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ABSTRACT 

Functional difference equations characterize the invariant surfaces of the 
Poincark return map of a general Hamiltonian system. Two different functional 
equations are derived. The first is analogous to the Hamilton-Jacobi equation 
and the second is a generalization of Moser’s equation. Some properties of the 
equations, and schemes for solving them numerically, are discussed. 

INTRODUCTION 

Jiirgen Moser introduced a functional difference equation to characterize 
invariant curves of area-preserving mappings of an annulus.’ His proof of the 
Kolmogorov-Arnol’d-Moser (KAM) th eorem for such maps, assumed to be very 
smooth but not analytic, was based on a close analysis of this equation. Proofs 
of refined versions of this “twist theorem” and its relatives also are based on the 
difference equation.2 

Some time ago I became interested in applying difference equations to study 
invariant tori of general Hamiltonian systems. By describing the Poincark map M 
of a surface of section in action-angle variables, one easily finds the generalization 
of Moser’s equation, formulated in terms of M. It seemed that this equation 
could lead to an efficient method for numerical approximation of invariant tori. I 
intended to project the equation onto a finite Fourier basis in the angle variables, 
then solve the projected equation by an iterative method. This procedure had 
been used to good effect in solving the Hamilton-Jacobi equation for invariant 
tori.3 By working with the difference equation, and thereby restricting attention 
to the Poincare section, one could effectively reduce the dimension of the problem 
by one unit, thus eliminating a costly integration that is required in the Hamilton- 
Jacobi framework. 

Unfortunately, I could see no obvious way to satisfy the component of the 
projected equation arising from the constant element of the Fourier basis; i.e., 
the average of the original equation over angles. The corresponding average of 
the Hamilton-Jacobi equation had presented no problem. This issue appears as 
well in Moser’s proof, but his method of handling it did not seem right for my 
purposes. 

Faced with this difficulty, I was pleased to find a new type of functional dif- 
ference equation4j5 (at least new to me) that corresponds closely to the Hamilton- 
Jacobi equation. In fact, the solution of this equation is exactly the Hamilton- 
Jacobi generating function, restricted to the Poincare section. In this formulation 
one could ignore the averaged equation, since the other components of the Fourier 
projection were sufficient to determine the generating function. Satisfaction of 
the averaged equation turned out to be automatic, although not obviously so. 
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I programmed a numerical solution by the projection-iteration algorithm, 
for a general four-dimensional symplectic map M, and applied the program to 
a strongly nonlinear example from accelerator theory, a system with 2 l/2 de- 
grees of freedom. I found, as expected, a great saving of computation time in 
comparison to the Hamilton-Jacobi treatment. I used a Newton iteration, which 
proved to have a large region of convergence, but not quite as large as that of 
the analogous Hamilton-Jacobi calculation. Shortly after this bit of progress, I 
found an even better method to compute close approximations to invariant tori.6 
The method is extremely direct, avoiding both partial differential equations and 
functional equations. It depends on fitting a toroidal surface, represented as a 
truncated Fourier series, to an appropriate set of points on a single orbit of M. 
The idea of fitting surfaces to orbit points is not new, but I use a novel method 
of accomplishing the fit that has strong advantages. The result is an accurate, 
robust, and relatively inexpensive method of computing invariant tori. It pro- 
vides all quantities of interest in the canonical formalism, with better numerical 
efficiency than seems possible in methods of semi-analytical character. 

In spite of the success of this algorithm, I still think that functional differ- 
ence equations for general Hamiltonian systems hold considerable interest. They 
provide an elegant and concise mathematical characterization of invariant tori 
that is lacking in the surface-fitting approach. A study of singularities of the 
equations, aided by numerical analysis and ideas of functional analysis, might 
help to clarify questions regarding breakup of invariant tori of high-dimensional 
systems. Moreover, it is not excluded that difference equations could rival the 
surface-fitting method in numerical power, after further development of solution 
algorithms. The generalized Moser equation has not yet been investigated nu- 
merically. As I will indicate presently, it no longer seems inferior in interest to 
the functional equation of Hamilton-Jacobi type. 

