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1. Introduction 

According to the traditional view of quantum cosmology, the universe is gov- 

erned by a linear Wheeler-Dewitt equation [l] 

H,, IQ) = 0. (14 

The exact form of H,, is determined by the field-theoretic Lagrangian which 

includes both gravitational and matter degrees of freedom. The form of this La- 

grangian is constrained only by the principle of general covariance. In recent years 

this conventional view has been challenged and a far richer picture proposed, in 

which the Wheeler-Dewitt equation is itself quantized and non-linear [2]. The 

number of universes is indefinite, being subject to the rules of “third quantiza- 

tion”, and the laws of nature are given by dynamically determined condensates of 

universes. In particular, it has been argued that the emission and absorption of 

baby universes shifts coupling constants, and even forces the cosmological constant 

to zero [3-71. 

In this paper we shall analyze these issues in the relatively simple context of 

two-dimensional gravity coupled to conformally invariant matter. This theory has 

received a lot of attention in recent years, both due to its intrinsic interest, and 

because of its application to non-critical strings. Most of the effort has been fo- 

cused on coupling gravity to matter theories with central charge D 5 1, using 

either continuum field theory or a discrete description in terms of matrix models 

of random surfaces. However, the dynamics more closely resembles higher dimen- 

sional gravity when one studies non-critical string theory with D > 25 [8,9]. In 

that case, the kinetic energy associated with the scale factor of the metric is neg- 

ative, just as it is in higher dimensions, and familiar cosmological solutions (such 

as de Sitter space with positive cosmological constant) are naively obtained. Two- 

dimensional quantum cosmology, with D > 25, is identical to string theory in a 

Minkowski target-space with background fields. The Wheeler-Dewitt equation is 

the condition that the string theory beta-functions vanish, and the behavior of 
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the cosmological constant is replaced by the dynamics of the “tachyon field” in 

target-spacei Our main result is that the non-linear terms of the Wheeler-Dewitt 

equation inevitably become important, even in the classical limit. This will cor- 

respond to the universe interacting with a background of “baby universes”, and 

implies that there can be no cosmological constant with the conventional proper- 

ties. Having established this we make the assumption that the tachyon effective 

potential has a minimum. In this case, a condensate of baby universes forms and 

shifts the cosmological constant to zero. We find this by solving field equations 

in a Minkowski target-space but it is possible nevertheless that the mechanism at 
$ work is linked to Euclidean considerations. 

The outline of the paper is as follows. In Section 2 we briefly review how 

the matrix model description of two-dimensional gravity leads to an essentially 

non-linear Wheeler-Dewitt equation. In Section 3 we describe the continuum 

formulation of two-dimensional gravity in the conformal gauge, and show how it 

leads to an effective action for the target-space fields. In Section 4 we consider 

the cosmologically interesting case of D > 25, and derive the non-linear Wheeler- 

Dewitt equation from the effective action. We then explain why the non-linearities 

cannot be ignored. In Section 5 we speculate how these ideas can lead to the 

vanishing of the cosmological constant at late times. In Section 6 we consider 

the evolution of other couplings with time, and discuss the relation between the 

target-space equations of motion and the renormalization group. We conclude 

with speculations about how these ideas may carry over into four-dimensional 

quantum gravity. In the appendix we give an explicit calculation of the tachyon 

beta-function. 

t This approach to two-dimensional quantum cosmology was discussed by Banks in [lo]. 
$ The Euclidean saddle point, of Baum [5], Hawking [6] and Coleman [3], has an analog in 

the two-dimensional theory for, D > 25 [9]. 
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2. Matrix Models and the Non-linear 
Wheeler-Dewitt Equation 

In this section we briefly review the derivation of the non-linear Wheeler- 

Dewitt equation from the matrix model of discrete quantum gravity [ll]. In 

particular, we consider the single matrix model described by the path integral 

(2.1) 

where M is a Hermitian N x N matrix. Perturbation theory generates a set of Feyn- 

man diagrams with vertices depending on V. Diagrams of genus h are weighted by 

a factor of N-2h, so in the N + 00 limit the surviving graphs have the topology 

of a sphere. By considering the dual graphs, (2.1) can be identified with a sum 

over discrete approximations to Euclidean signature two-dimensional geometries, 

and in the continuum limit this can be thought of as a quantization of Euclidean 

gravity. 

Consider next the discretization of surfaces with a boundary of length 1. The 

sum over such geometries defines a Wheeler-Dewitt amplitude Z(Z) which is given 

bY 

Z(Z) = $ J dMN2 NtrMze-NtrV(M). (2.2) 
Similarly, the amplitudes for geometries with many boundaries of lengths Zr,Z2,. . . 

are given by 

1 
.qhd2,... N2 ,=-J dMN2 N tr M” N tr Ml2 . . . emN tr V(M). (2.3) 

It is a simple matter to derive the Schwinger-Dyson equations corresponding to a 

shift of M [11,12]. Th e simplest such equation is 

Z(Z+1) + 4gZ(Z+3) = & 2 Z(p, Z-l-p) ) 
p=o 

where we have chosen for illustration V(M) = iM2 + gM4. In the large N limit, 
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Z(Zr, Z2) - N22(Zr)2(Z2) and (2.4) re d uces to the non-linear Wheeler-Dewitt equa- 

tion 
l-l 

q+q + 4g-qZ+3) = c -qp).qZ-l-p) ) (2.5) 
p=o 

with boundary condition Z(0) = 1. Th e non-linearity of this equation has a 

natural interpretation in terms of one-dimensional universes, or strings, splitting 

and joining. Notice that the string coupling constant l/N does not appear in (2.5), 

so there is no limit in which the non-linear terms can be ignored. 

In the remainder of the paper we will only be considering the continuum the- 

ory. The above calculations were presented in order to emphasize from another 

viewpoint the importance of non-linear effects in the Wheeler-Dewitt equation. 

3. Two-dimensional Quantum Gravity and String Theory 

We shall now review the continuum formulation of non-critical string theory. 

