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A classical Lagrangian formalism has recently been given ~1 from which both 
the symmetrized set of Maxwell’s equations and the equations of motion for both 
electrically and magnetically charged particles can be derived. This analysis uses 
two potentials, following Cabibbo and Ferrari, [‘I and employs space-time algebra,#’ 
the Clifford algebra appropriate to four-dimensional Minkowski space-time.[4] 

Four linearly independent vectors yP are used as a basis set for space-time al- 
gebra. The (Clifford) products of these vectors yield 16 linearly independent quan- 
tities which partition into scalar, vector, tensor, axial vector (or pseudovector), and 
pseudoscalar objects, in complete analogy to the bilinear forms constructed using 
solutions to the Dirac equation. Noting this analogy, the purpose of this letter 
is to indicate the possibility of a naive extension of the classical results to quan- 
tum theory by simply incorporating the form of the interaction terms as given 
by the classical theory into a lowest order quantum mechanical calculation of the 
“Coulomb” scattering of an electron by a fixed monopole. The physical implica- 
tions of this dual role for the y matrices is not clear. Chisholm and Farwell,[5] who 
analyze these questions from a somewhat different perspective, developing a gen- 
eralized gauge theory which includes magnetic monopoles, introduce the notion of 
“spin torsion” in an eight component spinor theory. 

The interaction term of the Lagrangian mentioned above is the Clifford prod- 
uct of a generalized current 

times a generalized potential 

J’=.i -rsk, (1) 

d=A-qM, (2) 

where A is the usual vector potential, associated with the electric current density 
vector j, and M is a “magnetic” vector potential associated with the magnetic 
current density k. The space-time algebraic expansions of these quantities are 

* Work supported by Department of Energy contract DE-AC03-76SF00515. 
#l The idea to employ space-time algebra (sometimes called Dirac algebra) to incorp- 

orate magnetic monopoles into classical electromagnetic theory was proposed by 
de Faria-Rosa et al.L3] 



j = jp~y~, A = Ally,, etc., where jp, APL, etc. are the usual tensor quantities. The 

pseudoscalar of space-time algebra, 75, is here #2 defined by 

75 = yOyly2y3 . (3) 

When written out, the generalized interaction term is 

-a = -(.i - -/&)(A - y5M) = -(jA --jy5h4 - r5kA + y5ky5M) . (4) 

The usual interaction term, -jA, describes the interaction of an electric current 
with the usual vector potential. This is the interaction responsible for the usual 
Coulomb scattering. The term -yskysA4 = -kM is the analogous interaction of 
the magnetic current with the magnetically generated vector potential. The cross 
terms, jy5.M + y5 kA, describe the forces of magnetically generated fields on electric 
currents and vice versa. The term jy5M, then, is the one that is appropriate to 
the scattering of an electron by a fixed magnetic monopole. This form for the 
interaction term is analogous to that obtained by Chisholm and Farwell.151 

The topic of Coulomb scattering of electrons is a well-studied problem and can 
be found in any book on quantum mechanics. In order to furnish a framework to 
calculate the Coulomb scattering of an electron by a magnetic monopole, we first 
record the Coulomb scattering of an electron by an infinitely heavy charge Q. We 
follow the derivation (and notation) of Bjorken and Drell171 in which the electric 
current is given by eGfT”$i, where 

and 

(6) 

are the initial and final wave functions, respectively, and tL = c = 1. The electron 
has charge e (<O), mass m, momentum p, and spin s. The wave functions 1c, are 
normalized to unit probability in a box of volume V. 

#2 There is a factor i difference between the definition of 75 by Eq. (3) and that by Bjorken 
and Drell.[‘] Since a cross section (without interference terms) is being calculated, we can 
ignore this distinction. 
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For the usual electron Coulomb scattering by a point charge Q, one expands 
the interaction term jA and calculates the transition matrix element 

Sfi = -ie 
J 

d4x$fA,yp$; , (7) 

where 

Q 
Ao = 47r 15 1 

and A = 0 (8) 

represent the Coulomb potential. Boldface type is used to represent 3-vectors in 
Euclidean 3-space. 

