 3 + 1 dimensions the C-operation picks up an extra minus when acting on the odd spin 
wavefunction of a pseudoscalar). Thus the 1 + 1 dimensional n cannot couple to a two gluon 
intermediate state which is sometimes mentioned as a reason for the large mass of the r,i. 
Furthermore there are no instantons in QCDl+l. 

#7 Naively one might believe that including the 17 doesn’t change anything since, like the A’, 
the q contains the same amount of ti and 2. However, the operator measuring the flavor 
asymmetry of the sea is an is&pin triplet operator, i.e. it has nonzero matrix elements 
between r and n states and there is interference between r and 17 contributions. 
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totally symmetric and thus the quarks behave effectively like bosons. Ultimately, 

this allows one to explain the numerically obtained excess of u over d in &C&+1. 

Summarizing one can say that it is the interference of the 7 with the 7r which 

turns the apparent d dominate into a u dominance in QCDr+l. 
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