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1. Introduction; the CKM Triangle 
.- 

t 

.- 

The bottom quark should need no introduction. Other than the undiscovered 

top quark, it is by far the most fashionable of the six. There is good reason for 

this. It is bottom-quark behavior which holds out the most hope of measuring 

and understanding some of the most fundamental and delicate parameters of the 

standard model-those having to do with the origin of electroweak mixing-and 

thereby in all probability also the origin of quark mass. Also interwoven into this is 

the subject of CP violation, and its proposed interpretation in terms of electroweak 

mixing. 

In this section we shall review the basics of electroweak mixing and how it 

is impacted by the study of &quark properties. There are by now many lecture 

series and workshop proceedings devoted to this topic,l so I will not try to be 

comprehensive, but only hit some highlights. 

The parameters of electroweak mixing are defined by the amplitudes for W 

decay into quark-antiquark final states.2 There is no selection rule operative other 

than charge conservation and the V-A structure of the weak interaction Hamilto- 

nian. Therefore, we essentially have 

M(W+ + e+v,) (14 

The nine quantities VQ~ form a 3 x 3 matrix with complex entries, and it is a 

principal task of experiment to determine them. However from the point of view 

of standard-model theory, there is an additional restriction required for consistency 

of the electroweak gauge theory, namely that the matrix V be unitary. The reason 
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.- for this will be elaborated upon later, but here we only note that the unitarity 
t 

. 

restriction reduces the eighteen real parameters in V down to nine. There are five 

further reductions having to do with the fact that the choice of phase given to the 

quark fields or wave functions are arbitrary. This looks like elimination of six more 

parameters, but the number is only five, because a common phase rotation of all 

.- six quark fields leaves V unaffected. 

The bottom line is that in the standard model there are four independent real 

parameters in the matrix V to determine. It is natural to use as those parameters 

objects already accurately measured or with potential to be accurately measured 
.- in the future. A very natural phase choice for the elements of V is to choose .- .~ _ . 

the diagonal elements as real positive. This is because each is close in magnitude 

to unity (at least if we assume the unitarity constraint!), and in the limit of no 

mixing it is almost obligatory to let V approach the unit matrix. This leaves 

two other phase choices to make.. The next-to-diagonal elements in the upper 

- 

_. 

right are important ones experimentally, and we choose them to be real positive as 

well. V,, is the sine of the Cabbibo angle; well-measured and quite overdetermined 

through the many studies of strange particle weak decays. Vcb governs the dominant 

semileptonic decays of the B into charm final states. The lifetime and branching 

ratio measurements already determine its magnitude to about 20% and prospects 

for future improvements are good, as we will elaborate upon later in these lectures. 

With the phase choices out of the way, we see that V&,, in general complex, 

together with the magnitudes of Vu, and v& provide a convenient set of four in- 

dependent parameters to describe the purportedly unitary matrix V (called the 

Kobayashi-Maskawa KM matrix, or better the CKM matrix in recognition of 

Cabibbo’s earlier contributions to the development of the ideas of electroweak 
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mixing.) Then the determination of the remaining parameters of the matrix using 

c unitarity is straightforward. First get Vud (which is real) by demanding the norm 

_. of the first row of the matrix be unity. Then get VCd (which is complex) by de- 

manding orthogonality of the first and second rows. (this is two real equations.) 

This must be done together with determination of Vcs via the norm condition on 

the second row. While in general this could entail ugly algebra, in practice things 

- are completely straightforward because of the smallness of the off diagonal ele- 

ments and the fact they decrease rapidly as one departs further from the diagonal. 

The same situation holds for the elements of the third row. Orthogonality with 

- the second row determines I& to rather good accuracy. The norm condition on 
. . 

the third row essentially determines Vtb to be very near unity, and the remaining 

conditions, orthogonality of first and third rows, provide the most delicate and 

interesting relation: 

To good approximation this is 

(l-3) 

where we use 

This is conveniently depicted as a triangle relation in the complex plane (Fig. 1). 
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It appears ever more frequently in the literature, and perhaps in a  decade or two 

Figure 1. The  unitarity triangle. 

it may  penetrate the hal lowed pages of the Particle Data Group compilations. In 

any case for practical purposes we can regard the matrix (assuming its unitarity!!) 

to be reasonably well determined w,ith the exception of the-V,b element-especial ly 

its phase-and hence also the Vtd element as well. Thus a  good representation for 

the matrix is 

0.97 0.22 V ub 

-0.22 - 0.044 v-b 0.97 0.044 

Vtd -0.043 - 0.22 v$, 1.00 ) (1.5) 
where we have availed ourselves of some recent experimental numbers. The status 

of the unitarity triangle will be discussed later. 

However, before getting into the details of that phenomenology,  it is appro- 

priate to recall where this matrix is supposed to originate. It is in the depths of 

the Higgs sector of the electroweak theory, in particular the piece of the action 

responsible for quark mass.  This is supposed to occur via Yukawa coupl ing of the 
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quarks to a complex Higgs field @. We write this as follows: .- 
c 

_. fiYuk = &@G’qfi + h.c. (l-6) 

- 

Here Cp is a matrix of Higgs fields which is nontrivial only in weak-isospin space; 

it is diagonal in the S-dimensional “generation space”. That is, we may write 

@=H+ir-w W) 

with four independent real components. H is the physical Higgs degree of free- 

._ dom and the three w’s are “eaten” by the gauge degrees of freedom according to . . 
the Higgs mechanism. The w’s become the gauge-boson longitudinal degrees of 

freedom. The electroweak SU(2) rotations act on this matrix from the left 

so that @ transforms as a doublet as it should, while 

is an SU(2),5 invariant combination. The coupling matrix G’ is nontrivial in flavor 

space but does not see the SU(2),5; it is an invariant. But it is an ugly invariant; 

it is as general as it could possibly be. It is best to write out the matrices @ and 

G’ in 6 x 6 form to really see what they look like. 

The field @ is supposed to undergo spontaneous symmetry breakdown, i.e. 

develop a classical vacuum expectation value due to its self-interactions. The 
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expectation value is diagonal in our notation; -. 
* 

((a) = (H) 3 v = 246 GeV 

and turns the original quark-Higgs Yukawa coupling into a mass term. 

&k + $ (Q) G’qh + h.c. 3 &hf ‘qk + kc. 

(1.10) 

(1.11) 

- with 

M’ = (@a) G’ . (1.12) 

The message here is that the origin of mass in the standard model is to be traced 

to the presence of Yukawa couplings of the quarks to the Higgs degrees of freedom. 

The peculiar values of the quark masses are a consequence of the peculiar values 

of the corresponding Yukawa couplings to which they are proportional. 

But where does the mixing come from. 7 It is that the matrix G’ need not be 

diagonal nor hermitian nor symmetric under interchange of up and down degrees 

of freedom. A lot of diagonalizing can be and is done on G’. One writes 

G’ = VLGV; (1.13) 

with G diagonal. But one must check whether the rest of the electroweak La- 

grangian commutes with this diagonalization procedure. One place where it does 

not is in the quark-W coupling, which depends on weak isospin: 

Lw = gqpf% * wpqf, 
(1.14) 

We see that the matrix VL, which depends upon r3, will not commute with T+ or 

7-3 which are the couplings of the charged W  to the quarks. It is advised to write 
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the coupling of the quarks to the IV+ explicitly in 6 x 6 matrix form to see how 

this works. The relevant matrix turns out to be 

where Vup and VdOW,, are 3 x 3 unitary submatrices. Then 

and 

v = v&M = v,t,&,wn . 

