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1. Introduction

One of the main advantages of the light-cone quantization in field theory is its

manifest invariance under a maximally large subgroup of the Lorentz group’ which

contains even certain boost transformations. The corresponding generators of these

“simple” transformations are nondynamical operators, i.e. they do not involve any

interaction terms. Such nondynamical symmetries can be preserved under a wide

class of approximations,2 such as e.g. cutoffs in the number of particles. This

feature greatly simplifies the task of constructing the Hamiltonian formulation of

a relativistic field theory.

The price to pay for having simple generators of boost transformations is the

occurrence of complicated and dynamical generators for certain rotations which im-

plies that angular momentum is not manifestly conserved in the light-cone quan-

tization. We will show that this results in a divergent structure of even super

renormalizable theories.

Rotational invariance, is not a natural symmetry in the light-cone quantization

procedure since it mixes longitudinal and transverse degrees of freedom. In partic-

ular an improper treatment of the short distance singularities due to regularization

will result in a violation of rotational invariance. In fact most approximations or

regularizations (if infinities are present) will spoil rotational invariance, for ro-

tations which mix the : = (xc-, x1,x2)  and z+ direction.3  In this paper we will

concentrate on this aspect.

We will discuss several complementary approaches to this problem. The first,

u s i n g  Pauli-Villars ( P - V )  g  1re u arization, softens the short distance singularities

and thus avoids the cause of the problem, since it regularizes symmetrically in

longitudinal and transverse coordinates. The second approach starts from the
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naive light-cone quantization. Any violations of rotational invariance, e.g. due to

an improper treatment of the short distance singularities, are then cancelled by

adding explicitly rotational noninvariant terms to the light-cone Hamiltonian.

The resulting regularization and renormalization program has a priori nothing

to do with the usual renormalizations of mass and charge. As a matter of fact,

while infinite mass and charge renormalization are often not necessary in less than

3-l-l dimensions, the problems which are discussed here appear in any number of

dimensions (except in l+l, where there are no spatial rotational).

In order to emphasize this point we will mostly work in 2+1 dimensions. This

will help separate light-cone specific divergences and renormalizations from the

usual ones. An extension of the techniques developed here to 3+1 dimensions will

be described at the end of this paper.

2. Pauli-Villars regularization  of the

light-cone quantized Yukawa model

As a simple example, which exhibits many of the light-cone related problems,

we first consider the light-cone quantized Yukawa model,

in 2+1 dimensions. It is easy to study the violation of rotational invariance in

this model since it is-in contrast to e.g. gauge theories in the light-cone gauge-

described by a fully covariant Lagrangian, i.e. even off-shell Green’s functions

should exhibit covariance. In particular, one should be able to express the fermion
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self energy in the form

WY = (i--4fdP2)  +f2b2)  -

However, naive light-cone perturbation theory yields4 at one loop

1 00

tr(Cy+) =  cp+ d x
J J

dkl
1 - X

x(1 - x)p2 - m2x - X2(1  - x) - (Icl - xp~)~
0 --oo

- “A j A”
(2.3)

1 Ccl

t r  (C’y-) =  s d x
J J

m2+  Pl-k*)2

dkl l - x

x(1 - x)p2 - m2x - X2(1  - x) - (Icl - xp~)~
0 -CO

(2.4)

where c = y2/r . Adding

0
1 x( 1 - x)p2 - m2x - X2(1  - x) - (Icl - xp~)~ _ “x ---) *,,

= 1-2 x(1 - x)p2 - m2x - X2(1  - 2) - (k, - xp~)~
(2.5) -

to the integrand in Eq. (2.4) one finds

1 co

t r  (Cy-) =  s d x
J J

dkl
xp2 -I- m2 - x2 + (1 - x)pT

x(1 - x)p2 - m2x - X2( 1 - x) - (Icl - xp~)~
0 -CO

1 CXJ
C (1 - x)(p2 + pl) - & [x(1 - x)p2 - m2x - X2(1  - xc>]=-

P+ J Jdx dkl
x(1 - x)p2 - m2x - X2(1 - x) - (kl - xp1)2

0 -CO

= 5 tr(CY+) - s [(&7- fi) - “X ---f  A”] .