I will show that the two equations arise as conjugation equations for two 
different time-evolution maps that arise naturally in the scheme of canonical 
transformations. These maps appear in a hierarchy, with the map for the equa- 
tion of Hamilton-Jacobi type appearing first, and that for the generalized Moser 
equation second. I therefore refer to each equation as a Functional Difference 
Equation of the First (S econd) Kind, accordingly. 

CANONICAL MAPS 

To establish notation and a point of view, we first review canonical transfor- 
mations. It is appropriate to take the action-angle variables (I, +) of an underly- 
ing integrable system as the primary phase-space coordinates. The Hamiltonian 
will have the form 

HK w> = H,(I) + V(1, a, 0) ) (1) 
where Ho represents an integrable system. The perturbation V is 27r-periodic in @ 
and 8. The independent variable of Hamilton’s equations is 0; it can be the time, 
or a monotonically increasing function of time. Bold-faced letters represent d- 
dimensional vectors. Owing to the 19 dependence of the Hamiltonian, the effective 
dimension of phase space is 2d + 1; the a system is said to have d + $ degrees 
of freedom. 



A canonical transformation to new action-angle variables (J, !#) is induced 
by a generating function S(J, 4[3,0) = J . @ + G(J, Cp, 0), where G is 2x-periodic 
in Cp and 19. The equations relating old and new variables are 

I= J+G+(J,W), Q=@+GJ(J,Q,O) , (2) 
where subscripts denote partial derivatives. If the transformation is ideal, so that 
J is invariant, then the first equation of (2) constitutes an explicit representation 
of a (d + 1)-d imensional invariant torus, giving I as a function of @ and 8. The 
invariant parameter J serves to distinguish different tori. When J is invariant, 
the generator satisfies the Hamilton-Jacobi equation, which is the requirement 
that the new Hamiltonian be independent of 9: 

H(J + G(J, a, e>, a, 0) + G(J, a) = h(J, 6) (3) 

For a Poincark surface of section S we choose the surface in phase space 
defined by 8 = 0 (mod 27r). The Poincare return map M : S + S gives the 
result of Hamiltonian flow during a change of 19 by 2n: 

(4) 
The following discussion is based entirely on this map. The object of interest will 
be a torus of dimension d, invariant under M; namely, the intersection of the full 
invariant torus with the surface of section S. Accordingly we define 

u(J,@) = G+(J,W) , (5) 

so that a representation of this d-dimensional torus is 
I = J + u(J,O) . (6) 

For almost all purposes it is sufficient to know this d- dimensional section of the 
full torus. Should the full torus be needed, it can be obtained by integrating 
the Hamilton-Jacobi equation as an initial-value problem in 0, with initial data 
obtained from (6) and the integral of (6) with respect to @. The hard part of an 
ab initio solution of the Hamilton-Jacobi equation, meeting the condition that G 
be periodic in 8, is avoided. 

If the system happens to be autonomous, so that V is independent of 6, then 
the following discussion requires a small modification. The generator G becomes 
independent of 0, the surface of section is defined by fixing one component of @, 
and the torus of interest has dimension d - 1. 

It is useful to view the canonical transformation as being composed of two 
steps: (I, @) H (J, a) followed by (J, a) H (J, Xl!). We define U to be the inverse 
of the first step, and V to be the second step: 

U(J,+) = (I,+) = (J + u(J,*),@) , (7) 

Y(J, a) = (J, Q) = (J, @ + v(J, a)) , (8) 
where 

v(J, fD) = GJ(J, @,O) . (9) 
The full canonical transformation is 

Y cX1(I,@) = (J,XP) . (10) 
A notation for its inverse is useful, 

C(J, !P) = 24 o V-l(J, KP) = (I, @) . (11) 
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The map M induces two other maps of interest, via the transformations U 
and C. Namely, 

n/(J,@) = U-l oM oU(J,@) = (J’,@‘) , 

and 

O(J,!l!) = C-’ o M oC(J,iP) = (J’,!B’) . 

Fig. 1. A commutative diagram showing how the maps n/ and 0 are induced by 
the original man M and changes of variable. The transformations 24 and V are 
given ig explicit’ form throughvderivatives of the generator; see Eqs. (7) and (8). 