This will serve to fix our notation and make contact with previous work. For the 

moment, assume that both the world-sheet (go,,‘) and the space of matter fields 

xi, i = l,...,D are Euclidean, and that D 5 25. The action is 

S = & J d2a .Jr { yab8aX * 8bx + x0> , (3-l) 

where Yab is the two-dimensional metric and X0 is the bare cosmological constant. 

To carry out the path integral over metrics Yab and matter fields X’, the fol- 

lowing steps are taken: 

l Gauge fixing: The over-counting of metrics due to general coordinate invari- 

ance is removed by introducing an arbitrary background, or fiducial, metric 

9ab(0) and defining a conformal gauge, 

3/ab = e’ yab . (3.2) 

The remaining degree of freedom, $, is called the Liouville field or conformal 

mode. The path integral over metrics reduces to an integral over 4, with 
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a #-dependent Fadd eev-Popov determinant, which has the familiar Liouville 

form [13], 

(3.3) 

Note that the couplings of the conformal mode in the Liouville action are 

exactly those of a string matter field in a non-trivial background. This is 

the first indication of the close parallel between 4 and the Xi that we will 

elaborate on in due course. 

l Regularization: The theory has ultra-violet divergences which need to be 

regularized by introducing a cutoff, or shortest distance. The cutoff scale 

is defined with reference to the fiducial metric, qab, rather than the original 

metric, Tab. Therefore the regularized theory is not manifestly covariant. 

l Renormalization: In order to define the theory at some size scale, we have 

to integrate out both gravitational and matter field fluctuations on smaller 

scales. The result is an effective Lagrangian, which does not necessarily 

look covariant, since the renormalization procedure is to be carried out with 

reference to the fiducial metric. In particular one might have quite large 

geometries, as measured in the original metric, Yab, which nevertheless appear 

as short distance fluctuations on a scale set by Tab. An example of this is 

illustrated in Figure 1. 

The requirement that the original theory be covariant can be stated as a set of 

conditions, that the path integral does not depend on our choice of fiducial metric, 

?ab. These turn out to place quite strong restrictions on the allowed couplings of 

the fields, Xi and 4. In particular, the theory must be reparametrization invariant 

with respect to Tab, and if we consider variations of the conformal part of Tab, i.e. 

of det T, we find that the path integral has to be conformally invariant, which in 

turn implies that beta-functions of all couplings must vanish. 

All this can be summarized as follows. We start with a generally covariant 

theory of gravity coupled to scalar fields, Xi. In order to define the path integral we 
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fix a gauge and regularize in a non-covariant manner. The resulting theory involves 

a scalar field, 4, in addition to the matter fields, and is in general quite complicated. 

The original covariance appears as a set of restrictions on the couplings, which 

include the requirement that all the beta-functions vanish. Notice that in this 

way of stating things 4 and Xi are placed on equal footing. The Liouville field 

has been promoted to an additional target-space dimension. This approach to 

the quantization of two-dimensional gravity has been advocated by a number of 

authors [9,14,10,15,16]. 

The object of interest is thus some reparametrization invariant scalar field 

theory in two dimensions, with a priori quite general couplings,* 

S = & J d2a fi {T(X) + ~abd,Xp8bXuGp”(X) + 2k Q(X) + * * *} . (3.4) 

There are D+l scalar fields X”, including both the matter fields, Xi, and the 

Liouville mode. In order to have a standard kinetic term, the Liouville field has 

been resealed to X0 = 94, with Q2 = v. We have only written down the terms 

of scaling dimension 0 and 2, but there is an infinite sequence of possible couplings 

involving more derivatives on the Xp and higher powers of the two-dimensional 

curvature ii. 

This class of theories has been extensively investigated in string theory, where 

the action (3.4) d escribes strings in background fields in D+l spacetime dimen- 

sions. The beta-function equations, implementing the conformal invariance of the 

two-dimensional theory, have the form of field equations in target-space for T(X), 

Q(X) and GPV(X) (tachy on, dilaton and graviton fields respectively), along with 

additional fields representing higher order couplings. These field equations describe 

the propagation and creation and annihilation of the particle-like eigenmodes of 

strings in spacetime, or more to the point of this paper, one-dimensional universes 

* For simplicity, we have not included the anti-symmetric tensor field. Its presence would not 
qualitatively alter our conclusions. 
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containing matter fie1ds.i The tachyon field, T(X), is of primary interest because 

it controls the two-dimensional cosmological constant. To see this, note that the 

cosmological term in the Liouville action (3.3) corresponds to a particular tachyon 

background in target-space, 

T(X) = Xe+xo . (3.5) 

The string theory equations of motion, obtained by setting beta-functions to 

zero, are derivable from an action. For simplicity, we will work within a truncated 

theory, containing only the lowest order couplings, T(X), a(X) and G,,(X). To 

leading order in derivatives, the target-space action for these fields is [17] 

I = i 
2s; J dD+lx@+’ { !?$ +R+~(v@)~ -(vT)~-~V(T)+...}, (3.6) 

where V(T) = -T2 + AT3 +... is the tachyon effective potential. The general 

form of V(T) is not known, but we show how to obtain the leading terms from 

two-dimensional renormalization theory in the appendix. The equations of motion 

which follow from the above action are 

v2T-2v&vT= V'(T), 
25-D 

v2@ -2(0@)~ = - 6 +V(T), W) 
R,, - ;G,,R = - 20~0,~ + Gpvv2@ + V,TV,T - &$&T)2. 

For D < 25 these equations have a simple solution, which is known to be exact 

even when higher order terms in the beta-functions are included [18], 

T=O, 

G/w = S/w, (3.8) 
Q e2xo. 

An important feature of this linear dilaton background is that the strength of the 

t We will use the string theory names for the target-space fields, but the reader should keep 
in mind their cosmological interpretation. 
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string loop coupling constant is related to the two-dimensional scale, 

g = go 2 QxO =goe2 . (3.9) 

We can only expect the effective field theory to be simple where this coupling is 

weak. 