(24
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Obviously two conditions, namely j’ dX2p(X2) and J Xfp(X2) = J dX2@p(X2) =

0, are necessary to cancel the non-covariant term which implies the need for ar least

two P.V. particles. This is rather unpleasant and perhaps unexpected, since-in

a manifestly covariant approach-the fermion self energy in Yukawas+r  is finite

by power counting. As we have seen here, in light-cone quantization C is linearly

divergent and extra degrees of freedom have to be introduced to make it finite and
---- ;covariant. As far as perturbation theory is concerned, for theories with a mani-

festly covariant Lagrangian, the violation of rotational invariance is in principle no

problem. In any Greens function one calculates only the “good components”, like

tr Cy+, and uses general relations, like Eq. (2.2), to construct the “bad components

“. In the above example one could recover rotational invariance by defining

-
tr Cy- = ptrCy+.

P+
(2.7)

However, this does not work in gauge theories in the light-cone gauge (or any non-

covariant gauge), since there C(pfl) does not have such a simple structure as in Eq.

(2.2). Furthermore, in the Hamiltonian formalism, one does not calculate C(p”)

but on mass shell matrix elements thereof. Thus in general it will be technically

more difficult to develop an algorithm for extracting the noncovariant piece. Nev-

ertheless the noncovariant terms still have observable effects which allow one to

extract them. We will discuss this point later in the context of QEDz+r.

One should emphasize that the term which violates the rotational invariance

depends only on the external p+ but not on pl or p2. Furthermore a simple

calculation shows that tr (CT+) and tr (Cy’) do not contain such extra terms.

5



This implies that we can write (if we do not regularize)

CLc(pp)  = Cco”(pP) + const.  $ . (2.8)

This is a general result which also holds for higher loops5 -provided all noncovari-

ant terms have been removed for subloops  -and for other field theories like e.g.

QED in light cone gauge. This has various practical consequences. First one might
-_._ -

be able to remove this term by adding a counterterm to the Hamiltonian (i.e. by

changing the mass of the fermion in the kinetic energy term). Secondly this allows

one to develop simple subtraction procedures in perturbative calculations to get

rid of such terms.6

-A last point which we are going to make in the context of Yukawaa+r  concerns

the “over regularization” of the theory. As we mentioned already there are no

P-V particles necessary in covariant perturbation theory whereas we needed two

of them for a more one loop treatment. At higher loops the situation becomes a

little better, namely one P-V particle is sufficient (provided subloops are rendered

covariant) but it is also necessary in general as the example in Appendix B shows.

For renormalization theories where P-V regularization poses no extra problems,

like QEDs+r,  this means that there is no more regularization necessary than one

would need. However, in nonabelian gauge theories P-V regularization violates

gauge invariance and we would have to restore it by further counterterms. We

also emphazise, and this can also be read off from the example in Appendix B,

that dimensional regularization does not take care of the noncovariant terms. The

reason for this is that dimensional regularization in the transverse coordinate does

not regularize the longitudinal coordinates.
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3. Hamiltonian formulation  for QED2+1 in the

light cone gauge (Pauli-Villars regularization)

We start our considerations from the QED-Lagrangian in two space and one

time dimensions with gauge fixing term (npAp  = A+)

For the purpose of P-V regularization (as well as if one wants to introduce an IR-

regulator) it is necessary to specify how to introduce a mass for the A-field. One

might be tempted to add just a term like $ A,Ap to Eq. (3.1). However, since

A,Ap = A+A- - At = -At (note: A+ = 0) this means that only the I-degrees

of freedom become massive whereas the longitudinal degrees of freedom remain

massless. In terms of the photon propagator this means

Dr = -2;~ [(k2 - A2)gp” + [npny  - k”kv] -’ = -g
jw _ kpn”k+nkYnp  + A2npnY

(nkJ2
k2 - A2 $ ic

(3.2;

i.e. even at the tree level, the photon propagator does not vanish for A2 + 00 and

the “instantaneous”contribution

(3.3)

remains. What one has to do, in addition to adding an $ A,A@ term to fY, is to

introduce a dynamical longitudinal degree of freedom: a scalar field r$ of mass A

which couples with strength 6 to the current j+, i.e.
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The effect of this scalar field can be absorbed into the photon propagator, yielding