These relations are illustrated in the pleasantly symmetric commutative 
diagram of Fig. 1. Next we shall see that a difference equation of the first or 
second kind is obtained by putting J = J’ in (12) or (13), respectively. For 
derivation of the equations it is convenient to have separate notations for the 
radial and angular components of M. With M(1, +) = (I’, @‘) we write 

I’ = I+ R(I,Q) , 
(12) 

43 = @+@(I,@). 

FUNCTIONAL DIFFERENCE EQUATION OF THE FIRST KIND: 
AN ANALOG OF THE HAMILTON-JACOBI EQUATION 

Let us write Eq. 12 as 

M oU(J,@) =Uon/(J,cP) . (13) 
In accord with Fig. 1, this means that passing from (J, a) to (I’, !@‘) by either of 
two routes in the diagram gives the same result. We put J = J’ to characterize an 

4 



invariant torus of M. Introducing the representation (7) of U, and the notation 
(12), we see that (13) takes the form 

( J + u(J, a) + R(J + u(J, a), a), @ + O(J + u(J, a), a) ) 

(14) 
= ( J+u(J$), ip’ ) . 

Combining the two components of Eq. (14), we obtain the Functional Difference 
Equation of the First Kind, 

u(G + O(J + u(a), 0)) - u(a)> = R(J + u(a), a) . (15) 

The first argument of u(J, a) is not written, since a J dependence is obviously 
induced by the occurrence of J as a parameter in Eq. (15) . With less formality, 
one deduces (15) by requiring that I’ = J + u(J, 0’) follow from I = J + u( J, a). 

FUNCTIONAL DIFFERENCE EQUATION OF THE SECOND KIND: 
THE GENERALIZATION OF MOSER’S EQUATION 

To apply a similar argument to Eq. (13), we define functions to represent 
the radial and angular components of the map C(J, %P) = (I, a), the inverse of 
the canonical transform; namely, 

I= P,(J) + P(J, 9 , 9 = !P + q(J) + a(J,XP) . (16) 

The functions p and a are 2r-periodic in XI!, and have zero mean with respect to 
!P. Thus p0 and CY,, are the constant terms in the Fourier series for I and 9 - !P 
as functions of XP. When restricted to an invariant torus of M, the map 0 has 
the form 

O(J,!P) = (J, IP + 24J)) . (17) 
(Allowing a priori a function v(J, Q) in the angular part, one finds that the 
symplectic condition forbids any Q-dependence of v.) Here u(J) is the winding 
number of M on the torus (the “tune” of accelerator physics). Now write Eq. (13) 
with J = J’ in the form 

M oC(J,!O) =CoO(J,V!) , (18) 
and introduce the representation (16) of C. Th e radial and angular components 
of the resulting Functional Difference Equation of the Second Kind are 

42~~ + *> - ~(9) = R(P, + p(Q), Q + ao + a(*)) , 

@TV + Q) - +q + 27ru = O(p, + p(e), ik + a, + qq) 
(19) 

* 

Reference to the J dependence of the various functions has been suppressed. 
A solution of this equation defines an invariant torus parametrized as in 

W (16) , with Xl! as “curve parameter.” In the earlier representation (6) , there 
was no auxiliary curve parameter, the natural toroidal coordinate @ itself suffic- 
ing to specify a point on the torus. To see a rough correspondence of the two 
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representations, we note the lowest order iterative solution of the second equation 
in (2) , for + as a function of !&: 

@=!P-GJ(J,~,O)+O(V~) . PO> 
This follows, because G is of order V, the perturbation strength. Substituting in 
the first equation of (2), we find 

I = J + G*(J, !P,O) + O(V2) = J + u(J, Xl!) + 0(V2) . (21) 
Since G* has zero mean with respect to %I!, a comparison to (16) gives 

PO(J) = J , 4J) M -(GJ(J, *)> , (22) 
where equality holds with corrections of order V2, and the angular brackets imply 
averaging with respect to XI! over [0,2~] ‘. One may think of the value of p,(J) 
as a surrogate for J, and as a parameter to distinguish different invariant tori. 

PROPERTIES AND NUMERICAL SOLUTION OF 
THE EQUATION OF THE FIRST KIND 

To enforce periodicity in angle variables, we look for solutions represented 
as Fourier series, 

up> = c umeim.* . (23) 
mE7 

For a numerical solution the set 7 of mode numbers will be finite, but does not 
necessarily consist of all modes up to some cutoff; for numerical efficiency it is 
useful to drop insignificant modes that lie below the highest significant mode. 
From Eq. (5) it follows that um = imGm, where G, is the Fourier coefficient of 
G. Thus 7 does not include vector m = 0, and that is an important feature in 
the solution of Eq. (15). 