(1.15) 

(1.16) 

(1.17) 

In contemplating the origin of V, it is clear from this point of view one must 

contemplate the origin of G’, or equivalently the mass matrix 

M’ = (a) G’ = G’v . (1.18) 

This is not so easy, because the mass matrix (which need not be hermitian) is 

diagonalized not only by VL but also T/R, a matrix about which we have no exper- 

imental information. And only the CKM combination V,pV’own of VL appears in 

the data as well. Nevertheless things can be done; most of this will however be 

left for the reader to work out. Some extra assumptions are typically needed to 
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do this. A popular ansatz is that the mass matrix have “Fritzsch texture”, i.e. it .- 
c takes the form3 

( 

0 muc 0 
Mlp = mcu 0 met 

0 mtc mt 

My own preferred attack is a little different. Because the off diagonal elements of V 

are small, one is tempted to assume the same for M’. Then low order perturbation 

theory can be used to determine the elements of M’ from those of V. One writes .- 
. . to first order 

VL=l+iKL 

VR = 1 + iI(R (1.20) 

M’=M+m 

with m having only off-diagonal elements. Then, because VL diagonalizes the 

hermitian matrix M’M’t, 

_. 

i [KL,M~] ZMmt+mM 

or 

i Kh _ (mijMj + m;iM;) 
:j - (Mj2 - M,2) 

(1.21) 

(1.22) 
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.- From this one gets three useful relations. 
c 

V = i(Kd”, - I<&) = (mdsMs + mtdMd) (m&C + mtiuMu) 
US M$Mj - M$-Mu 

(1.23) 

To go further requires more assumptions. My own favorite guess is that all impor- 
.- . tant off-diagonal terms of M’ reside in the down-quark matrix. This leaves their 

numerical values all in the 10’s to 100’s of MeV. (If this is true for the up-quark 

off-diagonal mass-matrix elements, they indeed are not very important contribu- 

tions to the CKM mixing.) Provided the mass matrix is anywhere near hermitian, 

one gets to good approximation 
- 

b’fdovvni x 

0 0 

1500 0 MeV . 

0 140,000 / 
(1.24) 

. . 
Notice that in any case the only information on the mass matrix is on the elements 

above the diagonal; the remaining elements are sensitive to VR. 

There is an amusing corollary which follows from this plus a couple more as- 

sumptions. Suppose that the mass matrix is hermitian and that all off diagonal 

elements are pure imaginary. (This is an old suggestion of StechP ) Then it turns 

out (the demonstration is left to the reader) that the unitarity triangle is to very 

good approximation a right triangle, with y = 90’. (To get this result, one must 
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go beyond first-order perturbation theory in the size of the off-diagonal elements.) .- 
c This result does not deserve to be taken very seriously. But what is vital is to 

get a better handle on the origin of the peculiar properties of the mass matrix. It 

deserves everyone’s best efforts. 

Also, one must not forget that the assumed unitarity of the CKM matrix 

is just that-an assumption. It is easy to find models where that is not true. 

Perhaps the most natural way of doing that is to introduce extra down quarks 

which are electroweak singlets (this happens naturally in GUT theories such as 

E(6)) but which mix with the usual quarks.’ Nir and Silverman’ have given a very 

nice analysis of the simplest situation, where only one extra down quark mixes 

significantly with the other three. Evidently there will be a 4 x 4 mixing matrix 

which is unitary, although the 3 x 3 submatrix will not be. The unitarity condition 

becomes 

Vu&; + vu&*, + vu&; + vu&; = 0 (1.25) 

which leads to a unitarity quadrangle (Fig. 2) 

(1.26) 

The extra segment is constrained in a variety of ways. And one might a priori not 

expect it to be especially large. But the effects on CP violation measurements in 

the B system can nevertheless be big. It is a little premature to discuss them here, 

but this point must be kept in mind as we go along. 

The sides and angles of the unitarity triangle have a direct experimental mean- 

ing. It is best to normalize the base to Vu, by dividing all sides by &,. Then the 

other two sides are more closely related to experimental observations. Evidently 
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Figure 2. A unitarity quadrangle. 

- 

Figure 3. Mechanism of B - B mixing. 

Vub/Vcb is measured by the ratio of charmless to charmed semileptonic decays? 

The other side ideally is measured via comparison of Bd - Bd mixing with that of 

the B,. This is clear from the diagrams shown in Fig. 3, assuming they are the 

dominant contributors to the mixing. The formula for the mixing probability goes 

like 

(AM) &i 
I I 

vtd 2 [QCD matrix elementId x vtd 2 

(AWB. = Vt, [QCD matrix element], I I c 
(1.27) 

and so the ratio of the mixing probabilities leads to a lot of cancellation of theo- 

retically uncertain factors. At present, one relies on best estimates of the separate 

factors to get at the value. The result is shown in Fig. 4 for an assumed top quark 
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mass of 160 GeV. There is much ado about the best fits which I do not choose here 
.- 

c to discuss.* My own view is that there is plenty of uncertainty in how the triangle 

will look, most of it theoretical. _. 

- 

. 
Figure 4. Allowed region for vertex of unitarity triangle for mt = 160 GeV. From 

Ref. 8. 

-. 

Direct observation of the angles of the triangle requires CP-violation experi- 

ments to be performed.’ The angle beta, for example, is what is measured in the 

premier CP violation experiment Bd t 1c, + I(, One compares the time-dependent 

decay of a tagged Bd with that of a tagged Bd. Standard mixing theory (ignoring 

quite justifiably” lifetime mixing) gives for the state which at initial time is pure 

Bd 

. . IBd(i!)) = IBd) cos y - ix IBd) sin 71 15~~“’ (1.28) 

where X is of modulus unity, with its phase being the phase of the mass mixing 

term. 

i $ I&) = -;I&)+ Bd ( lyl hi) IBd) - (1.29) 

Note that with our phase convention this has the phase of the square of I&. The 
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.- Bd decay amplitude into the +-KS CP eigenstate is then 
* 

hf (Bd + $KB) = M 0 
Amt Amt 

Vcb cos 2 f iX Vci sin --2- 1 /t/2 (1.30) 

where we have taken out the CKM element from the decay amplitude.Thus doing 

the same thing for the antiparticle gives 

dN 
dt = No cos 

= No [l f sin qSsin Amt] emrt 
. (1.31) 

dr -= Amt .Kl I& . Amt 2 -rt 
dt 

7-q) cos - 2 fz-a-sin- e 
Vtd vc; 2 

= To [l f sin 4 sin Amt] emrt 

Only I&j has significant phase content in our convention, so that the effect depends 

- 
upon 

4=2Arg&=2/?. (1.32) 

In a very similar way it can be seen that the angle o at the top of the unitarity 

triangle is measured by the decay Bd -+ 7r + x. Here the factor I& in the decay 

amplitude is replaced by VUb, and its additional phase changes the observable phase 

to twice c~. 

sin f$ = sin(2Arg Vtd - 2Arg v&) = sin(2/? + 27) = - sin 2cy . (1.33) 

The phase 7 is the hardest to get at. The decay BS + pK, is a candidate; here 

the only relevant phase is contained in the factor &, in the decay amplitude. 
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In all these examples, we have used B-B mixing, together with decay into a CP .- 
r eigenstate, as the technique for seeing the CP violation. There are other possible 

_ attacks as well, in particular particle-antiparticle branching-ratio differences. 

r(B+F)#r(B-+F). (1.34) 

- These typically utilize the existence of “Penguin” diagrams. Unfortunately there 

will be no time in these lectures to discuss Penguin processes. 

2. Semileptonic Decays 

- 

As we indicated in the previous section, the quest for observation of CP vi- 

olation in b-decay processes is the central reason for the great experimental-and 

theoretical-interest in the subject nowadays. But there is a long way to go be- 

foie getting there, and much should be measured and understood on the way. CP 

violation studies in the &system, .if possible at all, should turn out to be an ex- 

perimental program and not just an isolated discovery experiment. There are a 

variety of modes competitive in sensitivity which probe different features of the 

unitarity triangle (or quadrilateral). It therefore is especially important to have as 

good a grip on the overall phenomenology of &decays as possible. A large, well 

understood data base is essential in optimizing the yield of information possible 

to obtain on CP-violating processes. And already we see important parameters of 

the CKM matrix limited by theoretical systematic errors. So there will be some 

emphasis in these lectures on the underlying phenomenology. The natural starting 

point is semileptonic decays. 

Semileptonic &decay processes are expected to be especially clean theoretically. 

The reason is the same as for kaon decays or charm particle decays, although there 

15 



- 
- 

.- is some basis for hope that the heavy &quark mass may allow certain nonlep- 
c 

tonic decays to be comparable in cleanliness to semileptonic decays. The theory of 

semileptonic-decay phenomena is especially active nowadays, thanks to the contri- 

butions of Isgur and Wise (Wisgur).” They have shown that in the formal limit of 

infinite b- and c-quark mass, the phenomenology is greatly simplified. To me this 

.- holds out the promise of a relatively model-independent approach to these pro- 

- cesses. While the predictions of the limiting case may not be highly accurate, there 

is most likely a well-defined set of first-order corrections; the model dependence is 

then hopefully relegated to these corrections. 