@(eff)  = Dr + Dr(longitudina1)  = -
gpv _ npky+nykp

k2-$ - (3.5)

Since for on-shell Greens functions the npk” terms do not contribute’ , all S-matrix

elements should exhibit rotational invariance--even for finite A2!

Having specified how to treat the A-field we can now proceed to construct the

Ha-miltonian.  As a matter of convenience we choose to represent the Hamiltonian

using discrete light-cone quantization (DLCQ). 8’g Except for the longitudinal field

this has been done already by A. Tang lo for QED3+1 so that we do not have to go

into the details. For one flavor of fermion (b+ = fermion,  d+ = antifermion) and

one massive photon (a+ = transverse photon, c+ = longitudinal photon) one finds

in 2 + 1 dimensions

H = HO + hip + ko f l ip  + %st phot  + T/iong + %st ferm + VNO (3.6)

where

Ho=c; [A2+ (y)2] [“;u~+c;cE]
I! = L

+c;
sz

[m2 + (y)‘] [b&&E + d:&zl 1

(3.7)



J

(3.10)

+ [k - mle + n] . dzkdtlds,,b-t,  + b$bteb,,d.-+ + h.c.- -- - I

- b&df&~d--t~ * [k + elm + n] ,

-{
(3.11) -

$k+[ + b$C!.qm~j2j+m + kc. ,- - -,- -

v
e2

mst ferm = 4TLI

- -

b,+,b,, + d,+,dsE- I
* L-tP  + mlq + n} - {p - nlq - m}]

+ a+a%mL,  - (p - ml - q + n) + h.c.ZIP -
(3.12)

+ a&&,L,  . [{p - mlq f n} - {p - njq + m}] + h.c.

+ apaq[bihbsg + d&L] - (p + nl - q + m} + h.c.- -  - -
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Here
p, q = 2,4,6,. . .

k, 1, m, n = 1,3,5, . . .
(3.13)

s, t =T, 1

-- - {mln}  = I$& - ii-
m

[m/n]  = &k- f .

(3.14)

VNO represents the normal ordering terms which are part of the O(e2) contributions

to the self energies. Since they arise from instantaneous interactions they are
11independent of particle masses and thus vanish in P-V regularization.

We leave the explicit construction of the P-V regularized Hamiltonian to the

Appendix. For perturbative calculations we will weight the contributions from

the various electrons and photons (physical and P-V) with coefficients c” and c:

which are later determined such that all unwanted terms

contributions to the self energy of a transverse photon

(p?L = Pl fy,:

vanish. E.g. the 0(e2)

with momentum p are-

(3.15)

In order to obtain a finite results in the continuum limit we have to require

C; c” = 0. This allows us to simplify the numerator by using the replacement
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SEtIanS
!!

e2 1 2=--
c4lrLl  p i ci

X
4mf+X2 [l-8: (l--$)1

“(P-4
I
$- (i+&) (;ip-P?L$

)K

2
?i~--&;  +mf

) II

+ SEP”” ,

where we have already separated the self energy of a longitudinal photon

In the continuum limit the self energies of longitudinal and transverse photons

must be equal-otherwise rotational invariance is broken. To analyze this condition

further we transform this term into an integral

and our second P-V condition has to be Ci c”
J-

rnf =  0 .
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We have performed similar calculations for the on-shell self energy of an elec-

tron. Since this is a gauge invariant quantity we can require that our calculation

in light-cone gauge and light-cone quantization reproduces the covariant result

obtained in Feynman gauge and 2 + 1 dimensional symmetrical integration. An al-

ternative approach-which will be elaborated in more detail in the next section-is

to calculate the one-loop corrections to the Compton cross section and compare

with well known results. Both methods lead to the same condition, namely

cc; = 0 ~cyij=o. (3.19)
i i

For practical calculations it is useful to reduce the number of P-V conditions.