Now substitute (23) in Eq. (15), and take the Fourier transform of the 
equation to obtain 

U m = 2r[g] ,-im4 
J 

[x u,exp(in.(~++(J+u(9),9))) -R(J+u(@),@)] . 

0 nE7 

(24) 
With m restricted to 7, Eq. (24) constitutes a finite set of nonlinear equations for 
the amplitudes u,. As in the case of the corresponding Fourier method applied 
to the Hamilton-Jacobi equation, the m = 0 mode does not appear, and the 
parameter J, destined to approximate the invariant action, is a fixed input. 

To put the equations (24) in a form suitable for a simple iterative solution, 
add and subtract u(@ + O,(J)) in Eq. (15) , where O,(J) = (O(J, +)). Then take 
the Fourier transform and rearrange to obtain 

1 
U m= eim.O,(J) _ 1 

[R(J+u(.), +u(.+@(J+u(.), .))+u(.+@o(J))], , (25) 

where f(*)m d enotes the Fourier coefficient of f(a). Now the right-hand side 
consists of terms that are O(V) and O(dV/dI), as one can determine by looking 
at the expressions for R and 0 in lowest order perturbation theory. By an 
application of the contraction mapping principle under appropriate restrictions 
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on R and 0, one can show that simple iteration of (25), beginning with u = 0 
as the lowest iterate, will give a solution. This requires that J be chosen so 
that the potential “small divisor,” exp(im . O(J)) - 1, not be too small for any 
m in the finite set ‘7 In practice it has been easy to find such a J, for mode 
sets 7 large enough to give quite accurate solutions. Again, the situation with 
respect to iterative solutions is quite analogous to that for the Hamilton-Jacobi 
system, except that the problem has been simplified through elimination of the 
8 coordinate. 

If 7 included all integer vectors, the iterative solution would fail, due to 
small divisors. For solutions of arbitrary accuracy one can carry out a sequence of 
canonical transformations, so that there is an equation like (15), with a different 
map (R, O), at each step of the sequence. The relevant formalism is in close 
correspondence to the “super-convergent” form of perturbation theory in the 
Hamilton-Jacobi framework. 

The requirements for convergence of the simple iterative solution with fi- 
nite 7 are fairly restrictive. Newton’s method applied to Eq. (24) has a much 
bigger range of convergence. As was mentioned above, a Newton iteration was 
programmed for an arbitrary system with d = 2. The Jacobian matrix required 
for Newton’s method involves dR/dI and X3/81. These were approximated by 
simple divided differences. In an application to an accelerator problem (betatron 
motion in a sextupole lattice) the map (R,O) was evaluated by symplectic nu- 
merical integration of Hamilton’s equations. The results are reported briefly in 
Ref. 5. 

Although the m = 0 projection of Eq. (15) is not involved in the compu- 
tation just outlined, it still constitutes an equation that must be satisfied if the 
resultant torus is really to be invariant under M. It was not too surprising to find 
that the m = 0 equation was automatically satisfied to high accuracy in the nu- 
merical computation. The reason for this can be traced to existence of the lowest 
Poincare invariant integral. Another requirement that is satisfied automatically 
and somewhat mysteriously in the numerical work is the relation between differ- 
ent components of the vector um. Since u = G* is a gradient of the scalar G, 
there should be relations between Fourier coefficients: (urn))) = imiGm, so that 
(um)j/(um)k = ./ f mJ rnk or mk f 0. Not only are these relations satisfied, they 
also allow a sharp reduction in the number of equations to be solved; with d = 2 
the number of equations is almost cut in half. 

PROPERTIES AND POSSIBLE NUMERICAL SOLUTION OF THE 
EQUATION OF THE SECOND KIND 

A numerical solution of the equation of the second kind, Eq. (19), can be 
pursued in the same way. We introduce finite Fourier expansions of p(q) and 
a(q), then take a Fourier transform of the equation to obtain 

1 
Pm = e2xim.U _ 1 Rm(P0 + P(*), * + a0 + a(-)) , 

1 
a m = e2*im.V _ 1 @m(P0 + P(*>, * + a0 + a(*)) , 

m#O. 