So I will base the discussion here on the Wisgur limiting case; it at least has 
.~ . ~ 

the advantage of clarity and simplicity. The basic ideas are very simple: what is 

surprising is that they lead to such strong consequences. They are 

-1. As the b-quark mass becomes very large, a B-meson becomes a cannonball. 

It is very hard to change its velocity; a very large momentum transfer is 

needed and only perturbative mechanisms (hard gluons or electroweak tran- 

sitions) can do that. 

2. QCD exists in the limit; nothing terrible seems to occur. It is like setting 

the mass of a nucleus to infinity in QED atomic physics.12 

3. The spin degree of freedom of the &quark decouples from the dynamics in 

the limit because the color hyperfine interaction scales inversely with the 

heavy quark mass. 

4. Therefore there are new symmetries in the spectrum of states of the hadrons 

containing a b-quark; all members of a hyperfine multiplet have the same 

mass in the limit. In particular the pseudoscalar B becomes degenerate with 

the vector B* in the limit. (actually they are believed to be split by 50 MeV.) 
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5. In the limit, the flavor label of the heavy quark, e.g. b vs. c, becomes irrele- .- 
c vant; hence a new flavor symmetry emerges as well. 

-. The simplifications to the phenomenology occur for two reasons. The first is 

that in the limit the semileptonic matrix elements can depend only on the velocities 

of B and D (or D*), not separately on momenta and mass. The second simplifica- 

- tion comes from the Wisgur hyperfine symmetry. Spin rotation of the huark is a 

- symmetry operation; using it one can relate matrix elements of B to D* to those 

of B to D. 

Let us begin with the B -+ D + e + v decay. It is just like lie3 decay as far as 

kinematics is concerned. Normal conventions put the matrix element of the weak 

current (pure vector; no axial contribution) in the following general form: 

(2.1) 

- There are two form factors as shown, but only F+ contributes because 

q&&,n = (PB - PDb$,t,,n = 0 * P-2) 

We now compare this with the expression resulting from the infinite-mass limit 

. . requirement. 

(2.3) 

There are two changes. One is rather superficial; the traditional l/m normal- 

ization factors for the wave functions are replaced by dm. This form depends 
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.- only on the Lorentz 7 of the heavy meson, as appropriate for the limit. A more vi- 
c 

tal change is the appearance of only one form factor. This occurs for a combination 

of two reasons. The first is that only the combination Pp/M = 2rP, the invariant 

velocity, can appear in the matrix element. The other is that matrix element of 

the vector current between B and D at a given velocity transfer has to equal the 

matrix element of the vector current .- 

(B’ Iv/,1 B) = d-&F (&) CPA + PB)r 
(2.4) 

.- between B’ and B for the same velocity transfer. This happens because the spec- . 
tator system of light valence quark and its accompanying cloud of gluons and q?j 

pairs cannot distinguish between a b and c quark source; the flavor label carries no 

dynamical information in the infinite mass limit. But the elastic B matrix element 

is characterized by only one form factor. 

Notice the remarkable feature that a form factor for a process involving a 

timelike momentum transfer is related to one with spacelike momentum transfer. 

The synthesis occurs because what matters is velocity transfer. The invariant 

velocity transfer is 

and for the weak transition of interest this is related to q2 as follows: 

P-6) 

When Fvanishes, the (timelike) momentum transfer to the dilepton is maximized; 

the mass of the dilepton is just the B-D mass difference. In this limit, the D or D* 
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remains at rest (in the B rest frame) and there is no recoil motion of the spectator 

system. 

.- 

This procedure does not reduce the number of independent vector and axial 

B + D* matrix elements, of which there are four. However these all get related 

to the above form factor using the W isgur symmetry. The direct way of getting 

this result is to relate B-to-D* matrix elements to B-to-D matrix elements by 

- applying a  spin rotation to the D* in its rest frame. The easy way is to use 

s, = J d3z c+(z)o&) (2.7) 

- which is a  symmetry operator, i.e. commutes with the Hamiltonian, in the infinite 
. 

mass lim it. One easily finds (up to annoying phase conventions) 

sz ID> = ; lD’)l,,, sz ID*)*ong = f ID> * W V  

Thus 

- (%I, IJA q = 2 (D ISZJPI B) = 2  (D IKL JAI B) = (D 1 J/j q  (2.9) 

. . 

and the commutator can be evaluated explicitly for any choice of current, yielding 

a  matrix element of some other current operator between B and D. Upon doing 

this repeatedly, one finds that all the form factors indeed can be determined in 

terms of the single (normalized) form factor introduced above. 

W e  shall not go through that line of argument in any detail, but instead write 

down the answer in a  compact  form which allows further generalization.13 

(D or D* I JpI B) = 
d  

zBz Tr pJPZ?p . (2.10) 

In this formula, each of the factors is a  4  x 4 Dirac matrix. The matrix Z? is the 
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wave function of the initial B: .- 
t 

. 8= (“&F) 75 =&475. (2.11) 

Were the initial state a B*, 75 would be replaced by 7 - c, with epsilon the polar- 

ization vector of the B*. The matrix D is defined similarly 

D = 7oDtyo . (2.12) 

The matrix for the current is ryP for vector, etc. The remaining matrix p represents 

the physics of the spectator system, namely the amplitude that the light-quark 
.- .~ . spectator system for the B is carried away by the D or D* without additional 

hadron emission. It is dependent upon the B and D, D* four-velocities (and 7 

matrices), and some routine Dirac algebra shows that it can be reduced to a mul- 

tiple of the unit matrix and factored out of the trace. It is just the form factor, 

dependent upon the invariant velocity transfer, introduced above. The reader is 

urged to work out the results for the B -, D, D* matrix elements from the trace 

formula to see how easy it is-and to verify the B --) D example we already derived 

in detail. 

More general matrix elements can likewise be written down immediately using 

the trace formalism: 

(D or D*; kl . . . kn IJpI B) = TrD&Z?p(v,v’; k1 . . . kn) . (2.13) 

Only the object p changes; it in general depends on all the variables defining the 

extra particles in the final state; it is the spectator system which is responsible for 

their emission, because the heavy quark dynamics-in the infinite mass limit we 
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.- use here-is trivial. In the general case p will be a nontrivial 4 x 4 matrix, and 
t 

carries with it the nature of the correlation of the D, D* final state variables with 

. the remaining ones. 

The formalism for charmless final states is similar. For the general process, 

one simply writes 

h . ..k. IJpIB) = gTrJPZ3d(v; k1 . ..kn) . (2.14) 

- 

An important application, noted by Wise,‘* is that the same formula applies for 

the processes 

B-t {kl...k,}+t+v (2.15) 

and 

D+ {kl . ..kn} +l+v. (2.16) 

- 

Therefore the measurement of semileptonic (Cabibbo-forbidden) D decays into 

charmless, nonstrange final states gives one information, in this limit, on semilep- 

tonic B decays into the same final state. The information is only partial, because 

the invariant mass of the final hadron system must in the former case be small (in 

practice not much more than a GeV) while in the latter case it can be quite a bit 

larger. 

A simple example of a charmless final state is nothing at all, namely the pure 

leptonic decays. Here one writes 

(2.17) 
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.- where r$ is again proportional to the unit Dirac matrix, in fact just a number. The 
c 

usual way of writing these decay amplitudes is in terms of the decay constant 

(OIJp(B) = &FBP~. 

The relation between them is 

(2.18) 

(2.19) 

so that the scaling-law is (mass) -l12. This is a well-known piece of folklore for the 

lattice QCD community, amongst others.15 There is some skepticism on whether 

this asymptotic behavior is “precocious”; lattice calculations (not to mention ex- 

periments) are the best hope for an answer. 