A background tachyon field can be added to the exact solution (3.8). Its beta- 

function equation depends on the form of the effective potential, V(T), and is 

non-linear in general. If we assume that the background field is weak, and only 

depends on X ‘, the equation can be linearized as follows, 

t$T-QdoT+2T=0, (3.10) 

and has solutions 

T(X”) = X e (gr4%-w” (3.11) 

Such a background configuration corresponds precisely to the two-dimensional the- 

ory discussed by David [19] and by Distler and Kawai [20].* In the weak-coupling 

regime, X0 + -co, the solution with a - sign in the exponent is more important to 

the physics, since the other one is more rapidly damped. The dominant solution is 

also damped, so the non-linear corrections to the tachyon beta-function can safely 

be ignored. As we shall see shortly, this is not the case when D > 25, and there 

the non-linear terms in the Wheeler-Dewitt equation play a crucial role. Note also 

that in the D t -CXI semi-classical limit of the Liouville theory the cosmological 

term (3.11) reduces to T = xeaxo = Xe’#‘, as it should. 

An important feature of the D < 25 theory is that the coupling gee’ governing 

the strength of quantum corrections (string loops) tends to zero when X0 + -oo. 

In this limit strings are metrically small. Furthermore, we can consider a back- 

ground solution which tends to T = 0 as X0 + -oo. In the vicinity of T = 0 

* Note that our X0 differs, by a sign, from the resealed Liouville field of Distler and Kawai. 
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the non-linear terms in the classical target-space equations disappear. On the 

other hand, as X0 + 00, the limit of large scale factor, the interaction strength 

increases. It has been argued by Polchinski [21] that this leads to a reflecting wall 

which prevents the particle-like strings from penetrating to large sizes. 

4. Quantum Cosmology in Two Dimensions 

We have so far been concentrating on theories with D 5 25.t Let us now follow 

Polchinski [9] and consider the case D > 25, which is more relevant to cosmology. 

The derivation of the target-space equations (3.7) does not depend on the value of 

D. On the other hand, the nature of their solutions qualitatively changes when D 

becomes greater than 25. In particular, if G,, has Euclidean signature, a linear 

dilaton background will no longer be a solution for D > 25. However, there exists 

a solution analogous to (3.8) if the target-space is Minkowskian. It is given by 

T=O, 

G,v = VPV 7 (4.1) 

where Q 2 _ D-25 - - 3 and the conformal mode, X0, is time-like! Strictly speaking, 

it is not consistent to treat the world-sheet as Euclidean if the target-space is 

Minkowskian. The reason is that the two-dimensional action is then unbounded, 

since the X0 kinetic term has opposite sign to that of Xi. We should therefore 

reformulate the two-dimensional field theory on a world-sheet of Minkowski signa- 

ture in order to discuss the D > 25 case. Unfortunately it is not at all clear how 

to perform the steps involved in the quantization of the theory (regularization, 

t Actually D 5 1, since the exponent in (3.11) is complex for D > 1, and the two-dimensional 
action is unbounded from below. 

$ We are free to choose the sign of the dilaton background. This corresponds, in fact, to the 
choice of the direction of time. The physics just tells us that small universes are weakly 
coupled for D < 25 and strongly coupled for D > 25. Our solutions (3.8) and (4.1) reflect 
the convention that the universe was small at early times. 
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renormalization, etc.). Our working assumption, which may be unwarranted, is 

that a consistent Minkowski formulation will lead to the same covariant target- 

space equations as the formal Euclidean calculation. In interpreting the equations 

of motion as a Minkowski space field theory of strings, the two-dimensional path 

integral implicitly includes geometries which describe splitting and joining. Such 

configurations inevitably include well-defined events at which the universe bifur- 

cates and the two-dimensional metric is singular. These will be observable, or 

even catastrophic, for one-dimensional observers. In addition, the path integral 

receives contributions from universes being absorbed or emitted from the back- 

ground, which also involve two-dimensional singularities (see Figure 2). By con- 

trast, in Euclidean space the metric can be chosen with no singularities. It should 

be noted that we only use Euclidean methods to compute renormalization group 

beta-functions, but our subsequent discussion of the cosmology takes place with 

Minkowski signature. 

-The gravitational coupling in two-dimensions is dimensionless, so there is no 

proper Planck-scale. However, in the case D > 25 the coupling strength gee@ 

increases as X0 + -oo so that the theory is strongly coupled for sufficiently 

small strings. No longer can quantum mechanics (string loops) be ignored in the 

ultraviolet. One can say that a Planck-scale is spontaneously induced, and define 

it by the point at which gee @ = 1 . The factor of go can be absorbed by a constant 

shift of the dilaton. The effective Planck-scale is then set by q-l, and depends on 

the number of scalar fields in the theory. In particular, D + co is a semi-classical 

limit for gravitational fluctuations. The question of initial conditions is complicated 

because the theory is strongly coupled at early times. The short distance physics 

is summarized by some initial state at the Planck-time, which then evolves in 

the weakly coupled theory. In a quantum theory this means a wave-function in 

target-space and in a classical theory it corresponds to initial conditions on the 

target-space fields. 

In the background (4.1) th e 1 inearized tachyon equation reads 
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and is solved by 

-d,2T-q80T+2T=0, (4.2) 

T(X”) = Xe (-&+2)x0. (4.3) 
One of the solutions decays with time, but the other one grows exponentially. The 

system is unstable and is likely to form a condensate of background tachyons. 