The transition rate per particle into the final states in the interval d3pf is 
given by 

Vd3Pf 
1 ‘fi I2 (2+ 7 (9) 

which leads to the differential cross section (averaged over initial state spins and 
summed over final state spins) of 

- Q2a d&Q 
dR 87r IQ I4 (8E;Ef - 4pi * pf + 4m2) 7 

where o = g =” l/137, and Q = pf - pi is the 3-momentum transfer to the electron. 
In terms of the scattering energy E = Ei = Ef and scattering angle 6, one obtains 
from Eq. (10) the Mott cross section 

- = Q2ct[1 - p2 sin2(0/2)] d&Q 
dR 167rp2p2 sin4(0/2) ’ (11) 

where /? = w/c and p2 =I q I2 /(2 sin 6/2)2. 

At this point, to obtain the analogous cross section for the scattering of an 
electron by a monopole, we follow the form suggested by the classical expression 
of the generalized electromagnetic interaction given by Eq. (4), and make the 
substitution A, yp -+ Mpy~y5 in Eq. (7). Th is substitution is tantamount to an 
assumed definition for the interaction between electrons and monopoles. There 
are, of course, other possible assumptions for the electron-monopole interaction. k491 
Since the Coulomb field is not quantized, we do not need to worry about the nature 
of the source of the magnetic field or the two-photon question. PA 
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The relevant transition matrix element for electron-monopole scattering is 
then given by 

where 

Se? = -ie fa J 
d4z$fMpy~y~& , (12) 

Ml)= g 
4r lx I 

and M = 0 

represent the “Coulomb” potential of a magnetic monopole of pole strength g. 

Carrying through the same analysis, except for the incorporation of the 75 
into the spin sums, leads to 

d*eg -= 
do 8Tg;; l4(8-Wf - 4pi .pf - 4m2) . 

Equation (14) reduces to 

daeg g2a cos2( e/a> 

- = 167rp2 sin4(0/2) ’ dR 

(14) 

(15) 

where we see that the p2 factor in the denominator of the scattering of an electron 
by the charge Q, as given by Eq. (ll), is not present in the monopole scatter- 
ing. This is exactly what has been found in previous classical[lO] and quantum 
mechanical[11,12] calculations and is what one would expect from an examination 
of the Lorentz force on an electric charge due to an electric field E versus that due 
to a magnetic field II: 

P=e(E+pxH). (16) 

Now, it is well known that the vector interaction of relativistic quantum elec- 
trodynamics tends to conserve helicity. [I31 By making an elementary qualitative 
argument, one can easily see that the pseudovector interaction of Eq. (12) also 
tends to conserve helicity. The argument is essentially the same as that for the 
QED vector interaction. Consider the matrix element for a right-handed relativis- 
tic election to scatter to a left-handed electron via a ~~75 interaction. Such a 
matrix element is proportional to 

“f( 9)ysys(+ui = ufyp(~)(~)y5ui = 0 . (17) 

This result is in agreement with previous quantum mechanical calculations, which 
show that the major contribution to the forward scattering cross section of electrons 
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off of monopoles is the helicity non-flip scattering.1121 This result also furnishes 
some physical insight into the notion of spin torsion proposed by Chisholm and 
Farwell.151 

The fact that these results show agreement with prior calculations gives jus- 
tification for the assumption of a ~~75 form for the interaction between electrons 
and monopoles. Extension of this initial result to a complete perturbation theory 
with a consistent set of Feynman rules would be of considerable interest. This 
approach-using two potentials-does not contain any singular vector potentials, 
as does the original formulation of Dirac P41 or that of Schwinger. 1151 In addition, 
it does not suffer from such complications as an arbitrary unit vector 1’1 which 
sacrifices manifest space-time isotropy, or postulated nonlocal interactions. [‘I On 
the other hand, the two-photon question needs resolution. Another question also 
arises: one observes that the cross section in the backward direction (as 6’ + .R) 
given by Eq. (15) d oes not agree with prior calculations. However, this is just 
the region where one would expect the higher order scattering terms to domi- 
nate. While higher order calculations using the ~~75 interaction would presumably 
ameliorate this deficiency, there would be a convergence problem if g is too large. 
But this is also the case for large Q. These questions are presently being studied. 
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