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Abstract - 

- . Approximate invariant tori in phase space are found using a non-pertur- 
bative, numerical solution of the Hamilton-Jacobi equation for a nonlinear, time- 
periodic Hamiltonian. The Hamiltonian is written in the action-angle variables of 
i&s solvable part. The solution of the Hamilton-Jacobi equation is represented as 
a Fourier series in the angle variables but not in the ‘time’ variable. The Fourier 
coefficients of the solution are regarded as the fixed point of a nonlinear map. 
The fixed point is found using a simple iteration or a Newton-Broyden iteration. 
The Newton-Broyden method is slower than the simple iteration, but it yields 
solutions at amplitudes that are significant compared to the ‘dynamic aperture’. 
Invariant tori are found for the dynamics of a charged particle in a storage ring 
with sextupole magnets. 
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Introduction 

. . 

In the dynamics of single, charged particles in a storage ring, the effect of 
nonlinear magnets on the particle motion can reduce the stable region of phase 
space (the dynamic-aperture) and lead to short beam lifetimes. The nonlinearity 
can also increase the effective size of the particle distribution in a beam and 
decrease the luminosity of a colliding beam machine. For these practical reasons, 
as well as for theoretical ones, the approximate solution of the Hamilton-Jacobi 
equation, and the resulting torus, prove useful for understanding strong nonlinear 
perturbations on linear motion. 

The existence of a continuous family of accurate, approximate invariant tori 
in a region of phase space is related to the stability of orbits in that region. 
Using the canonical transformation associated with that family, one can set long- 
term bounds on nonlinear motion, following an argument’ in the spirit of the 

Nekhoroshev theorem.2 Also, the shift of the tune from its linear value as a 
function of the amplitude can be found from the solutions of the Hamilton-Jacobi 

-.-e 

equation. This gives a picture of nearby resonances that can affect 
motion. 

The linear motion of a charged particle in a transverse magnetic 
described by the Hamiltonian, 

the particle 

field can be 

(1) -- 

where xi are the transverse displacements, pi are the components of the transverse 
momentum normalized by the longitudinal momentum, and s is the arclength 
around the storage ring. The focusing functions, 1(;(s), describe the magnetic 
field and are periodic with period C, the ring circumference: Ki( s + C) = Ki (s). 
Eqn. (1) describes the linear motion of the particle. In storage rings there are also 
nonlinear magnets, usually sextupoles, that give a nonlinear perturbation to Ho. 
The perturbation from sextupoles is V(X~,X~,S) = S(s)(xT - 3xlxg)/3!, where 
S(s) gives the strength and distribution of the sextupoles. The perturbation is 
also periodic with period C. 

It is convenient to use the action-angle variables I = (II, 12), Q = (@I, f@2) of 
the linear Hamiltonian. The transformation equations are xi = ,/m cos a; 

andp; = -dm(sin@;+ .( ) ay, s cos @I), with i = 1,2. Courant and Snyder3 

and Ruth4 describe the single particle motion, the action-angle transformation, 
and the lattice functions (,B; and o;) in greater detail. 

After the change of variables, the new Hamiltonian is 

H(@,I,s) = O(s) -I+ V(@,I,s) , (2) 

with a(s) = (l/,&l/p,). W e see from Eqn. (2) that if there were no nonlinear- 
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ities, i.e. V = 0, the action I would be a constant of the motion. In accelerator 
physics, 11 and 12 are essentially the Courant-Snyder invariants. 

The Hamilton-Jacobi Equation 

.- 

The solution of the Hamilton-Jacobi equation, if it exists, is the canoni- 
cal transformation to the action-angle variables of the nonlinear Hamiltonian, 
Eqn. (2). It y ie Id s a new Hamiltonian that is independent of the new angles. 
Hence, the new actions are constants of the motion. The canonical transforma- 
tion (@,I) + (ik, J) is generated by F’(@, J,s) = @ . J + G(@, J,s) with the 

- transformation equations 

_ ._ 1 =.~J + G@% J, s) , (3) --e 
*=f@+G~(f@,J,s) , (4) 

H’(%J,~)=WJ+G+)+V(@,J+GW) . (5) 

.- - . Subscripts on G indicate differentiation: G* = (dG/d@r, dG/d&). Requiring the 
new Hamiltonian H’ to be independent of the new angles yields the Hamilton- 
Jacobi equation. It can be projected onto a Fourier basis in a: 

_ - H’(J,s)=~(s)~J+d,g(O,J,s)+~(O,J,s;g), m=% 
~=&g(m,J,s)+im.?(s)g(m,J,s)+v(m,J,s;g), m#O, (7) -- 

-. v(m,J,s;g) = -im%‘(@, J + G+, s) , (8) 

with G+(@, J,s) = CmEaimg(m, J,s)exp(im. 0). 

