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ABSTRACT

By constructing action variables that are very nearly invariant in a region R of

phase space, and by examining their residual variation, we set long-term bounds on

any orbit starting in an open subregion of R. A new and generally applicable method

for constructing the required high-precision invariants is applied. The technique is

illustrated for transverse oscillations in a circular accelerator, a case with 2 l/2 degrees

of freedom and strong nonlinearity.
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In applications of nonlinear Hamiltonian mechanics it is often interesting to es-

tablish theoretical limits on the motion over extremely long intervals of time. For

instance, in the design of cyclic particle accelerators and storage rings one would like

to predict stability of particle orbits over a beam storage time of several hours. Dur-

ing such a time, a particle makes a stupendous number of interactions with localized

nonlinear magnetic fields. In the Superconducting Supercollider (SSC) the number

will-be around 1012, while the stored particles make about lo8 turns around the ring.

To approach such problems it is useful to consider invariant surfaces in phase

space. The effective phase space has dimension D = 2d + 7 for a system with d

degrees of freedom, where 7 = 0 if the system is autonomous, and r = 1 if the

Hamiltonian H is a periodic function of the time. We emphasize the latter case,

which is of interest for accelerators, and exclude nonperiodic time dependence of H.

For nearly integrable systems as studied in the Kolmogorov-Arnol’d-Moser (KAM)

theory: a large set of invariant tori exists. If D < 4, an invariant torus divides the

space into two disjoint regions. We then have stability for all time, since an orbit

evolving from a point inside the torus must stay inside forever. If D > 5, as is

the case in relevant models of storage rings, an invariant torus no longer divides the

space so as to confine orbits. Furthermore, arbitrarily near an invariant torus there

are initial conditions for orbits that visit regions of phase space far removed from

that torus. Such orbits follow stochastic layers near resonance structures that form

a connected web permeating phase space.2 This phenomenon is broadly referred to

as Arnol’d Diffusion, following the demonstration of such an effect by Arnol’d in an

example with D = 5.3 Thus, in high-dimensional systems the existence of invariant

surfaces has no direct bearing on stability of orbits in a laboratory experiment. We

must approach the stability question in a different way, and attempt to show that
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the drift of orbits along resonances is so slow as to be harmless under conditions of

interest.

Mathematical results in this direction were obtained by NekhoroshevfY5  who stud-

ied a wide class of nearly integrable systems of arbitrary dimension. The Nekhoroshev

Theorem states that an orbit will be confined to a specified, bounded region of phase

space at least for a time T that increases exponentially as the strength e of the non-

linear- p.erturbation  tends to zero. Unfortunately, the Nekhoroshev Theorem has no

direct practical application, since c must be absurdly small to guarantee a stability

time T of suitable magnitude. This situation results from pessimistic estimates that

are required in the rigorous analysis. The true time of stability is almost certainly

underestimated by a huge margin.

We wish to show that an argument in the spirit of Nekhoroshev’s proof, but

quite different in technique, can be carried out numerically. Without a severe re-

striction on perturbation strength, we obtain bounds on the motion for suitably long

time intervals. Owing to the finite nature of numerical analysis, the bounds are not

mathematically rigorous, but in our view they are persuasive and much more reliable

than conclusions based on the conventional method of “tracking”. In the latter, one

follows a few orbits by symplectic numerical integration of the equations of motion

over a time interval that is usually much less than the desired time for stability. An

extrapolation to claim stability on the desired interval is risky, since examples are

frequent in which an orbit is apparently well-behaved for a long time, but finally

displays instability.

We first describe the motion in terms of action-angle variables (I, ‘P) of an un-

derlying integrable system. The Hamiltonian will have the form

H(I, f&O> = H,(I) + V(I, @, 0) , (1)
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where bold-faced symbols denote d-dimensional vectors, and 19 is the independent

variable of Hamilton’s equations, a monotonically increasing function of the time.

The perturbation V is 27r-periodic  in # and 19. The following discussion requires only

minor modifications if V is independent of 8. Our treatment makes no direct reference

to the Hamiltonian, being based on the time evolution map M for N, periods of V:

M : (I, *‘)e=o  H (I, qe=2*Iv, * (2)

This map will be evaluated by numerical integration of Hamilton’s equations with an

explicit fourth-order symplectic integrator6  Following accelerator terminology, we call

it the map for N, turns. In some examples, including complex accelerator models, it

may be possible to represent M(1, a) by an explicit formula, at least for small N,.