Now consider fluctuations of some field in the exponentially growing tachyon 

background, To(X’) = X e (-f+~)x”~ Take, for example, a tachyon with 

some non-zero space-like momentum Ic. The target-space action (3.6) is not time- 

translation invariant. In order to describe physical fluctuations it is convenient to 

absorb the em2’ pre-factor by a field redefinition, which has the form 

U(X) = e-@(X)T(X) (4.4) 

for tachyons. A fluctuation Uk(X) = Uk(Xo) eiklXi satisfies a linear equation, 

a,“uk + (k2-2-$)Uk + 6Xe (-:+&ixouk = 0. (4.5) 

In the semi-classical limit, Q + 00, this has the form of a Wheeler-Dewitt equation 

for a universe with some matter excitation. To see that, rewrite (4.5) in terms of 
1x0 

the scale factor, a = ef = es , 

{ ($-)’ + @“-2-c) + 6Xa2}Uk = 0. (4.6) 

Up to factor-ordering ambiguities, this is the Wheeler-Dewitt equation derived 

from the mini-superspace Lagrangian of two-dimensional gravity, 

L = (i,z - -$ [ii2 - (2+;) + 6Xa2] . (4.7) 

The three terms in square brackets are the matter, curvature and cosmological 

constant energy densities. 
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It seems that we have recovered a more or less conventional Wheeler-Dewitt 

description of large scale cosmology. In particular, the problem of the cosmological 

constant is the usual one. In order to obtain vanishing cosmological constant, the 

exponent ially increasing solution for T ( X0) must be fine-tuned to zero. In other 

words, the tachyon must be delicately balanced at the top of the potential. We 

are ignorant about the short distance physics, which is supposed to determine the 

initial state, so we have no way of gauging how likely it is to find the system 

balanced at the top of this potential. At any rate, such a fine-tuned initial state is 

not allowed in a quantum theory, because of the uncertainty principle. 

However, this is not the whole story. The tachyon background will eventually 

roll into the region where the non-linear terms cannot be ignored. When this 

happens, T(X’) will not continue to increase like a simple exponential. In fact, 

just those non-linearities that couple the background T to the fluctuations Uk, 

and lead to a cosmological constant term in the Wheeler-Dewitt equation for 

Uk,- will eventually cause T to depart from the conventional behavior. It appears 

that quantum cosmology in two dimensions cannot have a large scale behavior 

characterized by an ordinary cosmological constant.* 

It should be emphasized that the non-linear effects that we are talking about 

do not disappear in the semi-classical limit D + co. In particular, the splitting 

and joining events described by the non-linear terms of the target-space equations 

are unsuppressed even at late times. This may seem surprising because the string 

coupling is becoming weak, with e’ = e-:Xo. Indeed, the canonical tachyon field 

U(X’) defined in (4.4) satisfies 

[V2 + (2 + $)]U = ie-fxoU2. (4.8) 

As we move toward the semi-classical limit Q + 00, though, the tachyon mass 

* The notion that a non-zero conventional cosmological constant in two-dimensional gravity 
is inconsistent with a large-scale continuum geometry has also been put forward by Seiberg 
[22]. We thank T om Banks for pointing this out to us. 
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squared increases as $, so that the unstable exponential growth of U compensates 

the decreasing coupling strength. 

Since very little is known about higher order non-linearities in string theory, 

we can only speculate about their detailed effect on the physics. However, the very 

existence of string interactions, along with the tachyon instability, shows that the 

usual Liouville model described by an exponentially growing tachyon background 

is not the complete theory. 

5. The Vanishing of the Cosmological Constant 

In this section we describe a speculative mechanism by which this model of 

quantum gravity may explain the vanishing of the cosmological constant. Recall 

that the spacetime equation of motion for the tachyon field is obtained from the 

tachyon beta-function 

PT = v2T - 2v@.vT - V’(T) + . . . . (5.1) 

In the appendix we find that the leading terms in the potential are given by V(T) = 

-T2+&T3+. . . . There will also be higher-order contributions to the beta-function 

and couplings to other target-space fields. 

Our arguments in this section will rely in an essential way on the assumption 

that the potential V(T) h as a local minimum. This is consistent with the cubic 

behavior of V(T), which we have found at leading order, but the minimum may 

or may not survive higher order corrections. We take this minimum of V(T) to 

be at To # 0 (See Figure 3). There will then be another exact solution of the 

target-space equations given by 

T = To, 

(5.2) 
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where @ = Jm. Unlike th e solution at T = 0, this solution is sta- 

ble. We see this by considering the linearized equations for fluctuations about the 

background (5.2): 

k2 7 + t&- + tj do7 + V”( To) 7. = 0, 

k2cp+@y+Q180cp=0, 

k2h~v+ao2hpv+~dOhpv=0, 

(5.3) 

where r = T-To, ‘p = a’-Qo, hpv = GpV-qpv, and k is the spatial momentum of 

the fluctuation. These equations have the solution 

Tcxo) = ~ e(-$/~-V”(X+~2)Xo , 

(54 
CP, hpv 0~ e 

(-~f+k2)P~ 

For k # 0 all fluctuations are damped, whereas for k = 0 the dilaton and graviton 

have a constant mode, corresponding to a resealing of the string coupling and the 

metric. The fluctuations of the higher modes are more strongly damped. 

From a two-dimensional point of view, then, the theory at the bottom of the 

potential must be a field theory with no unstable tachyonic fluctuations. Because 

the tachyon fluctuations have no exponentially growing mode, the corresponding 

Wheeler-Dewitt equation will not contain a cosmological constant term. Thus, 

while we do not know the exact form of the field theory seen by a one-dimensional 

observer, we can say that he measures a zero cosmological constant. 

The absence of tachyonic fluctuations at the bottom of the potential may ap- 

pear to be in contradiction with the recent results of Kutasov and Seiberg [22,23], 

who showed that a generic conformal field theory coupled to gravity contains phys- 

ical tachyons. This may amount to a proof that there can be no bottom to the 

tachyon potential. Alternatively, it is possible that the only physically meaningful 

solutions correspond to the tachyon starting at T = 0 and then rolling down to the 

bottom. These solutions, which we shall examine below, would not be vulnerable 
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to the arguments of [22,23], which require that the action is simply the sum of a 

Liouville action and a conformal field theory. 