For a numerical calculation, the set Z? includes all modes m = {m;} with 
0 5 Im;l 5 Ma, except for the vector m = 0. The number of independent modes 
in B, for N = 2, is 2MrM:! + Ml + M2, as one sees by applying the reality 
condition g(m, J, s) = g*(- m, J, s). For Mr = M2 = 15, typical values, there are 
480 independent, complex modes. Let M denote the subset of Z? corresponding 
to the independent modes. 

The coefficients with m # 0 can be found from Eqn. (7) and the condition 
that the coefficients must be periodic with period C. This boundary condition 
yields solutions of the differential equation that give the invariant torus. The 
linear term in Eqn. (7) can be simplified using the following integrating factor, .- 
exp (im . X(s)), where X(s) = J{ a(o) da is the linear phase advance. This 
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.- 
defines a new coefficient h(m, J, s) = g(m, J, s) exp (im . X(s)) that satisfies the 
differential equation 

. . 
d,h(m, J,s) = -e dm.x(s)v(m, J, s;g(h)) , m E M , (9) 

v(m, J,s;g(h)) = ~$f$+-im%‘(B; J + G*,s) , 
0 

(10) 

G+ = -2 Im c mh(m, J,s)e”m’(9-X(S)) . (11) 
mEM 

- 
Eqn. (9) is to be solved under the boundary condition 

h(m, J, C) = e2*im’vh(m, J,O) . (12) -.-c 

Notice that the boundary condition of h differs from the periodicity of g by the 
total phase advance, X(C) = 27ru, of one revolution around the ring. 

T$ solution to Eqns. (9)-( 12) can be formulated as a fixed point of a nonlinear 

map. ’ Writing h(m, J, s) as h(s), the ( numerical) integration of Eqn. (9) from 
some initial condition h(0) can be considered a map U : h(0) H h(C) - h(0). 
Ssbstituting Eqn. (12) for h(C) g ives a relation that the initial condition meets 
when it satisfies Eqns. (9)-(12): 

h(m,O) = m, h(O)) = A(m,h(O)) . (13) 

The fixed point, h(O), of A(h(0)) yields th e coefficients that solve the above dif- 
ferential equation and boundary condition. 

We do not use a Fourier series to represent the s-dependence of h, since that 
would give poor accuracy when the perturbations are step functions in s, as is the 
case in storage rings. 

Numerical Techniques 

The problem of finding the solution of the Hamilton-Jacobi equation is now 
the problem of finding the fixed point of a nonlinear map. In this section, we 
discuss two techniques we use to find the fixed point: the simple iteration scheme 
and the Newton-Broyden iteration scheme. 

The simple iteration, which works well for weak effective nonlinearities, is just 
theiteration hisl(0) = A(h”(O)), h w ere i labels the iterate. For a sufficiently weak 
A (proportional to V) this converges to a unique fixed point. The initial guess for 
the solution, h’(O), is found using the lowest order perturbative approximation 
for the solution. This amounts to solving Eqns. (9)-(12) with Ga in Eqn. (10) set 
to zero. 
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The Newton-Broyden iteration is a method of the Newton type for determi- 

nation of roots of 

F(m, h(0)) = A(m, h(0)) - h(0) = 0 , (14) 

using a Broyden update 7’8 procedure to approximate the new Jacobian of F at 
each iteration. The Jacobian must be fully calculated only for the first iteration. 
For large numbers of independent modes, this saves considerable computing time. 

.- The complex derivative of F is not well defined: F is not an analytic function 
of h(0). If Eqn. (14) is written as two real equations, then the derivative of F 
with respect to Re h and Im h is defined. A compact notation is used for the real 
equations, p = (Re F, Im F) T. Equation (14) has the form F(m, L(O)) = 0, where 

i(O) = (Re h(O), Imh(0))T. YI!h e rs or fi t- d er expansion of this equation about the 
previous iterate is 

- 
.- - . F(m,7zi(0)) + C b( m,n, L”(0)) . [Li+l(n,O) - ii( = 0 , (15) 

nEM 
with 

B (m, n, i(O)) = 
i?ReF(m)/dReh(n,O) dReF(m)/dImh(n,O) 

dImF(m)/dReh(n,O) dImF(m)/dImh(n,O) > 
* (16) 

This system of equations is solved for the new iterate, ii+l. 