To achieve this one can add a counterterm to the Hamiltonian which cancels those

terms which are multiplied by c” fiandc;fiintheselfenergiesofphotonsand

electrons respectively. At one loop this reduces-by construction-the number of

P-V conditions required. However, and this is a highly nontrivial result, numerical

calculations of the self energies as well as the example in Appendix B show that

this is also true for higher loops, i.e. the second P-V particle is only necessary at

one-loop. Once we avoid it by adding a suitable one-loop counterterm there is only

one P-V particle needed at two loops and most probably (we have not checked this

numerically) also for higher loops.

There might be various reasons for this special behavior at one loop. First of

all there are ambiguities in how to treat normal ordering divergences which are of

0(e2) and contribute only to the one-loop self energies. Secondly, power counting

in light-cone coordinates is different from the usual covariant power 12counting.

One has to count separately powers in Icl and l/lc+ in order to properly estimate

the degree of divergence. Here it turns out that the strongest divergence (e.g. a
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quadratic Icl divergence in 3 + 1 divergences) occurs only at the one loop level.

The situation here is similar to scalar QED in equal-time quantization.

4. Renormalization using noncovariant count ert erms

QED2+1 is super renormalizable and only two graphs are superficially divergent

in Feynman perturbation theory (the one and two loop vacuum polarization are
._.- -

finite if gauge invariant regularization is used.) However the presence of terms

which break rotational invariance has forced us to introduce four P-V particles

(two photons and two electrons), i.e. the Fock space content of the theory has

increased considerably. Even after calculating the one-loop counterterms by hand

one has to deal with one P-V photon and one P-V electron, i.e. the number of

degrees of freedom still increases by a factor of four compared to the unregularized

theory.

Furthermore practical calculations require in general some approximations which

in general lead to further violations of rotational l3invariance. In this work we deal

only with those violations of rotational invariance which are induced by an im-

proper treatment of the high energy degrees of freedom (large JCL, small CC) if no

P-V regularization, or anything equivalent, is applied. (The methods, which we

are going to develop for the latter problem, should however also be applicable for

approximation-induced effects.)

Using the light-cone power counting rules one shows that light- cone QED in

3+1 and 2+1 dimensions is renormalizable .I1 This implies that the violations of

rotational invariance (which in our case are induced by an improper handling of ar-

bitrarily high energies) can be compensated by a redefinition of terms in the Hamil-

tonian.  In general such a renormalization procedures can be quite lengthy since, at
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least in principle, the e- masses which appear in the kinetic energy and in the ver-

tex, the various e- charges and the various photon masses can all require different

renormalizations,  i.e. instead of three renormalization constants (m, A, e) we would

have to deal with nine (mk,,,  m vertex, eflip 7 eno flip T einst phot 7 einst ferm 3 Along 7 Xtrans  7 kertex).

However, practical calculations14 have shown that violations of rotational invari-

ance in LC gauge occur only in two point functions and there only in a very specific

form’” namely

(4.1)

for electron and photon self energies respectively. i.e.the deviations from the P-

V regularized results-which lead to rotational invariant observables - can be

parametrized by only two additional constants cl, ~2. The burden of fitting nine

renormalization constants has thus been reduced to fitting five. In practice one

adds two extra counterterms

(J-2)

to the Hamiltonian and adjusts Sm~in  and SXtr,,, such that rotational invariance is

restored (this point will be discussed below). The next step, which is not necessary

in QED2+1,  would then be the usual mass and charge 16renormalization.

The constants &-&, and SXfr,,, are determined as follows. Fixing 6X&, is

rather easy: one diagonalizes the Hamiltonian (within some approximations like

e.g. cutoff in Fock space) for a given SXzr,,, and compares the physical masses
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(eigenvalues of the Hamiltonian) of longitudinal and transverse photons. SXzr,,, is

then tuned until these eigenvalues coincide.