Our argument is based on a canonical transformation to new action-angle vari-

ables, (I, a) H (J, \E), such that the new action J is nearly invariant under the map

M. The total change in J during pN, turns can be no greater than p times SJ,

where SJ is an upper bound for the change in J during N, turns, valid throughout

the relevant region of phase space. If SJ can be made sufficiently small, by a good

choice of the transformation, then the change in J during pN, turns will stay within

acceptable limits even for large p. In Nekhoroshev’s proof, the canonical transforma-

tion is obtained by perturbation theory of finite but high order, and is validated only

at very small e. Our aim is to construct the transformation by a nonperturbative

method, so as to provide a small SJ even in cases of strong nonlinearity.

The canonical transformation is induced by a generating function S(J, ip, 19) =

J . @ + G(J, @, 0) that is 2r-periodic  in 9 and 13. The equations relating old and new

variables are

I = J + G+(J, a, 0) , Q=+++J(J,Q,~) , (3)
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where subscripts denote partial derivatives. In accord with our viewpoint based on

maps, it is sufficient to deal with the transformation at 0 = 0 only. If the transfor-

mation is ideal, so that J is a constant, then the first equation of Eqs. (3) furnishes

an explicit representation of an invariant torus of dimension d + 1; i.e., it gives I

as a 2r-periodic  function of @ and 19, with J acting as a parameter to distinguish

different tori. The average of I over Qi is equal to J. At 0 = 0 we employ the notation

I = J + u(J, 0), with u(J, a) = G+(J, %, 0).._.- -

For the nonintegrable systems of interest, exact invariant tori exist, if at all, only

for values of J on a closed set of Cantor type. Nevertheless, tori that are approximately

invariant exist as smooth functions of J in open regions of phase space, and they

can be computed numerically. Our computation is based on the fact that a family

of approximate tori, corresponding to values of J in an open region, determines a

canonical transformation. An efficient numerical method to determine such a family

and the resultant generator G is described in Ref. 7 and is reviewed briefly below.

Given a transformation such that the new action J is nearly constant, we can

proceed as follows to set limits on the residual variation of J. In a case with d = 2,

let R be the interior of a rectangle in the J = (Jr, J2) plane, and let R, be the interior

of a smaller, concentric rectangle so that R, c R. Denote by AJ; the width of the

annulus between n2, and R as crossed in the i-th direction. Suppose that the change

in J; during N, turns, for any orbit with initial J in 0, is less than SJi. Then any

orbit with initial J in the smaller region R, cannot reach the outer boundary of R in

fewer than N = pN,-, turns, where

p =  min(AJi/&Ji)  .i (4)

This observation is useful if p is sufficiently large. Since the largest tolerable excursion

AJi is usually imposed by the problem at hand, a large p is to be achieved by making
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SJ; small through a good choice of the canonical transformation.

To determine the canonical transformation, we expand the function representing

the torus in a finite Fourier series. We write

I = C umeim+@  ,
m

(5)

and determine the coefficients um so that (5) is satisfied at a finite set of points

(I(e),  C@(8)), 0 = 0 (mod 27r),  all lyin on a single non-resonant orbit. The coefficientg

u0 of the constant term is identified with the action J, which varies with the choice

of initial condition of the orbit. We repeat the process for various initial conditions,

thereby obtaining um( J) on a mesh of points J = J;, i = 1,2,. . . , k. We then

define urn(J) as a smooth function of J by interpolating the values at mesh points

with cubic spline functions. Thus, we have defined u(J, Se) as a smooth function of J

that can be identified with G*(J,  +, 0). Integration of the Fourier series with respect

to @ yields the generator of the desired canonical transformation. The constant of

integration, corresponding to the m = 0 term in G, can be set equal to 0. The

equation I = J + u(J,@) defines implicitly a function J(1, a) that will be constant

over each of the k sets of orbit points used in the above construction. (Here we suppose

that the Jacobian matrix dI/dJ is non-singular, as is the case in the examples we have

treated.) If J(1, a) is nearly constant on a continuous family of nearby orbits, then

SJ will be small and it will be possible to establish long-term bounds.

The determination of the Fourier coefficients um from orbit data cannot be done

as a simple discrete Fourier transform, since the values of the angles a(6) are scattered

unpredictably. Instead, the coefficients can be obtained by iterative solution of a set

of linear equations in which the unknowns are the values of I on a regular mesh.

This method, introduced in Ref. 7, leads to remarkably accurate tori at relatively low

computational cost.



The determination of Fourier coefficients fails, as it ought, when the orbit is reso-

nant. To set up the canonical transformation we choose mesh points Ji corresponding

to non-resonant orbits, and interpolate with spline functions so as to form bridges

over intervening resonances. We emphasize that interpolation is an essential part of

the argument, not just a feature forced upon us by our reliance on numerical analy-

sis. Indeed, Nekhoroshev’s argument also involves a canonical transformation that is

defined as a smooth function of J, in spite of the presence of resonances. Smooth in-

terpolations of exact invariant tori are also possible, as was shown in a KAM context

by PSschel.8

To compute a bound it remains to determine SJi. Because of practical limits on

computation time, there is some uncertainty in this determination, but with some care

the uncertainty can be made rather small. Note that the only failure of rigor in our

argument arises at this point. The canonical transformation itself is mathematically

well defined, even though it was obtained numerically.