-- Another important application may eventually be to the b + s flavor changing 

neutral current (“Penguin”) processes, where the matrix elements can be related 

to the dominant semileptonic D-decay amplitudes.16 Yet another application is for 

baryonic semileptonic decays.17 For the principal Ab -+ A, matrix elements, the 

formalism is very simple, because these states have no hyperfine partners to mix 

with. Therefore the matrix elements are simply 

h -..kn,AclJ&b) = - y&(P) F(v’,v; kl.. . k,) . (2.20) 

The spectator system has the quantum numbers of a spinless diquark, so there is 

no correlation between it and the heavy quark system other than the dependence 

on initial and final velocities. The spin correlation properties of the hb and A, 

should be just like the structureless heavy quarks within them, independent of the 

remaining light-hadron final state accompanying it! 
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.- For the elastic transition when no additional particles are emitted, the form 
c 

. 
factor depends again only on the invariant velocity transfer introduced before, and 

at r= 0 the form factor must be normalized to unity, because the spectator diquark 

is unaffected by the transition. 

In all these cases, the consequences of the Wisgur limit can be written down 

for the most general matrix elements. Therefore it is also possible to consider the 

consequences for inclusive quantities, i.e. squared matrix elements summed over a 

set of final states. As an example here we consider the baryonic semileptonic decays, 

because they are simplest, and also because to my knowledge the results for this 

case have not yet been written down elsewhere. We.saw above that the matrix 

elements factorize into a kinematic piece involving spinor products, multiplied by 

a form factor depending upon the spinless spectators and the emitted pions, etc. 

The decay width then has the structure 

- 
a(&, -+ A, + kl . ..k.)=dro-IF(u,u’;kl...kn)j2fi d3ki 

i-l G(2n)3 
(2.21) 

where 

d31 d3v d3p’M’ -- 
x 2% 2vo 2~y245 

6*(p’ - p - e - v - Cki) . 

(2.22) 

Now sum over all hadronic final states of given final mass W  and over all dilepton 

states of fixed mass q 

W  = p’ + Cki 

q=e+v (2.23) 
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.- In the infinite mass limit, the ki within the momentum conserving delta-function 
I 

can be safely neglected, and a straightforward calculation then gives the differential 

width as 

dr 
-=2w 

dr 
dq2dc 

dI’O(P, q) + 
dq2dW2 = dq2 , Q (2.24) 

where dI’0 is the expression for the differential width in the free quark limit (it 

- eventually goes as Mi), and where the structure function w(?, E) is defined as 

w(v, v’; E) E . (2.25) 

- 

. . 

For a fixed velocity transfer fwe must expect that the important values of W will 

involve only a finite amount of excitation, i.e. a finite value of c. The physics is 

that the spectator diquark, originally at rest, must respond to its heavy-quark 

%ucleusn , suddenly moving away at a finite (possibly relativistic, but still finite) 

velocity or 7. The response will include emission of hadrons, but few if any with 

gamma larger than that of the receding heavy quark. A qualitative estimate of the 

energy of the extra emitted hadrons in the At, rest frame (or for that matter in the 

AC rest frame) is 

. . 

c N ( mdiquark ) * 7 = (mdiquark) TJ * V’ = (mdiquark) (1 - 2z) - (2.26) 

Notice that the physics of this structure function is different from the usual deep- 

inelastic structurefunction physics. It is the response of the entire spectator to 

the acceleration of its heavy-quark source, not its response to the acceleration of 

one of its constituents. 
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.- The formula above has the structure of the spectator model of heavy flavor 
e 

decays. And the spectator model would be recovered were there a sum rule for the 

structure function 20. 

J dew&) 5 1. (2.27) 

Then the decay width, differential in c i.e. differential in the final-state dilepton 

- mass q, would be identical to that calculated in the free quark model. This has 

always been regarded as an inevitable consequence of the heavy-quark limit. If no 

constraints are put on the final state, the physics of the decay is controlled solely 

by what happens at the quark level. 
.- . . The sum rule can be shown to be true. This will not be done in detail here. 

A way of getting it is to start with an equal-time current commutation relation 

known to be true 

[J,t(C O)., Jo(O)] = &(O) S3(Z) (2.28) 

with 

and putting it between Ab states. Contributions of so-called z-graphs need to 

be included, but when the dust settles the sum rule written down above indeed 

emerges. Extraction of the elastic contribution gives the result 

(2.30) 

At zero velocity transfer this reduces to 1 = 1, because we already know (or should 

know) that the elastic Ab to A, form factor is normalized to unity there. The first 
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derivative of the sum rule evidently relates the slope of the form factor to the sum .- 
t of inelastic contributions to the width. This is analogous to the Cabibbo-Radicati 

sum rule for ordinary current-algebra sum 18 rules. 

l3 Similar results exist for the mesonic transitions. The factorization structure 

only emerges after summation over D and D* in the final states (but no average 

over B and B* in the initial state is necessary.) The contribution of the elastic 

_ channels to the sum is a little different and reads 

1 = (1 - ZJIF(i)(2 + 
J 

d~z+,z-) . (2.31) 
inelastic 

Again there is a CabibboRadicati sum rule: 

F’(i)li‘=o = f 1 + J % w(c,Q . 

inelastic 
It I 1 

- 

It evidently demands that the radius of the form factor exceed l/2. (From the 

analyticity of F, we expect a radius of order unity.) 

It is perhaps useful here to record the separate contributions to the differential 

width from the D, longitudinal D*, and transverse D*, since experiments can 

eventually sort these out via angular correlation measurements. Use of the trace 

. . 

formula yields the results 

B+D: W= 

B-+DI;;; WL= 
(2.33) 

B-+Dtotd: WL+2WT. 
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_- Here we have used the Lorentz boost +y instead of Tin the formulae. The relevant 
* 

relations are 

(2.34) 

= value of 7 at endpoint of spectrum 
(q2 = 0; zero dilepton mass). 

Most of these contributions have endpoint zeroes; the exception is that for the 

longitudinal D*. Normalizing the others to it and plotting the results gives a simple 

pattern. Comparison with model calculations (Fig. 5) yields good agreement, with 

the most important discrepancy occurring in the ratio of D to longitudinal D* at 

the maximum velocity transfer, i.e. when q2 = 0. 

As yet there is not enough data on this kind of thing in the B system to provide 

constraints on the theory. But there are analyses for D + K, K*ev transitions, 

some quite lgY2’ recent. It is of interest to see whether these ideas apply at all, 

despite having to assume that the strange quark is heavy. (Maybe heavier is good 

enough.). Here there seems to be trouble in the comparison with those model 

calculations which go along lines parallel to the infinite-mass limit approach. 

The Fermilab photoproduction experiment E691 has recently completed an 

2o analysis of the angular correlation structure in this process. They express the 

weak matrix element as follows 

-(K*(P’, 6 k&I D(P)) = (M + m’)Al(q2)c, 
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Figure 5. Predicted ratios of semileptonic partial widths. The solid line is from 

Wisgur; BSW and GISW are Refs. 21 and 22 respectively. 

and find for the three form factors the values 

Al(O) = 0.46 f 0.06 f 0.03 

AZ(O) = 0.0 f 0.2 f 0.1 

V(0) = 0.9 f 0.3 f 0.1 . 

(2.36) 

The infinite-mass limit results are easily worked out and give for these the expres- 

sions 
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Models 

Table I E691 IS BW GS KS 

Al(O) + A&,,) 0.46 + 0.54 0.8 + 1.0 0.9 + 1.1 0.8 --$ 0.9 1.0 + 1.2 

A2(0) + Az(hnax) 0.0 0.8 + 1.0 1.2 + 1.4 0.6 + 0.7 1.0 + 1.2 

V(O) + v(bwLx> 0.9 + 1.2 1.1 ---t 1.4 1.3 --+ 1.7 1.5 + 1.9 1.0 -+ 1.3 

Isgur 23 Bauer 24 Gilman 25 Koerner 26 
Scora Wirbel Singleton Schuler 

(MDm;( + PD * PK*) NN 1 2 

PD+M;) ’ 

V A (MD+Mi)M1l = 2= 
2Jm *- 

(2.37) 

In addition, the B + D semileptonic transition form factor F+ also has been 

measured by the same group, with the result rg 

- 
F+(O) = 0.8 f 0.05 f 0.06 . (2.38) 

This is not too far from the expectation in the infinite-mass limit: 

F+(q2 max ) = @Vi + mD) = 12 
2dW ** (2.39) 

. . 
In any case we see trouble. The ratio of A2 to V, expected to be unity in the 

Wisgur limit, is apparently considerably smaller. This also seems to be the case 

for the other axial form factor Al, whose ratio to F+ also seems to be considerably 

too small. In Table 1, as presented by the E691 collaboration, one sees that the 

explicit model calculations also suffer from the same disease as the infinite-mass 

limit approach. 
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.- It is a little hard to assess the robustness of the E691 result, since it depends 

upon a difficult likelihood analysis involving a function of several variables. But 

there does appear to be a serious problem here, and I cannot see an easy fix. 