The Jacobian b of the map is numerically calculated for the first iterate using 
divided differences. The components of i(O) are perturbed separately and the 
map p is evaluated. The elements of the derivative matrix are just the differences 
of the map at the nominal and perturbed coefficient divided by the magnitude of 
the appropriate perturbation. 

If b>” is the Jacobian at the i-th iteration, the Broyden update giving the 
Jacobian at the (; + 1)-th iteration is 718 

D - i+1 = pi + [jY(jl”+l) _ jT(ii) _ fji (ii+1 - ii)] (ii+1 - ii)T 

@+1 _ j$)T( f&+1 _ ii) (17) 

Notice that this requires only one full calculation of the Jacobian at the start of 
the iteration and the subsequent updates need only one evaluation of the map F. 

The map U is numerically evaluated using a fourth-order Runge-Kutta algo- 
rithm for the s integration and a fast Fourier transform for the Q integration. 
We specify NRK integration steps per nonlinear element. For strong effective 
nonlinearity, the number of integration steps must be increased to maintain the 

- 
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accuracy of the solution. The perturbation estimate for ho(O) is not generally 
a good enough guess to ensure convergence for large NRK, so we calculate the 
solution at a smaller, intermediate value for NRK and use it as the starting point. 
We take the number of discrete steps in the @ integration to be at least twice, 
and usually four times, the Mr and M2 mode numbers. 

To save computation time, especially in the 2 l/2 degree of freedom case, only 
numerically significant modes from the mode set are selected. At an early stage in 
the iteration, after performing one simple iteration, numerically significant modes 
(wherever in s) are kept for the calculation. The other modes are ignored. In 
practice, for the 2 l/2 degree of freedom case, no more than 130-200 modes are 
kept for the longest calculations. 

Once the fixed point, hi, is reached, the s-dependence of the coefficients can 
be determined by integrating the differential equation, Eqn. (9). 

Numerical Results 

P 

.- - . We presentresults of approximate invariant tori for a single cell of the Berkeley 
Advance Light Source (ALS). ’ Th’ is storage ring lattice has very strong sextupoles 
and very good periodicity (the ring is made up of 12 identical cells). The param- 
e_ters for the single cell of the ALS are given in Table 1. 

- 

TABLE 1. Lattice parameters for the single cell of the Advanced Light Source. 
Parameters are given at the beginning of the element. The cell length is 16.4 m 
and each sextupole is 0.20 m long. The tunes are v1=1.18973 and ~=0.68158. 

name position parameters phase 

m PI, m P2, m a Q2 Xl, rads X2, rads 

SD 5.775 1.472 10.696 -1.779 8.401 2.480 0.866 

SF 6.875 3.984 1.580 2.272 0.417 2.819 1.222 

SF 9.325 3.137 1.443 -1.963 -0.268 4.600 2.928 

SD 10.425 2.297 7.603 2.345 -7.062 4.886 3.395 

Strengths are Sso=-88.090 rnm3, and Ss~=115.615 m-‘. 

At s = 0, pr = 11.0 m, p2 = 4.0 m, and or = cu2 = 0. 

In Fig. 1, we show some one-dimensional invariant surfaces (top) and results of 
symplectic integration lo (tracking) of the equations of motion (bottom). They are 
shown in the transverse phase space at s = 0. The phase coordinates, (x~r,p~r), 
are normalized so that linear motion with Jr = 2.2. 10V5 m would be represented 
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_- 
by a circle of unit radius. The tracking results are obtained by symplectically 

. . 
integrating the equations of motion using many initial conditions, some of which 
lie on the calculated invariant surfaces. Corresponding graphs of surface points 
and tracking points are indistinguishable (see below for a discussion of the errors 
in the agreement of the torus and tracking). We also notice that the solution 
at the largest amplitude is very close to a region of large scale instability, and is 
outside of an island chain. This curve defines the approximate dynamic aperture 
for the one-dimensional motion. 