Having studied the solutions in the neighborhood of the stationary points of 

the potential V(T), we can consider a solution that begins at or near T = 0 and 

rolls toward T = To. Because of the time-dependent dilaton background that starts 

off as 

(a(X) = -ix”, (5.5) 

and eventually becomes 

Q(X) = -ix0 ) (5.6) 

there will be a varying friction term in the equation of motion for T(X’). Initially 

T will behave as discussed before, with 

T(X”) - X ,(-t+dC+2)xo , (5.7) 

and eventually it will settle toward To with a damped motion 

TNTo+pe 
(-;+&-V1t(To))xo 

7 (54 

In the semi-classical limit, the form of the Wheeler-Dewitt equation will thus 

evolve from 

{ (f;)2 + (k2-2-;) + 6Xa2}‘D = 0 (5.9) 

for small a toward 

1 (;f)2 + (“‘2~$) + 6/la-“‘(@)}~ = 0 (5.10) 

for large a. This means that the universe will initially inflate, but will eventually 

settle down to a behavior with vanishing cosmological constant. 
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An important difference between the cases D < 25 and D > 25 involves the 

friction term which ensures that the tachyon rolling is damped and eventually 

settles to T = To. In the case D < 25 the friction term is actually of the wrong 

sign, so that Euclidean motions in which the tachyon rolls to an extremum of the 

potential are unstable and will tend to overshoot the extremum. 

Although we have not yet thoroughly investigated the quantum theory of the 

system, it seems very probable that the quantum wave functional will become 

centered at To, with a dispersion which will shrink with X0, since the quantum 

corrections are of order e @ - e -fxo at late times. This behavior is in marked 

contrast to that encountered in the D 5 1 case in which the string coupling grows 

with the scale factor a. In those theories the effects of higher topologies become 

increasingly important as a increases, whereas for D > 25 their effect diminishes. 

The picture that is suggested is that as the universe evolves, a condensate of 

baby universes interacts with it and forces the cosmological constant to zero. We 

are-then faced with the question of the size of the corresponding wormholes. If they 

turn out to be macroscopic, then this scenario loses its appeal as a toy model for 

the real world (“The Giant Wormhole Problem”). Naively one might suppose that 

since the background tachyon field takes the value To for arbitrarily large values of 

4, the baby universes would form with arbitrarily large necks. In fact the correct 

relationship between the scale size and the metric is more subtle than this, since 

physical size depends on both 4 and the fiducial size. It is not clear to us how to 

correctly derive the distribution of wormhole sizes from T(6). 

We conclude this section by mentioning some consequences of a bottomless 

potential. In this case, T(X") ‘11 wl continue to rapidly increase, and the theory is 

probably too sick to describe cosmology. To see why, we note that the increasing 

tachyon field will act as a source for all other fields, and the renormalization flows 

of the higher order couplings, which we discuss in the following section, will be 

disturbed even at late times. This would even be true in the semi-classical limit of 

large q. 

17 



6. The Running of Coupling Constants 

We have shown in the preceding sections how an evolution of the cosmological 

constant occurs as the universe expands. Now we should ask whether other cou- 

plings in the theory evolve in a similar manner, and whether their behavior can 

upset our previous arguments. 

The equations of motion for the target-space fields are that the beta-functions 

of all two-dimensional couplings vanish. From this one might conclude that the 

couplings seen by a two-dimensional observer would not run. This, however, is not 

the correct interpretation. We can think of the equations for the target-space fields 

as renormalization group equations with d/2 identified with the logarithm of the 

renormalization scale. The X0 dependence of the coupling functions T, a, G,, . . . 

hence determines their evolution with scale. 

This connection may appear unfamiliar because the equations of motion are 

second order in X0 derivatives, whereas the usual renormalization flows are con- 

trolled by first order equations. The second order nature of the flows is a special 

feature of theories containing gravity where the scale itself is a dynamical variable. 

The situation is similar to the issue of time evolution in the Wheeler-Dewitt 

formulation of quantum gravity. We begin with an equation H,, IQ) = 0 which 

seems to imply that no time evolution occurs. Reinterpreted, though, the equation 

tells us how the wave function of matter evolves with the expansion of the universe. 

The Wheeler-Dewitt equation, like the equations of motion for T, a, GP,,, is second 

order. The first order Schrodinger equation is only recovered in a semi-classical 

limit in which gravitational fluctuations become unimportant [24]. In our two- 

dimensional theory, this semi-classical limit corresponds to taking D --f co or 

equivalently q --+ 00. In this limit we will see how the target-space field equations 

reduce to the familiar renormalization group equations. 

We consider first the case of fluctuations about the linear dilaton background 

at the top of the tachyon potential with a flat target-space metric. A field A, at 
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the nth mass level in string theory will contribute to the effective action a term 

$ J dZk2@ { -(vA,)~ + 2(1-n)A2, + . . .} . 
0 

Its equation of motion in a linear dilaton background is 

+q&+k2-2(1-n) 1 A, =O. 

(64 

(6.2) 

As we saw previously, this equation has unstable solutions for n = 0, which describe 

the tachyon rolling off the top of its potential. Note, however, that the solutions 

for n 1 1 are stable for all values of q. In other words, the dilaton, graviton and 

higher couplings do not become “tachyonic” for large D. 

Now, recalling that the scale factor is a = edI2 = exo/‘J, we can rewrite (6.2) 

as 

2+a;+k2-2(l-n) 1 A,=O. 

Thus when q -+ 00 we find the first order equation 

a ;An = -(‘c” + 2(n-1)) A,. 

(6.3) 

(6.4 

This is the usual lowest order Callan-Symanzik equation for a coupling of bare di- 

mension 2n. In particular the field h,, has anomalous dimension -Ic2 as expected. 