Will the infinite-mass, Wisgur limit turn out to be of use? I find it a very 

promising development. If the corrections can be systematized, then the model 

dependence of the predictions is relegated to that of the correction terms. The 

- value of the method will end up being dependent on the size of those corrections and 

how well they can be kept in theoretical control. There is probably a considerable 

amount of work to be done before the value of the Wisgur method can really be 

assessed. 

What are the nature of the corrections ? One class is basically kinematic; 

reduced mass corrections and kinematic l/M corrections, e.g. coming from small 

27 components of Dirac wave functions. Other l/M corrections are associated with 

the chromomagnetic interactions. Another class of corrections are associated with 

- hard gluon emission, real or virtual, from the heavy quark system. These must be 

velocity-changing, so the running coupling associated with these processes will be 

evaluated at a heavy quark mass scale; hence be small. Some of these corrections 

have been worked out, in particular ratios of renormalization factors of B and D 

. . 
states, which differ because of the different 28 masses. This gives rise to the endemic 

factors 

where the exponent is of order l/4. 

(2.40) 

Finally there may be important effects associated with anomalous thresholds&’ 

The elastic form factor of a D*, in the Wisgur limit, should be identical to the 

30 



- 
- 

c 

_. 

elastic form factor of a D. But the D* can be viewed as a loosely bound system of 

pion and D with a very large radius, proportional to the square root of the binding 

energy. In the infinite-mass limit the mass difference must be small compared to 

a pion mass, which isn’t at all the case. While the correction may be big, one 

may hope that it can be accurately taken into account, because the anomalous 

threshold contribution can be precisely defined and calculated. But the work has 

- to be done. A good place to start may be for the D ---) K* problem. 

3. Nonleptonic Decays 

The theory of nonleptonic decays of kaons and even charmed mesons has been . ~ 

fraught with uncertainty. This does not create much cause for encouragement that 

things will be manageable for bottom decays. However I am guardedly optimistic 

that under certain circumstances some nonleptonic B decays may be comparable in 

cleanliness to semileptonic decays. This statement is subject to plenty of criticism. 

But in this lecture I will try to explain what I mean. 

The starting point for describing nonleptonic B-decays is the naive, unadorned 

current-current Lagrangian 

L = 2 [vc*a&y”(l - 75)c+ v:,VP - 75)+[v,d~7/4(1 - 75)d+ K,E’yp(l - cys)s] . 

(3-l) 
In the following we concentrate on only the first, dominant term. There are two 

immediate issues to address. One is how to take matrix elements of this interaction 

between hadron final states. The other is how the virtual hard gluons of QCD 

influence the form of this interaction. With respect to the first issue, one hypothesis 

is that of “factorization”, namely the most important contribution comes from final 
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state configurations such that the system on one side of the exchanged W  does not 

.- 
w talk to that on the other (Fig. 6). This hypothesis in general looks quite arbitrary. 

But there may be circumstances where it is justified. For example in the decay -. 

(3.2) 

.- there may be enough relative momentum of the subsystems and small enough 

- interquark interactions to make the final-state effects small. 

._ . 

Figure 6. Factorized decay amplitude. 

Figure 7. Factorized decay amplitude for low mass emitted meson. 
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Another class of processes I especially like is shown in Fig. 7. The ~2 system 
.- 

m emitted from the virtual W is presumed to be of low mass, which eventually mate- 

-. rializes into a pion or rho. It begins its life as a pointlike color singlet; furthermore 

it moves off with a quite large Lorentz 7, of order 5 or so. Therefore its evolution 
._ from a small, perturbative color dipole is timedilated. By the time it grows into 

a large, strongly interacting hadron-like entity, it is probably several fermis away 

-from its point of origin-and from the spectator system of the parent b quark. 

Therefore it is too late for the final state interaction to occur. I am told by experts 

that this is a well-known piece of folklore. But I don’t know anywhere where the 

argument is laid out in detail and made respectable3’ 

- 

Figure 8. Factorized decay amplitude for “neutral current” contribution. 

If the argument is right, it seems that it also should work for low mass neu- 

tral pairs. For example, in charmless decays (Fig. 8) one could pair up the uii 

system. This requires rewriting the original weak Lagrangian in charge-retention 

form by making a Fierz transformation. For the record the rules for these Fierz 
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rearrangements are as follows: 

A=1 

(Here the tA are one-half the Gell-Mann 3 x 3 color matrices XA.) One would be 
._ . . . tempted, therefore, to drop the color octet piece (at least with regard to calculating 

the decay of interest). The strength of the remainder piece is diluted in amplitude 

by-a factor three because of this color-singlet projection. 

- 

If factorization works, the problem of nonleptonic decays is “reduced” to that 

of the semileptonic decays. I would not necessarily expect it to work for general, 

generic, multibody final states. But many of the most interesting channels are 

the low multiplicity states for which the above argument applies. I think it is 

extremely important that a careful experimental program be devoted to a critical 

study of how well factorization works. We will return to this question later, after 

the complications of hard-gluon radiative corrections are included. 

The discussions of perturbative-QCD corrections to nonleptonic decays go back 

to the pioneering work of Gaillard and (Ben) Lee:’ and of Altarelli and Maiani32 

more than fifteen years ago. The context was nonleptonic K decays, and the 

calculation was a leading-logarithm, renormalization-group analysis. This has 

served as the basic framework for the discussion of the &decay corrections as well. 
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But because the &mass scale is fairly large, not much is lost by looking at only 

the lowest order corrections. This is what will be done here, with a guide at the 

end as to how the first order analysis relates to what one finds in the books. 

(A) (B) 

Figure 9. QCD Radiative Corrections to nonleptonic B decay. 

- 
One starts from the assertion that the effective interaction at the scale of the 

W  mass suffers no large ultraviolet renormalization effects. To see how reasonable 

this is, consider the Feynman diagrams in Fig. 9. If this is to be regarded as a 

parton-model process, say resonant quark-antiquark scattering at the W  mass, the 

assertion is not at all true. (This is not what Gaillard and Lee assume; they put the 

external quarks all highly virtual, with spacelike mass of order the W  mass). But 

no matter what, there is no ultraviolet divergence in the “factorizable’ diagrams 

of Fig. 9(a), b ecause self-energy and vertex divergences cancel just as in QED. 

The remaining diagrams of Fig. 9(b) converge and have no large logarithms. But 

logarithms will be generated as the energy scale for the process goes down, because 
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the W  propagator effectively contracts to a point and the remaining amplitude is 

t a vertex part cut off at the W  mass. 

_. What about the factorizable pieces in Fig. 9(a)? If the external lines are 

treated as partons, i.e. more or less on-mass-shell, their QCD radiative corrections 

will be much like those in electron-positron annihilation. The 

into hadron states with uz quantum numbers will suffer only 

_ correction 

total decay width 

a minor radiative 

l?(W+ + u;i + gluons, etc.) 
lT(W+ + e+v,) 

= Iv,d12 (1 + : + . . .) . (3.4) 

But if the final state is restricted to only collinear u and 2 jets and no extra 

gluon jets there will be a big form factor effect. Thus, experience with e+e- 

radiative effects, along with the fact that the presence of factorizable radiative 

corrections does not affect the factorization hypothesis, encourages us to omit 

from further consideration the factorizable pieces and only look at the remainder. 