-- 

- 

The accuracy of the invariant surface can be estimated by comparing the 
surface with trajectories that begin on it and are symplectically integrated for - 
N, revolutions. We use 16 initial conditions uniformly distributed in @r (or @ in 
two-dimensions) on the calculated invariant surface at s = 0. Each trajectory is 
tracked for N, = 1000 revolutions and is compared to the invariant surface at each 

-.-C 

s = 0 crossing. Two parameters are defined that measure the degree to which the 
actions, 1F, of the trajectories differ from those of the solution: 

(19) 

Similar parameters are defined for each surface in the two-dimensional case. The 
two parameters differ only in the normalization of the deviation of the actions. 

TABLE 2. Summary of parameters for the one-dimensional invariant surfaces. 

Jl M NRh- tracking comparison smear tune cpu 

SJl 

9.25.10-3 

7.47.10-4 

6.88*10-5 

2.00*10-s 

2.25.10-6 

shift 

f35.8% -1.39.10-2 

f31.6% -1.22.10-2 

f20.5% -5.53.10-3 

f6.4% -5.35.10-4 

f2.0% -5.34.10-5 

time 

8m20s 

5m43s 

7m50s 

Om55s 

Om05s 

Several parameters for the calculated invariant tori shown in Fig. 1 are given 
in Table 2. It shows that the surfaces agree very well with short term symplectic 
tracking. We define the smear as f [(Ir)maz - (~r)~i~] / [(11)~~~ + (II),;,]. It 

- 
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measures the degree of distortion of the surface from linearity. The tune shift is 
the change in the tune, ~1, from its linear value that results from the nonlinearity. 
The total CPU time is the computation time for each calculation with diagnostics 
on the SLAC IBM 3090 computer. 

.- 

For 2 l/2 degrees of freedom, the calculation of accurate surfaces for large 
amplitudes can be very time consuming. Several cases for the ALS cell are shown 
in Table 3. Notice the large mode sizes and generally long computation times. 
The maximum mode numbers for each angle are chosen to be equal, Mr = IM2. 
The selected and total number of independent modes are shown, as well as the 
intermediate and the final number of integration steps. The comparison with short 
term tracking is given for each surface. 

-.-C 

TABLE 3. Summary of parameters for the two-dimensional solutions. 

- pr M modes NRK tracking comparison 

62 

cpu time 

IBM 3090 

14m57s 

3h13mlOs 

lh37m28s 

2hOOm45s 

.- _~ - . 

0.2, 0.2 

-~ (10e6 m) 

4, 4 

1, 3 

1 3,1 

15 501480 2/10 2.66 . 1O-4 4.37 - 10-4 

31 180/1984 7116 3.88 . 1O-2 1.62. 1O-2 

31 12511984 5/16 5.64 - 1O-3 5.16. 1O-3 

31 180/1984 4/16 5.73 * 1o-4 9.59 * 10-4 

Typical two-dimensional invariant surfaces are shown in Figs. 2 and 3. We 
plot the invariant torus at s = 0 as II(@, J,s = O)/Jl and 12(@, J,s = O)/J2. 
Fig. 2 is for a smaller constant action and shows less distortion than Fig. 3. Both 
surfaces agree well with short term tracking. 

Summary 

We have discussed a technique to find approximate invariant tori for nonlinear 
Hamiltonians with arbitrary nonlinearity. In particular, we gave results for a 
storage ring lattice with sextupole magnets as the perturbation. We showed that 
accurate solutions can be found for large amplitudes, significant when compared 
to the dynamic aperture, even in the case with 2 l/2 degrees of freedom. 
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FIG. 1. Phase portrait for the ALS cell from the solution of the Hamilton-Jacobi 
equation (top) and symplectic tracking (bottom). The coordinates are normalized 
so that linear motion with J1 = 2.2 . 10m5 m gives a circle of unit radius. The 
Hamilton-Jacobi solutions correspond to those in Table 2. The smallest, inner 
circle, is the invariant curve at pi = IO-~ m; the outermost curve has pi = 2.2.10-~ m. 
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FIG. 2. The I~(@)/J 1 surface (top) and the I~(@)/J~ surface (bottom) of the 
approximate invariant torus for Jo = Jo = 2. IO-~ m at s = O. Details are given in 
the text and in Table 3. 
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FIG. 3. The I~(@)/J 1 surface (top) and the I~(@)/J~ surface (bottom) of the 
approximate invariant torus for J1 = J2 = 4. 10m6 m at s = 0. Details are given in 
the text and in Table 3. 

- 

12 