We have so far been considering a trivial matter sector, consisting of several 

free fields. A more stringent test of the ideas of Sections 4 and 5 should involve 

an interacting matter sector such as an asymptotically free sigma-model coupled 

to gravity. Experience in flat space indicates that such a model will generate a 

new mass-scale and renormalize the vacuum energy accordingly. It is important 

to determine whether this upsets the vanishing of the cosmological constant. To 

investigate this, we consider the example of a theory in which three of the target- 

space dimensions are compactified to a sphere of time-dependent radius r(X’). 
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The remaining D - 3 spatial coordinates are left flat. The sigma-model coupling 

constant is then l/r, and the X0 dependence of r(X”) is just the running of the 

coupling with scale. We find that in the semi-classical limit the equations of motion 

(3.7) reproduce the standard renormalization group flow 

d(9 oc 1 3 
0 dX” r * (6.5) 

To see this we insert into (3.7) the metric 

ds2 = -(dX”)2 + r(X”)2 dC$ + &dX’)2 
4 

(6.6) -- 

where dfii is the line element on a unit three-sphere. The equations of motion 

then become 

-i; - 3;f + a&* =V’(T), 

(6.7) 

Taking the semi-classical q + 00 limit, we find that to leading order these have 

solution 

T=O, 

a=-2x0 7 
r=& (c - X0). 

(6.8) 

where c is an integration constant corresponding to the induced dynamical mass 

scale determined by initial conditions. We see that this solution indeed satisfies 

the renormalization group equation (6.5). 
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The equations of motion (6.7) g overning the target-space gravitational field are 

valid only to first order in X-derivatives. This corresponds to the region of validity 

of the one-loop beta-function in the usual sigma-model perturbation theory. As 

X0 - c, the sigma-model becomes strongly coupled, and higher order terms in the 

gravitational equations are important. 

We now consider the effect of the non-trivial matter couplings on the cosmo- 

logical constant. As explained before, it is the exponential growth of the tachyon 

field as it rolls down the hill that corresponds to a cosmological constant term in 

the Wheeler-Dewitt equation. We might imagine that it would be possible to “fine 

tune” the initial conditions so that the tachyon stays balanced at the top, and the 

cosmological constant would thus vanish. In our simpler examples in which the 

target-space was flat, we saw that this could indeed be done. Now, however, the 

coupling of the sigma-model to the two-dimensional gravity will make it impossi- 

ble. To see this, consider the higher order terms in the effective action coupling 

T and G,,. One such term will be of the general form TvvRR. To determine 

it properly we should calculate the two-loop graviton beta-function, but for our 

argument it will suffice to note that there must be some term of this form because 

string theory has a non-zero graviton-graviton-tachyon vertex. There will thus be 

an extra source term VVRR in the tachyon equation of motion. As the three-sphere 

contracts, this will knock the tachyon from the top of the potential, destroying any 

fine tuning. To obtain a zero cosmological constant, we must therefore re-fine-tune 

the initial conditions, such that the tachyon ends up balanced at the top of the 

potential. This need to account for the matter vacuum energy is just the familiar 

cosmological constant problem. 

Fortunately, our explanation of the vanishing of the cosmological constant given 

in Section 5 did not rely upon fine tuning, and in fact it seems highly plausible that 

it also works when a sigma-model is coupled to the gravity. To see this, recall that 

we required the tachyon to roll down the hill and sit at some minimum To. The 

effect of terms like TvvRR will be to make the potential seen by the tachyon time- 

dependent due to the flow of the sigma-model couplings. The tachyon will now 
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tend to roll down to the bottom of this (dynamical) potential and then follow it. 

Since the early evolution of r is slow, it seems likely that this tracking motion will 

not result in an exponential growth of T with X ‘. This means that no cosmological 

constant will be generated, and so our argument works as before. 

Note that we are not able to use these techniques to follow the system into the 

strongly coupled regime in which r becomes small. However, since we know that 

the flat space sigma-model contains only massive particles [25], we may speculate 

that well below the induced mass scale, the sigma-model degrees of freedom decou- 

ple. This would correspond to the effective central charge of the matter becoming 

smaller at some point in the evolution of the universe. 

7. Conclusion 

We conclude with some observations and speculations about 4-dimensional 

gravity. Unfortunately, in this case we can not choose the conformal gauge unless 

we restrict our attention to conformally flat geometries. Let us therefore consider 

such a restricted path integral over geometries with vanishing Weyl curvature. In 

this case we can reduce the Einstein action to a simple form. Letting 9,” = 42qP,, 

we find that the action has the form 

J d4x { -(8P4)2 + A44 + matter} . (7.1) 

This is just ordinary d4 theory, but with a negative kinetic term. The original 

covariance requires the path integral to result in a conformally invariant field the- 

ory, thus requiring the vanishing of all beta-functions. As in the two-dimensional 

case, target-space fields can be introduced by allowing A and all other couplings 

to depend on $. The vanishing of beta-functions defines the equations of motion 

in target-space. Of particular interest is the A$4 term which would be replaced by 

the more general expression T(d). If the dynamics of T(4) results in a potential 

with a minimum, the effective cosmological constant will tend to zero. Remov- 

ing the restriction to conformally flat geometries makes things more complicated, 
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but still we expect that the general logic of gauge-fixing, regulating, and restoring 

covariance by requiring target space field equations to be satisfied will make sense. 

Can one expect the non-linearities of the target-space theory to play as impor- 

tant a role in four dimensions as in two? More specifically, can the non-linearities 

be relevant at large scale factor? To attempt to answer this we can consider a very 

schematic non-linear Wheeler-Dewitt equation 

where H,, is a Wheeler-Dewitt Hamiltonian, 9 is a functional of matter and 

geometry, and f is some coupling strength which depends on the scale size of the 

geometry. In the two-dimensional case, f is replaced by the coupling strength eQ = 

e2 =u-q’. -9x0 Because of tachyonic instabilities, the Wheeler-Dewitt amplitude 

in (7.2) increases like ez pxo. Thus the background field increases at a sufficient rate 

to overcome the decrease of the coupling strength. 