It is clear that in the remaining terms of Fig. 9(b) the exchange must include a 

unit of charge and an octet of color. Since fermion masses are neglected, helicity 

is conserved. Up to an overall coefficient this determines the basic form of the 

correction to be 

M=fi 
m2w %...f .+-p * hI(l - 75)tAc] [Z7P(l- 75)tAd] (3.5) 

where ~1 is the low mass scale of interest. The Feynman diagram calculation gives 

the value of the coefficient to be 

(3.6) 

(There is still a question, not to be considered further here, of how this piece 
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behaves for “parton-model” external lines, and whether infrared effects occur, 

such as for the factorizable piece.) 

We conclude that for the original W-exchange channel, there is no first-order 

correction to the factorization approximation to consider. But of course, Fierz rear- 

rangement of this correction will give a color-singlet neutral-exchange contribution 

to add to what one gets from the Fierz rearrangement of the leading term: 

GF 
“MNc” = Jzv’b hp(l -y5)4 [Z7P(1 -75)c] 

1 4 4k gyjf++- . (3.7) 

Note that the radiative correction leads to a significant suppression of the leading 

order contribution (cf. Eq. (3.3)). 

It is now time to make contact with the formalism found in the literature.33 In 

order to sum the leading logarithms, a different combination of interaction terms -- 
is introduced. Before radiative corrections one writes for the leading term alone 

GF 
L=Jzv,b 

3 h4 -75)ce~7~~1 -75)d+hp(l -75)d.E7r(l-75)cj 
+3 rha - 75) c*~7’(1 - 75)d - r,(l - 75)d * Ti7q1 - 75)c] . 

This is done because these are the combinations that get multiplicatively renor- 

malized when the higher order effects (which for the &physics applications are not 

very big) are included. As already mentioned, the solution of renormalization- 

group equations under these circumstances always gives a factor 

(3.9) 

Therefore the first line of the equation above gets multiplied by c+, while the 

second line gets multiplied by c-. 
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Writing for the running coupling constant 
.- 

c 1 N 1 4 
as(m&4 

=-+ien- 
4J2) P2 _. 

with 

b = 33 - 2nf 
12 

x 2.1 

(3.10) 

(3.11) 

and expanding the renormalization factors out to first order gives 

1 -& 4v el -(bd*)~tn--p-. (3.12) 

In our case the fact that the first order correction is pure color and charge exchange, 
.- . . . 

along with the Fierz identities above, allows the radiative correction to be written 

solely in terms of color-singlet-exchange operators: 

L GF = J.jl/,b{hp(l -7S)c’~7’(1 -75)d 

- +f-Fen 3 -py,tA(1 - 75)c * iq’tA(l - 75)d) 
A 

(3.13) 

“2w = ~~~{~~(l-75)c*~7p(l-75)d(l-~~~~n;-i-) 

. . 
+f !??e n”b 2’* p2 -by& - 75)d4i7Jl - 75)~) 

and hence 

Cl 5 f (c+ + C-) Z 1 - { . F en 3 

(3.14) 

cp f 

Use of the definitions of the anomalous dimensions in Eq. (3.9) allows the deter- 
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.- 
f 2f t bd+=-3=+; bd-=+3=-1. (3.15) 

The choice of renormalization scale p is naturally taken at the mass of the b quark. 

Thus one gets for the numerical value of the expansion parameter 

CY9e 4v n - X 0.3 . 
7r l.4 

(3.16) 

- The effective Lagrangian is conventionally quoted as follows 

L eR = $$&b{clhp(l -75)c~~Y(l-~5)d 

(3.17) 

+ c2bp(l - Tys)d - V(l - 75)~) . 
._ 

. . 

By our estimates 

Cl x 1.07 c2 M -0.23 . (3.18) 

The more official numbers are 

- Cl = 1.13 c2 = -0.29 . (3.19) 

Once the effective lagrangian has been written down, either in first order or with 

the higher orders included, there still is a question of double counting as whether the 

Fierz-rearranged pieces should be taken into account phenomenologically. Bauer, 

Stech and Wirbel:4 in perhaps the most comprehensive study of nonleptonic 

decays done so far, include a parameter C in their analyses 

a1 = Cl + (‘c2 a2 = c2 + (Cl * (3.20) 

A vanishing C corresponds to omitting the Fierz rearrangement and a C of l/3 

corresponds to keeping it all. In their analyses of charm decays a vanishing (’ 
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seems to be preferred, although it seems to me the value l/3 has more logical 

.- 
t consistency. But the case for factorization made above is very weak for the charm 

decays. 

._ 

A compendium of BSW predictions and data are given in the accompanying 

tables. The data has been provided by the Argus 35 and CLEO 36 collaborations 

this year. In general their calculations (which do depend upon their model of 

semileptonic decays!) work quite well. In particular the Argus group fits their 

branching ratios to the model predictions and obtains as best values (assuming a2 

is negative) 

al = 1.03 f 0.09 a2 = -0.20 f 0.03 (x2 = 6.5/10) . (3.21) .- . . 

- 

While again a small C seems to be preferred, the success of this fit is grounds for 

encouragement that factorization works. But this is not a substitute for the direct, 

37 model independent experimental tests of factorization. Within the present data 

set, there are already some fairly direct tests. We can classify the data as belonging 

to three categories. The first is D or D* plus pions, the second is II, plus K plus 

possible pions, and the third is D or D* plus D,. 

Observation of the tables invites several checks. The p/~/al ratios are without 

uncertainty because the coupling of charged weak current to those states are de- 

_. termined in tau-lepton decays (cf. Fig. 10). The Argus group quotes, for example 

r(BtD+p-) =32*12 
I'(%-+D+x--) ' ' 

to be compared with the BSW estimate of Eq. (2.6). Also 

r(B + D*p) 
- 2.5 f 1.2 r(s+ D*?r)- 

(3.22) 

(3.23) 
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B- decay modes 

B decay signal events branching ratio 

B- + Don- (0.20 ho.08 f 0.06)% 
B- --) D’p- 19 f6 

B- + D*Or- 

B- + D*Op- (1.0 f 0.6 &0.4)% 
B- + D*+?r-T- llf6 (0.26 f0.14 &0.07)% 
B- + D(*);p- see text 6f3 

26flO 

5f3 

B- + D*+?T-?T-T~ (1.8 f 0.7 f 0.5)% 
see text B- + I$*&- 

B- -+ D*+T-T-T-T+ < 1.0% at 90% C.L. 

B- --, J/t+M- 6 (0.07 f 0.03 f O.Ol)% 
B- ---) #K- 5 (0.18 f 0.08 f 0.04)% 

B- + J/t,bK*- 2 (0.16 f 0.11 f 0.03)% 
B- h $‘K*- 

B- --) J/GK-?r+r- 

< 3.9 < 0.49% at 90% C.L. 

<8 < 0.16% at 90% C.L. 

B- ---) @K-n%- 3 (0.19 f 0.11 f 0.04)% 

B” decay modes 

B decay signal events branching ratio 
-4 B -,D-w- 22 f5 (0.48 f 0.11 f OX)% 
--o 
B + D-p- 9f5 (0.9 f 0.5 f 0.3)% I I ---o 
B --) D*-T- 12f4 I(0128 f 0.09 f 0.06)% 

77 + D*+p-w” 1 51flO 1 (1.8f0.4f0.5)% 
B” + D*+p- 1 19f9 1 (0.7 f 0.3 f 0.3)% 

B ---) D*+7nr-?r+ 26f 7 (1.2 f 0.3 f 0.4)% 
4 B + D*+7cr-r+r” 28flO (4.1 f 1.5 f l.S)% 

i? + J/gU(~ 1 2 I(O.04 f0.03 f O.Ol)% 

B” --) t+VKg < 2.3 < 0.14% at 90% C.L. 
---cI 
B ---) J/I@? 

0 6 (0.11 = 0.05 &0.02)% 
--u B -tt,!??? 11 < 3.9 < 0.23% at 90% C.L. 

77 + TJuar+ 1 < 2.3 1 < 0.10% at 90% C.L. 