For Sm&, two methods are suggested. The first method is based on the fact

that instantaneous e- exchange becomes singular for small p+ transfer (e.g. in

Compton back scattering). This is of course an unphysical singularity which has

to be cancelled by noninstantaneous e- exchange. At tree level it is crucial for

the cancellation that the kinetic mass of an electron (m in Ho(3.7)) equals the

vertex mass (m in VRip(3.8)). At one loop the interaction will renormalize mbn

and mvertex differently and one can easily convince oneself that the cancellation

will be spoiled unless one renormalizes rnkin  differently from mvertex.  This defines

already the renormalization procedure, namely tuning mkn until finiteness of the

Compton back scattering amplitude for zero p+ transfer is achieved.

The second method uses the degeneracy of the positronium spectrum due to

rotational invariance. A glance at the Hamiltonian , Eq. (3.6) shows that, for zero

perpendicular momenta, an annihilation of an e+e- pair into a transverse photon

is possible if and only if both have a parallel spin but not for the S = 1, S, = 0

state. Another annihilation process is possible via longitudinal or instantaneous

photons but only from the S = 1, S, = 0 state. In the first case the vertex mass

appears whereas in the second it does not. For degeneracy of the S, = 0, f 1

states it is important that both interactions have the same strength. Again this

is achieved at tree level by choosing mkin = mvertex  but if loops are taken into

account the condition changes. Degeneracy of the S, = 0, fl states in the ground

state of positronium can thus be used as a renormalization condition.

The first method seems to be superior from a practical point of view, since

it requires to look at the e--y system only and not at e-e+y states as for the
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second method. However, from a practical point of view we are interested in the

positronium spectrum, i.e. we diagonalize the Hamiltonian. The second methods

thus requires only little effort to implement-namely, diagonalizing H for two spin

configurations and repeating this a few times (to fit 6mi iteratively). Further-

more, and this will also be of practical importance, the renormalization constants

will thus be evaluated automatically to the same loop order and with the same

approximations as the actual positronium calculations are done.

5. Extension to 3 + 1 Dimensions

For those theories considered in this work (Yukawa and QED) an extension

to 3 + 1 dimensions is straightforward. The only difference will be that more

coefficients have to be renormalized and that there will be in

renormalization.

general an infinite

In practice the following steps have to be performed. If one wants to render all

loops covariant, i.e. even the one loop graphs, using P-V there will be three P-V

conditions for photons and electrons, namely 17

J dX2p(X2) = 0

J
dX2X2p(X2)  = 0

J
dX2X2  log X2p(X2) = 0

(5.1)

which is awkward from a numerical point of view. Thus one should only use

the improved version of the P-V approach, where the one-loop counterterms are

constructed “by hand” and only one P-V condition has to be imposed for higher

loops. The number of degrees of freedom will thus be the same as in a covariant
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approach (e.g. euclidean integration) with P-V regularization. The method of

noncovariant counterterms might also be very useful. For example, if one uses a

kinetic energy cutoff further violations of rotational invariance are induced. The

algorithm described in Section 4 would automatically remedy this without further

effort.

The extension to nonabelian gauge theories is not as straightforward. All meth-

o-ds discussed in this work violate local gauge invariance at least in intermediate

steps. For QED this is not a problem since, e.g. the P-V regularization preserves

the Ward identities. In QCD this is not the case and one has to add further gauge

breaking counterterms which restore gauge invariance.18

6. Summary and Conclusion

Naive light-cone quantization without careful regularization violates rotational

invariance. In theories with a covariant Lagrangian we have demonstrated this by

investigating the covariant structure of self energies. In the case of a non-covariant

Lagrangian (QED in the light-cone gauge) the Lorentz transformation properties

of Green’s functions are nontrivial and therefore possible violations of Lorentz

invariance are not obvious.