In four dimensions, the coupling for universes splitting and joining can be es- 

timated from dimensional considerations. Consider a geometry with three bound- 

aries, each with scale size N a. On dimensional grounds, the action for such a 

geometry is - iVia where Mp is the Planck mass. Thus the amplitude for a 

universe splitting is likely to be of order e-cM~a2 where c is a numerical constant 

depending on dimensionless features of the geometry. The rapid decrease of the 

coupling strength might suggest that non-linear effects are quickly quenched with 

scale size. However, this is not necessarily the case. To see this, consider the 

linear part of the Wheeler-Dewitt equation H,,\-I = 0. In four dimensions, the 

mini-superspace Wheeler-Dewitt equation has the form 

V-3) 

For large a the solution is Q N e Iv2 2 pa . Hence it is possible that the Wheeler-Dewitt 

amplitude grows sufficiently rapidly to overcome the decrease in coupling strength 

in four dimensions also. 
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What the implications of such non-linearities are for large scale cosmology is a 

matter of speculation. It should be stressed, however, that they are not connected 

with the issue of summing over space-time topologies. Such sums imply quantiza- 

tion of the target-space theory, while our considerations have been at the classical 

level. Third quantization is important at small scales where the coupling strength 

is large. It seems likely that third quantization at small distances would provide 

an ensemble of classical trajectories at large scale and that only an infinitesimal 

fraction of these would remain at the unstable point T = 0 where the cosmological 

constant is naively zero and the non-linearities are small. The remainder would 

inevitably flow into the non-linear region. 

Acknowledgements: We would like to thank T. Banks, S. Ben-Menahem, W. Fis- 

chler, D. Kutasov, and J. Polchinski for useful discussions. 

APPENDIX 

The Tachyon Beta-Function 

Here we present the calculation of the leading non-linear contribution to the 

tachyon beta-function. One might initially suspect that there are no non-linear 

terms, since individual diagrams in the loop expansion for the product of two 

normal ordered tachyon vertices are finite. On the other hand, we are interested 

in the ezuct renormalization of couplings, since we want the theory to be exactly 

independent of the fiducial metric. This means that we must keep track of the non- 

divergent cutoff dependence. When this is done, a non-vanishing beta-function will 

indeed emerge. 

We shall not rigorously carry out this procedure, but will instead adopt the 

method originally used in [26] f or o p en string theory. This approach is perturbative 

in the strength of the tachyon field, but sums all orders of the loop expansion. For 

a certain range of target-space momenta Ic;, the sum over loops introduces short- 

distance divergences from which the beta-function can be read off. In that range 

the details of the regularization are not important. We then extend the results to 
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the region of interest by assuming that the target space theory is analytic in the 

ki. 

Following reference [26] our starting point is a general renormalization group 

equation for a set of couplings g’: 

+ x ~2;~ gigk + x 7jkl gjgkgl + . . . . 
ik j&,1 

(A4 

Here t is the renormalization scale and Xi is the anomalous dimension of the opera- 

tor which carries the coupling 9’. The flow equation (A.l) can easily be integrated 

order by order in the couplings. Let g”(O) be th e value of g” at some infrared scale, 

t = 0. Then the renormalized coupling is given by 

gi(t) = eXit gi(0) + C [e(Xj+Xk)t-eXit] a;k x .+xk-x, $(0)gk(O) + * - - . (A-2) 

i,k 3 2 

For the time being, we are primarily interested in tachyon backgrounds, so we 

will assume a flat target-space with vanishing dilaton field. In due course we will 

consider the effect of a linear dilaton background. The tachyon term in (3.4) can 

then be written 

& Jd20 fi JdD+‘k T(k)eik.X(a) . (A-3) 

The target-space momentum kp plays the role of the index i and we have included 

an explicit dependence on the cutoff E to make the tachyon couplings T(k) di- 

mensionless. We will calculate the two-dimensional effective action using standard 

background-field techniques. The fields X” are expanded around some classical 

background, which varies slowly on the cutoff scale: Xp(a) = X:(a) + 7?(a). The 

path integral is performed over the quantum field 7?(g), 

Z[X,] = e -SdXbl 2)T J exp -& J d2a fi iabda#&~, 
. 

x exP (-& J dza &J dD+lk T(k) ,ik*Xb ,ikm) . (Aa4) 

The effective action is given by Seff[Xb] = - log Z[Xa]. We find it convenient to 
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work with a two-dimensional propagator, which has the cutoff built in, 

(7rya+rv(a2)) = -y log (]+fY# + 62) . (A-5) 

The path integral is evaluated by expanding the exponential in powers of T(k), and 

evaluating diagrams with ever increasing numbers of interaction vertices. Because 

of the exponential form of the operator multiplied by T(k), a given vertex can have 

any number of legs, and we have to sum over an infinite set of graphs to obtain the 

full answer at a given order in T(k) ( see Figure 4). There are divergences which do 

not show up at any finite order in the standard two-dimensional loop expansion, 

but only appear when the diagrams are added up. 

The first order contribution to the effective action comes from the graphs on 

the left in Figure 4. 

se&%] =So[Xa] + & J J d2a dD-k1 k T(k) ,ik.Xb 
( > 

,ik.r 

=So[Xb] + & J J d2a dD+l k ,k2-2 T(k) ,ik.xb . 
(A-6) 

We want to compare this with the integrated renormalization group flow (A.2). It 

is natural to identify E with emt, so that the cutoff is removed as t + 00. The 

renormalized coupling in (A.6) is simply 

Tt(k) = ckzm2To(k) = e(2-k2)tTO(k) (A-7) 

and we read off the familiar anomalous dimension XI, = 2-k2 for a tachyon of 

momentum k. 

At second order we have to sum over the graphs on the right in Figure 4. Their 

contribution to Z[Xb] is given by 

1 1 2 -- ( )J 2 87x2 
d2al d2a2 J dD+lkl dD+‘k2 T(kl) T(k2) 

( 

(A-8) 
x eikl.Xb(al)Sikz.Xb(oz) eik,+q)eik~+z) 

We are assuming that the background field Xb varies slowly on the cutoff scale, so 
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we can expand 

X302) = x;(m) + (02-c7pax~(~1) + - * * (A-9) 

in (A.8). The sub-leading terms, involving derivatives of X:, contribute to terms 

of dimension higher than zero in the effective action, and do not affect the renor- 

malization of tachyon couplings. The dimension zero piece of the effective action 

coming from (A.8) is therefore 

-r (&)2Jd2nJdD+1kldD+1k2,(k~+k~)2-2T(kl)T(k2) - 

co 

J 
(A.lO) 

x ,i(h+kz)Xb(a) dy y(y2 + l)k1’k2 . 