Table 2: ARGUS35 data on B decays. 
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Mode 

_. 
B- --) D’n- 

B- + D*+?r-n- 

B- -+ $K- 
B- + $K*- 

- B- + t,bK-?r+?r- 
B; + $‘K-- 

B- -+ T,VK*- 

B- 3  DOD, 
-+I B --$ D+a- 

CLEO CLEO 

1987 1985t 

0.44 f 0.07 f 0.07 

< 0.4 
0.08 f 0.02 f 0.02 

0.13 f 0.09 f 0.03 

0.12 f 0.06 f 0.03 

< 0.05 

< 0.35 

0.54 f 0.17 f 0.11 

0.23 f 0.15 f 0.07 
0.10 f 0.07 f 0.2 

1.8 f 0.8 f 0.8 

0.25 f 0.06 f 0.04 

0.36 f 0.09 -f 0.07 

1.9 St 0.9 f 1.3 

2.6 f 0.5 f 0.6 

< 0.1 

0.51 f 0.27 f 0.14 

0.27 f 0.13 f 0.08 

0.06 & 0.03 f 0.02 

0.11 f 0.05 f 0.03 

0.10 f 0.04 f 0.03 

< 0.15 

3.35 f 0.16 f 0.03 

0.14 f 0.08 f 0.04 

0.75 f 0.21 f 0.32 

1.5 f 0.9 f 0.7 

B Branching Ratios 

ARGUS 

0.20 f 0.08 f 0.06 

0.26 f 0.14 f 0.07 
0.07 f 0.03 f 0.01 

0.16 f 0.11 f 0.03 
< 0.16 

0.18 f 0.08 f 0.04 

< 0.49 

0.48 f 0.11 f 0.11 

0.28 f 0.09 f 0.06 

0.7 f 0.3 f 0.3 

0.08 f 0.06 f 0.02 

0.11 f 0.05 f 0.02 

< 0.10 

< 0.28 

< 0.23 

Bauer, et al. 

Model2 

0.48(al + 0.7!%12)~ 

1.01 a; 

4.33 a; 

0.28 ai 

1.91 ai 

0.73 a: 

0.48af 

0.37ai 

1.18af 

1.63af 

0.07az 

1.02aq 

4.36ai 

0.28ai 

1.91ai 

0.67af 

0.30af 

t The previous CLEO results have been renormalized for equal charged 

and neutral B production on the Y(4S). 

Table 3: CLEO data 36  on B decays. 
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.- Decay Mode Theory 
rr ---il B + D+?r- 

_. B” j D+p- 

Bo + D’x- 

B” ._ -+ D+p- 

I? + D+D, 

B” --+ D+D, 

B” j D+D, 

B” --+ D+D, 

B” + 7r+n- 

Bo 4 ?r+p- 
._ . ~ i? 4 p+7r- 

Bo --) P+P- 

2-q a+D; 

B” + r+D; 

B” + p+D, 

IT ---) p+D; - 

B” --) r”Do 

B” j noDo 

B” + p”Do 

Bo + p”Do 

0.48 ai 
1.25 a: 
0.37 a! 
1.18 a: 

B” -+ D+D- 

B” -+ D+D- 

B” ---) D°K” 

Bo +D+OK’ 

0.67 a? 
0.73 a: 

0.30 a: 
2.03 a: 

o-17 atiKb/&b? 

0.46 a?ihb/&b12 

o-11 a$&b/&b12 

0.37 ai I&b/&b I2 

0.28 aTlKb/&b12 

0.40 @“kb/~b12 

o-13 @‘ib/&b12 

0.82 a$&b/Kb12 

0.13 ai 

0.19 ai 

0.07 a; 
0.38 a; 

1.02 ai 

4.36 a$ 

4 low2 a: . 

4.10m2 a: 

2.10v2 a?j 

2.10s2 as 

Decay Mode Theory 

B- + DOT- 0.48 (al + 0.75a2)2 

B- + D”p- 1.25 (al + 0.34 a2)2 

B- + D%r- 0.37 (al + 1.04 a2)2 

B- + o”op- 1.18 (al + 0.79 a2)2 

B- + D”Ds 0.67 a: 

B- + DOD; 0.73 a: 

B- + D”OD, 0.30 a: 

B- + DdD; 2.02 a: 

B- -+ 7r07r- 0.08 (al + 1.00 a2)2jvUb/vCb12 

B- + #p- 0.23 (al + 0.50 a2)21vub/&bj2 
B- -+ p%- 0.06 (al +2.01 a2)21vub/vcb12 

B- + pop- 0.19 (al + 1.00 U2)21VUb/vCb12 

B- t AOD; o-13 a$Kb/&b12 

B- -+ rODI;;- o-19 a$&b/Kb I2 

B- + poD; 0.07 a$%b/l/cbl’ 

B- --) p”D; 0.41 aflxb/r/eb12 

B- + K-J/$ 

B- + K-J/$ 

1.01 a; 

4.33 a$ 

Table 4: Branching ratios (given in %) for two-particle decay modes of B. 

IV&l = .05 has been used for the theoretical predictions. From Wirbe138. 
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Figure 10. Factorized amplitudes in B and T Decay. 

in fine agreement with the BSW expectation of 3.0. The Cornell measurement 

I’(@ + D*+p-) 

I’($ + D*+T-) 
= 5.3 f 2.6 f 2.9 (3.24) 

also is in reasonable agreement with the prediction. 

- 
The above predictions evidently depend upon the models of semileptonic form 

factors used. However, if one puts together the infinite-mass-limit Wisgur predic- 

tions together with the factorization hypothesis, there are no free parameters. In 

addition the final states obtained by replacement of D by D*, or vice versa, are 

related. For example, 

. . 
r(B + D*w+> 
r(B ---t On+) = 

x6 ITr/(jQ + MD)& - ^Is)(pB + ~~~~~12 
lTrr5(h + MI)&1 - ^15)(4$ + M&y512 = l * (3.25) 

This agrees well both with the BSW estimate of 0.8 and the data. 

An interesting channel is Do + T-, b ecause the neutral-current piece interferes 

with the charged current piece (Fig. 11) Th e ratio (which has considerable model 
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Figure 11. Mechanisms for the decay B + Dar- . 

dependence in it) 

r(B- + D"f-) 
r(B" -+D+?r-) 

= (1+0.75z)2 - (0.8)2 (3.26) 

tests its presence, but as yet the data is inconclusive. 

- Note that upon assuming factorization and the Wisgur limit, the process 

- 

is related to 

+ D7 D* + x + ~v)lr’_(c+.).=m2 (3.27) 
x 

B-t D,D*+X+?r. (3.28) 

. . This is the endpoint region of the semileptonic decays where ?is largest, and form 

factors matter the most. The elastic D and D* channels will be suppressed by 

at least a factor two by form factor effects. But the total yield, according to the 

sum rule, does not decrease. Therefore higher states such as D* + T and/or D** 

should be considerably more prominent than they appear in the overall semileptonic 

branching ratios. This is clearly evidenced by the data:’ where the branching ratio 
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Figure 12. Mechanism for B decay to qb final states. 

for D*+?r-a- is just as large as others. Argus in particular has seen fairly good 

evidence for D** resonances in these higher mass final states as well. 

. . A second class of decays involve psi final states. For this class of processes, 

neutral current factorization seems to me to be eminently reasonable, namely that 

t-he c - E onium system does not have significant final state interactions with the 

remainder of the system (Fig. 12).. B ecause these processes sense only a2, they are 

an excellent testing ground for the correctness of factorization and the presence of 

the big, destructively interfering QCD radiative correction. 

A good test is in $‘-to-$ ratios; the expectation is 

(3.29) 

(3.30) 

although I don’t see the reason for BSW getting such a big difference in the ratios 

for K and K* respectively. In any case, the data is only barely emergent: 

r(B + @I’*) M 1 3 f 0 8 
r(B-+$K*) ’ ’ 

r(B + +‘I’) < 0 6 
r(B--+K) ’ ’ 

(3.31) 
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- 
Finally the channels D/D* plus D, again provide a combined check of factorization 

c and Wisgur. I have not worked this one out. There are new theoretical contribu- 

tions on the subject.3g I would be surprised if the answer differs a lot from BSW, 

who give 

I'(%+D*D,) 
X'(B-+D+D;) 

15: 0.45 . (3.32) 

- The data are 

I'(B+D*+D,) _ 
IT(B-+D+D,) 

- 2.0 f 1.2 . 

._ . . I conclude from a11 this that the BSW approach looks pretty good, but that 

the really quantitative, model-independent tests are still in the future. This is a 

very important issue, because the predictions for the very rare decay amplitudes 

proportional to I/& are done the same way, as are those for “Penguin” processes. 