(26) 



In addition, the projection onto the m = 0 mode gives 

0 = Ro(p, + P(->,- + (~0 + a(.>> , (27) 

27rv = Oo(p, + p(m), * + a0 + a(-)) - (28) 

To specify a solution of Eqs. (26)-(28), we must choose an input parameter to 
be held fixed in the course of solution. Following the viewpoint of the previous 
section, we could take po, which is approximately equal to J, as that parameter. 
Then Y would be eliminated by substituting (28) in (26), and (26),(27) would 
be solved for (Y my Pm,m f 0, and (~0. A possible drawback of this option is 
that u will change in the course of iteration, possibly allowing a small divisor to 
develop so as to damage convergence. It may be more suitable to take u as a fixed 
input, in order to gain the best possible control of small divisors. Then all the 
Fourier coefficients, including those for m = 0, would be found by solving (26), 
(27), (28). With ou numerical experience, it is difficult to say which of these two t 
choices should be preferred, even though fixed u is suggested by the KAM proof 
in which control of small divisors through a Diophantine condition is an essential 
element. Also, fixed u would be appropriate for studying the breakup of tori as 
the perturbation strength is increased. 

Let us see how a computation at fixed u might go, of course with a finite 
mode set 7, and with weak perturbation V. First note that existence of solutions 
for arbitrary nonresonant (Diophantine) u cannot be expected. The domain 
of winding numbers is an intrinsic feature of the map M, and can be sharply 
restricted. In typical applications one knows the domain of J of interest, and has 
no choice but to deal with the corresponding range of u. The first step is then 
to choose a u corresponding to the desired domain of J. This can be done by 
applying the approximation 27ru(J) M O,(J, e), or simply by following orbits of 
M and finding the average change of @ per iteration of M, which defines 27ru 
in the limit of infinitely many iterations. Having chosen u, let us define /;, by 
u = O,($,, -). 

To discuss the structure of the equations, we define a 2d-dimensional vector 
z = (p, - fi,, (Ye) and a big vector y having the Fourier coefficients for m # 0 
as components: y = (pm, CVm; m f 0). For fixed x, Eq. (26) can be solved for 
y by simple iteration, since the system has the form y = A(y,x) with A being 
a contractive operator as far as y is concerned. On the other hand, Eqs. (27) 
and (28) have a form B(x, y) = 0 which does not lend itself to a simple iterative 
solution for x at fixed y . Instead, an iteration of Newton type is needed. A 
hybrid iterative scheme like the following might be able to handle both equations 
together: 

y(P+l) = A(Y(d, ,(d) , (29) 

B(xqy(p+l)) + B,(&), y(p+l))(x(P+l) _ ,(P)) = 0 ) 

JO) = 0 ) y(O) = 0 ) B, = dB/dx . 

This algorithm has not been analyzed in detail, but it seems plausible, since we 
deal with small (x, y) and B(O,O) is small. The angular component of B(O,O) is 
0 by our definition of ii,, and the radial component is O(V2). The latter can be 
proved by a simple perturbative analysis of the Hamilton equation i = -~V/~@ 
that defines the map R. 
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All Fourier transforms in this scheme can be done by the Fast Fourier Trans- 
form, whereas slow transforms are required in the treatment of equations of the 
first kind. That should allow very fast execution of the scheme. One might con- 
jecture that the convergence properties would be similar to those of normal-form 
perturbation theory, which has been rather successful in solving the conjugation 
equation (13) in Cartesian coordinates.7 On the other hand, one would expect 
the iterative method to be a great deal faster than perturbation theory, at least 
for the purpose of computing a single torus, whenever the perturbation series has 
to be carried to high orders for sufficient accuracy. 

CONCLUSION 

Functional difference equations provide an elegant framework for the study 
and computation of invariant tori of an arbitrary Hamiltonian system. Being 
based on the Poincare return map, they effectively reduce the dimension of the 
system to be analyzed by one unit. The generalized Moser equation seems partic- 
ularly interesting for further work, since it has not yet been treated numerically, 
and has potential advantages over the equation of Hamilton-Jacobi type. 
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