However, these effects must show up in the calculation of physical processes. To

study them it is convenient to select those processes which are sensitive to violation

of its covariant structure as well as technically rather easy to deal with. In QED

the degeneracy of the triplet positronium state with parallel and antiparallel spin

as well as Compton back scattering are such processes.

The violation of rotational invariance is not limited to one loop, althought

one might expect this since normal-ordering ambiguities arise only in one-loop self

17



energies. In fact, unless regularized properly, the normal ordering contributions

lead to violation of rotational symmetry. However, those terms are not the only

source of violations of this kind as our explicit two loop calculations show. The

induced divergences are less severe there, though.

We have discussed from two basic methods to restore rotational invariance, the

Pauli  Villars method and the method of noncovariant counterterms. Both methods

s-eem  to require a large number of additional degrees of freedom or counterterms.

However, because of the specific structure of rotational invariance violation in light

cone quantization-the worst problems are restricted to one loop and only certain

components of two point functions (the y+ component of the fermion self energy

and the II - components of the vacuum polarization) are affected. This allows

us to optimize these methods considerably. We give analytic expressions for one

loop counterterms. As a result the P.V. approach then requires only one ghost per

particle to offset the violations of rotational symmetry at higher loops.

The method of noncovariant counterterms requires only two additional coun-

terterms ( compared to a manifest covariant approach ) , namely a mass term for

transverse photons and an additional correction to the fermion mass term which

appears at spin flip photon-electron vertices. To fix the additional constants one

has to specify the renormalization conditions. This can be achieved by consider-

ing the degenerate ground state of positronium as well as the degeneracy of the

longitudinal and transverse photons.
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APPENDIX A

The Pauli-Villars regularized Hamiltonian for QED2+1

As discussed in the section about Pauli-Villars regularization, one Pauli-Villars

condition

._.- -

(A4J dm2p,(m2)  = 0

J dX2p,(X2)  = 0 . (A-2)

for electrons and photons respectively is sufficient to guarantee covariant regu-

larization in all calculations beyond one loop- provided all one loop subgraphs

have been rendered covariant (e.g. by constructing the necessary one-loop coun-

terterms). One can easily convince oneself that the sum rules (A.l) and (A.2) can

be achieved by introducing one additional electron and photon field respectively

which are quantized with the wrong metric. One way to do so in practice is to

introduce an extra factor of &i for all heavy photon vertices and another factor

of J--i: for all heavy electron pair creation and annihilation vertices. In addition

the heavy electron has to be quantized as a boson.

In practice this implies

Hpv = HO + hip + V,o flip + T/iong + l&.t ferm  + VI loop

20
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where

--

Vflip = e c cap + i4)
2ap,, Th- C

+ “h.c.”

2P.l nl ml---__
P n m

’ (bZ&b~~+ BJ’&Bsd ‘Fip,m - (dzmds,  + D,S,Dsn) Sffp m- - - (A.6)

+ (bZrn@sn + iB~mD?s,) brA+m + “h.ceyy- _ - _ ,
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Vlong = &g& (hcp+incg{
- -

x [b;$s, + B,+,Bs,]  62&k - [d&&m  + D,+kDsml  b:lp,~- -
(A-7)

+ [b$d’l,, + iB$&,] @Jm,p- - - -

Knst f e r m  = e2 L47rLl

X (bzmbs, +  B,S,Bs, +  d$mds, +  DTrnDsd@&z,p+a- - - - - -

x ({P + mlq + n} = {p - nlq - m})

- (a,’ + iA~)(a~ + iA~)(L,b,,  + iD--,,B,,)

x @$ z+Il{p - ml - q + n} + “h.c.”- -’

+ (a,’ + iAj!)(%~ + iA&LEbs, + iD-sEBsm)-

x 6fj+,+,({p  - nlq + m} - {p - mlq + n}) + “h.c.”-‘-

+ cap + iAp)(al + iA,)(bs,bs, + B&JLE + d&d,,  + Bs+,Dsm)

x &E,~+~+x{P  + nl - q + m} + “h.c.”
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+ “++ + A,+A,, X2 + A 2 n e2
+ -