Both classes of decays are vital in a large variety of CP-violation measurements. 

So far there are many calculations and a large number of experimental limits, some 

of which are close to the predictions. But these will not be discussed here. 

4. Example of a CP-Violating Process: Bd ---) T+TT~T~ 

We conclude with a prototype of the kind of studies of CP-violating effects in 

the B system which is being pursued so actively nowadays by both experimentalists 

and theorists. The process I have chosen has some of the richness of complicated 

cases under study and the simplicity of the by now classic channels discussed in 

the first lecture. 
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The decay 

+ (r &+n n- To (4.1) 

can be described by specifying the amplitudes for producing the pions at a given 

point of the Dalitz plot (Fig. 13):’ 

- 
Figure 13. Dalitz plot for Bd + 3x. 

We see from the figure that there are probably three regions of importance 

corresponding to collinear final state configurations with any one of the three pions 

being the isolated one. The interior of the Dalitz triangle is very likely to be quite 

sparsely populated, although it is not at all out of the question that events will 

in fact be found there. The angular momentum of the low mass dipion, if formed 

from a q - ?j pair created in the weak transition, must be unity; hence a p, If this is 

not the case, and the dipion includes the absorption of the spectator system, then 

its angular momentum can be anything. Spins 0, 1, and 2, for both charged and 

neutral pion pairs, are all interesting. 
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According to the diagrams in Fig. 14 we see that the horizontal and vertical 
- 

edges of the Dalitz plot will be fed by both B and B via charged-current factoriza- 

tion amplitudes. The diagonal edge is neutral-current, again fed by B and B, but 

no doubt relatively small. And on the horizontal and vertical edges of the triangle, 

the “background” of non-p-wave dipions comes only from B or i?, not both. But 

a background can in general be expected. 

- 

Figure 14. Decay mechanisms for Bd + 37r. 

Let us now generalize the analysis of the time-dependent interference effects 

expected when a Bd is produced in association with a B whose identity is known 
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&h certainty. (There are complications when the process occurs at the Y(4S) 

c and the associated particle is a neutral B itself (undergoing mixing). The quantum 

mechanics is beautiful but does not change the essence of the CP-violation physics _. 
we are discussing here.f’ We need four different decay amplitudes, namely 

- 
M(& 4 F) = j&i(y+6) 

M ( Bd + F) = Ti;l&+-a) 

M(Bd --$ F) = &j(-Y+z) 

M(& + F) = M&Y+@ . 

- 

Here the labels F and F denote the locations in the Dalitz plot of the final states. 

Fis related to F by reflection about the diagonal, i.e. interchange of ?r+ with 

?r-. The amplitudes M and ?@ are defined as real, and their phases are explicitly 

exhibited. The CKM phase, namely the phase of V&, is denoted by 7. Now we 

can put these expressions into the time-dependent amplitudes we had in the first 

lecture 

JBd(t)) = [ IBd) COS y - iA IBd) sin y] emrtj2 

lzd(t)) = [ IEd) Cos y - iX* IBd) sin y] eBrt12 
(4.3) 

and obtain 

Amt 
IM(Bd + F)12 = ei(Y+6)Mcos - - Amt 2 

2 
ix ewi(Yma)~sin - e -rt 

2 
,. . . (4.4) 
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Thus, in obvious notation, 

i $ @d(t) ---) F) = [I+ (z@y$)cosAmt 

+ (Mt::2) sin(2cr - A)sin Amt] e-rt 

- 
; f (@j(t) + F) =[I-(zIi$)cosAmt 

.- 

. 

- (M::;2) ] sin(2o + A) sin Amt eqrt 

i 2 @d(t) -+ F) = [1-(~:@~)cosAmt 

(4.5) 

- (M:;;2) sin(2o - A) sin Amt 
I 

emrt 

- ; $ (Ed(t) 3 F) = 1 + [ (::I:) cos Amt 

+ (;$2) ] sin(2cr + A) sin Amt cVrt 

where cy is the vertex angle of the unitarity triangle and 

A&-$ (4.6) 

is the strong-interaction phase difference of the two amplitudes into F and F. 

Right away, we see that averaging over the identity of the initial B/B removes all 

oscillatory contributions to the decay into the final state F (or F). Thus the basic 
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asymmetry to consider is .- 
c 

h’(t) = 
n(Bd(t) -+ F) - 7@&(t) + F) 
@d(t) + F) + @d(t) + F) 

= (~~~~) cosAmt+ (~~~2)sin(20-A)ainAmt. (4’7) 

This asymmetry averaged over F and F gives 

&IF++)= 
- (;f$f2) 

(COS 2cr)(sin A) sin Amt (4.8) 

.- and vanishes in the absence of relative final-state phases 6. On the other hand, _. . 
the double asymmetry survives even in the absence of final-state effects associated 

with 6: 
- 

-AT)= cos Amt 

(4.9) - + (;T;2) (sin 2cu)(cos A) sin Amt . 

We see that, not surprisingly, a necessary condition to see CP violation via inter- 

ference of mixing and decay is that the amplitudes M and M be not too different 

in magnitude, although even a ratio of a factor three in amplitudes only gives a 

factor 0.6 dilution in possible interference effects. 

Only if backgrounds are present underneath the expected dominant pr channels 

will 6 be nonvanishing. If this is the case, the analysis is clearly more complicated. 

But there are also more interference effects and therefore more handles on deter- 

mining the CKM phase of interest (which clearly is twice a, the same as in the 

simpler w - ?r channel). For example, were cr = 7r/2, and were enough information 
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on the strong amplitudes known, the CP violation might still be observable. How 
.- 

c well one does depends upon how well all the contributions are understood. This in 

-. turn must come from understanding the overall Dalitz distribution. Information 

on this in turn comes from three-pion final states in charged B decays. If factor- 
._ 

- 

ization is trusted (and the measurement is feasible) even the semileptonic decay 

into pion-pair plus dilepton contributes information. 

- 

But the main message I want to leave here is that angular correlation mea- 

surements in CP violating processes promise to be powerful handles-and perhaps 

interference between different well-understood strong amplitudes will provide even 

42 more handles. What turns out to be useful will be greatly shaped by the nature 
_. . 

of the data itself. 

- 
5. Concluding remarks 

- 
What comes next? Of course the next round of data will as always be very 

welcome. But meanwhile there are a lot of theoretical issues to deal with: 

1. Corrections to the Wisgur limit need classification and estimation. Especially 

important to understand is the apparent large suppression of axial-current 

matrix elements in D decays and whether anything like that is seen in the B 

system. 

2. There is more to do on the Wisgur limit itself. Important to me is the 

question of sum rules for B decays into charmless final states. Work on that 

is underway.43 And QCD ra la rve corrections to all of the sum rules need to d’ t’ 

be understood. There probably is more to be done with Penguin processes 

and matrix elements of the neutral current operators. 
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3. Critical studies of factorization, both for neutral and charged channels, are _- 
c needed. They should be as model-independent as possible. 

4. On the experimental side it will be nice to see more on the nature of the ES 

final states. The Wisgur developments impact on them in an interesting way. 

- 

5. In the Wisgur limit, we saw that in some cases the decay properties of heavy 

baryons are simpler than those of the heavy mesons. This may stimulate 

more attention on this important sector, both experimental and theoretical. 

In these lectures much has been left out. But I hope that at the least the reader 

shares this author’s view that B-physics is of vital importance and will be around 

._ for a long time. But to do it justice will require the building up of a large data base. . . 
Already a principal limitation to the extraction of useful results lies in the inade- 

quacies of the theory. But there is a lot of progress, along with possible obstacles. 

It is clear that there is great opportunity for fruitful interplay between theory and 

experiment, and that there may be emerging relatively model-independent ways of 

dealing with semileptonic processes. And if factorization can be trusted-at least 

in a set of limited but well-defined cases-the progress in the semileptonic-decay 

theory will spill over to nonleptonic decays as well. The example of the preceding 

section shows full well how interconnected all these questions are. There may be 

a lot of apparently tedious work ahead between now and that hopeful, wonderful 

world of CP-violation measurements. But having done it may ultimately pay off 

in a big way. 

- 
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