0 

The y integral is convergent for ICI . k2 < -1 and one can define its value outside 

that region by analytic continuation in the momenta. Using this prescription we 

find that the renormalized coupling to second order is 

G(k) = e(2-k2)t [To(k) + $ Jd”+‘kl dD+‘k2~~~~~2.~~)To(k1)To(k2)] . (A.ll) 

This is to be compared with the general solution (A.2). The denominator 

contains precisely the correct combination of anomalous dimensions, 2 + 2kl + k2 = 

Akl + xkz - Akl+kz, but we appear to be missing the e(Xkl+XkZ)t term. This can 

be explained as follows. The integral in (A.lO) is convergent for ICI . k2 + 1 < 0, 

which can also be written as &+k2 > Xkr + &, . As the cutoff is removed, t + 

oo, and eXkltkzt dominates over e cXkl +‘k2 P. Our expression for the renormalized 

coupling (A.ll) th ere ore only contains the leading divergence. However, we still f 

have enough information to read off the value of the second-order coefficient in 

(A.l), giving ‘Yt1k2 = -@(D+l)(kl + 2 - ) k k . Its simple form makes the momentum 
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integrals trivial, and we obtain the tachyon beta-function in position space 

pT(X) = (2 + v2) T(X) - ; T(X)2 + ... . (A.12) 

Setting this equal to zero gives an equation of motion for the tachyon background. 

Near the mass-shell our results essentially agree with those of Das and Sathiapalan 

[27]* and those of Brustein et al. [28]. 

The above calculation only considered tachyons, whereas a more comprehensive 

treatment would include higher-dimension couplings such as gravitons and dilatons. 

Such a general approach would be quite complicated but for our present purposes it 

is sufficient to consider the simple case of a linear dilaton background, @ = -%X0, 

in flat target-space. The tachyon beta-function is obtained in much the same way as 

before. The dilaton term in the two-dimensional action looks particularly simple if 

we write the fiducial metric as a “conformal factor” times the flat two-dimensional 

metric, Tab = etS,b. Then 

Sdi, = & J d2am{ q-X, (A.13) 

where •I denotes the flat space scalar Laplacian in two dimensions and qp = 

(cl, 0, * - - ,O). This term is linear in Xp and its effect in the path integral is taken 

into account by including graphs with external legs which carry a factor of qfi (see 

Figure 5). The contribution of each such external leg is given by 

-& J d2cQ(+k.qnoG(o-go) = ;k.qE(ao), (A.14) 

where G(g-as) is the two-dimensional propagator (A.5) and crs is the position of 

the tachyon vertex from which the leg emanates. 

* The non-linear term in the tachyon equation of motion obtained in [27] has the opposite 
sign to ours, but the important feature, that this term has no derivatives, agrees. 
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To leading order in T(k) the effective action is given by the graphs on the left 

in Figure 5, 

%J$%,] = So[&,] + & J J d2a dD+lk ,k2-2 eik.q<(a) T(k) eik.xb . (A.15) 

The anomalous dimension of the renormalized coupling is determined by its scaling 

properties as the fiducial conformal factor g is varied. The cutoff c is defined 

with reference to the fiducial metric, so it scales as e - ef, and we find the 

anomalous dimension Xk = 2-ikeq-k2. The condition that this vanish is the 

linearized tachyon equation (4.2). 

The second order contribution comes from the graphs on the right in Figure 5. 

The calculation involves the same steps as in the critical theory and one finds that 

the renormalized coupling to second order is now 

q(k) = e(2-ik’q-k2)t [To(k) + f JdD+‘kl dD+1k26~~~~~e~2k)To(kl)To(k2)] . 

(A.16) 

Apparently the only effect of the linear dilaton background is to modify the anoma- 

lous dimensions. The q-dependence cancels out of the denominator in (A.16) and 

we read off the same value of the second order beta-function coefficient as before. 

Thus we find that the leading terms in the tachyon beta-function in non-critical 

string theory are 

pT(X) = (2 - 2vQ.v + v2) T(X) - $ T(X)2 +. . . , (A.17) 

in agreement with (3.7). 

Note that the non-linear term has no derivatives and corresponds to a non- 

vanishing cubic term in the target-space potential V(T). This has important con- 

sequences. In particular it implies that a uniform tachyon field will have non-trivial 

influence on the renormalization group flow of tachyon fluctuations with non-zero 

target-space momentum. This is surprising since, according to (3.4), a constant 
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tachyon background field only contributes a c-number, & s d2a 1/;;;, to the two- 

dimensional action. This is perhaps too simple a view to take. Note that we cannot 

directly compute the contribution to the beta-function of T(k) coming from a back- 

ground tachyon field at zero momentum because the integral in (A.lO) diverges for 

ICI . k2 > -1. We get around this by using analytic continuation from the region 

of convergence, and with this prescription the beta-function involving T(k = 0) is 

non-trivial. Apparently the two-dimensional theory defined by analytic continua- 

tion of the tachyon background is not equivalent to the naive addition of a constant 

to the action. 
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FIGURE CAPTIONS 

1) Once a fiducial metric has been chosen, and a cutoff introduced, the short 

distance fluctuations will still include large physical geometries, which will 

affect the renormalization. 

2) A Minkowski geometry with singular points corresponding to the splitting 

of universes, and the emission and absorption of baby universes from the 

background. 

3) A tachyon potential with a local minimum at T = 2’0. 

4) Leading order graphs which contribute to the tachyon effective action in 

critical string theory. 

5) Leading order graphs in the calculation of the tachyon beta function in a 

linear dilaton background. 
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