[b&b,,  + ds+,ds~l

- - 47rLl c nn.s

X c X2-s[m2+S~]~~+2ii~p^l  1 27,
m2+;i:

P
X2+& _ m2+  Zl-p?L  2

- ((X2 + A
n - P

) P(P - 4
n-P

+ “b+b + B+B, d+d -+ D+D, m2 + M2” .
w-4

The conventions are the same as in Eqs. (3.6)-(3.12).  up, A,, cp, Cg, Bs,=, D,,,-
obey usual boson commutation relations, b,,,,d fermion anticommutation rela-s,n

tions. “h.c.” indicates Hermitian conjugation only for field operators-not for

c-numbers, i.e. iA, + “h.c.” = iA, + iA$. Of course H is thus not hermitian but-
this should not influence unitarity below the production threshold for the heavy

photons and electrons. There is no instantaneous photon exchange term since those

terms cancel among the light and heavy photons.lg The one-loop counterterms have

been constructed such that they, together with one loop corrections induced by H,

avoid all one-loop self energies which would be proportional to J dm2p(m2)m or

J dX2p(X2)n in the continuum limit. Without the one-loop counterterms more

Pauli-Villars particles would be necessary to make all such terms vanish.
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APPENDIX B

The two-loop self energy in Yukawao,+a

In light-cone pertubation theory (LCPTh) the strongest divergences (quadratic

in 3 + 1) occur at the one loop level. Thus one might be tempted to expect that

the violations of rotational invariance occur also only at one loop. This is not true

as the following simple example shows.

We consider a massless fermion coupled to a massive scalar boson via a Yukawa

interaction term. As a specific example we evaluate explicitly the rainbow graph

(Fig.1)  contribution to the y+ component of the one-shell fermion self energy. If

we choose vanishing pl for the incoming electron, i.e. pli = pt/p+ = 0, it follows

from (2.2) that this component should be zero.

In order to separate one loop and two loop effects we allow the masses of the

inner (X) and the outer boson (A) in the diagram to be different from each other.

This also makes it easy to regularize the inner loop “sufficiently” while leaving the

outer loop unregularized for the moment. Applying LCPTh one easily finds 2o (UP

to the same constants)

where

p;’ = p+(l - XL’> p; = -
k; + X2

XP+
(B.2)
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Here we have already used s dA2p(A2)  = 0, s dA2p(A2)(A2)D1/2  = 0 to cast IILooP

into a rotationally invariant 21form. Using (note that pl is an energy shell; see Eq.

P.2) 1

p; = -(l - x) [ ki-+ kfLr21l - x

one finds

tr (Cy-)  = C JdDlki JdDlvl jx2c;:xj2!$ J dA2p( A2)
0

k2 + X2 1
x k21-x I kZ+XZ  k2+X2

X x +
g2+A2 I (k+d2
y(l---z) Cl-YW--z)

P.4)

P-5)

= crD1 IV- h-1
1 - (DJ2)  sina(LJ2) J dA2dA2) f o .

(A2)lvDl

First and most important, the y+ component of C is nonzero  and rotational invari-

ance is thus violated since p- = 0. Secondly, the result is independent of the outer

boson mass X; i.e. a Pauli-Villars regularization (with condition s dX2p(X2) = 0)

would have rendered tr (Cy-)  zero.

This is a rather typical result for higher loop graphs and implies the following.

Once one has (over-) regularized the short distance singularities so much that one

can handle the one-loop singularities in a rotationally invariant way (as in P-V)

then the (milder) higher loop singularities should be no problem any more if one

uses the same (over-) regularized versions of the theory there.

It is however not sufficient to add only a one-loop counterterm and add no

two loop counterterms at all. although one might be tempted to do so, because

e.g. in 2 + 1 dimensions this would not introduce additional infinities, this violates

rotational invariance by a finite term (for Dl = 1).
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Figure caption

Fig.1 Rainbow diagram contribution to the two loop fermion self energy in the

Yukawa model.
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