We denote the increment in J over NO turns as J’ -J = D(J, a’, NO). To compute

2, we simply observe the time evolution of J induced by the map M through the

change of variable (J, ‘P) + (I, @) and its inverse. The change of variable is given

explicitly in Eq. (3); its inverse is computed easily by Newton’s method with J as the

first guess for J’. In the example studied below, the function 27 has many oscillations

as a function of 9 but relatively few as a function of J on R. It is impractical to

follow every oscillation in seeking the upper bound SJi of Di, but one can do random

sampling with statistical estimates of sampling error to find a fairly convincing value

of SJi. The reader may consult Ref. 9 for details on this relatively delicate problem.

For illustration we treat a basic problem of accelerator physics, the so-called

betatron motion, which consists of oscillations transverse to the direction of the beam

loin a cyclic accelerator or storage ring. The coordinates xi(; = 1,2) are transverse
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displacements with respect to a closed reference orbit of circumference 2aR, and the

conjugate (dimensionless) momenta are pi = dzi/d(RB). The motion is essentially

perturbed harmonic motion, with the perturbation arising from sextupole magnets

that are used to compensate the momentum dependence of the focusing system.

The field of a sextupole is concentrated in a small region of 19,  and gives a term in

V proportional to xf - 3x1s;. Thus, the contribution of a sextupole to the map

M resembles a four-dimensional quadratic map. After a canonical transformation,._.- -
similar to the familiar one for harmonic oscillators but a little more involved, the

Hamiltonian takes the form

H(1, CD, 0) = u. * I + 2 Fj(fl) [(pljIl)3~2cos3(~1  + Slj)
j=l (6)

-3(Plj~l)"2COs(@l  +Elj)'~2j~2cos2(@2 +E2j)] -

The tunes v,i (winding numbers) are the unperturbed frequencies normalized to the

beam revolution frequency. The function Fj(B) is nonzero only over the extent of

the j-th sextupole, where it has a constant value. Between sextupoles there is linear

propagation at constant I. The constants @ij and tij are determined by linear aspects

of the magnets that guide and focus the beam. The action 1; is measured in units of

length, being the usual action divided by the momentum of the beam.

We derive a bound for two-dimensional betatron motion in a configuration of

magnets that corresponds to one cell of the Berkeley Advanced Light Source (ALS);

four sextupoles are involved. The parameters of Eq. (6) are given in Ref. 11. This ex-

ample allows relatively fast computation, but involves nonlinear phenomena similar

to those in large hadron colliders. The sextupoles are so strong as to drive high-

order resonances such as those excited by high-order multipoles in superconducting

magnets. We work in a region R of substantial nonlinearity, about halfway to the

short-term dynamic aperture in the (xl [max], x2[max])  plane. (The short-term dy-



Figure 1: Plot of orbit points (II, @I, @2) on a torus with J in the region Cl defined
in Eq. (7). The origin is at I1 = 0, @ = 0.

namic aperture is defined loosely as a boundary beyond which the motion is unstable

after a few thousand turns.) With actions measured in units of 10m6 meters the region

0 is given by

2.51 < J1 < 2.82 , 1.34 < J2 < 1.64 . (7)

Orbit points on a typical invariant surface with J in this region are shown in Figure 1.

We plot in three dimensions the points (II, <PI, &); according to the first component

of Eq. (3), these points should lie on a two-dimensional surface.

By using our canonical formalism to map resonances from the frequency plane

into the J plane, we find that R contains the resonances shown in Figure 2. This

figure shows the images of all resonant lines rnr~r + m2v2 = n with Irn;I 5 20, where

the perturbed tunes (winding numbers) are denoted by vi; the m; and n are integers.

The stars mark the mesh points Ji used to set up the canonical transformation as

a smooth function of J. The transformation as represented in (5) involves up to
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Figure 2’: The image in the ( JI, J2) plane of all resonance lines mlul + m2v2 = n
with Jrni  1 5 20, for the region 0 defined in Eq. (7). Each line is labeled by (ml, ma).
The stars indicate the mesh points Ji used to set up the canonical transformation.

20 Fourier modes in each angle @i.

By means of the procedure outlined above, we find the following values for the

numbers SJi that bound Di, for N,, = 104:

(SJ1, 6J2) = (2.8,4.0)  + 1O-6 . (8)

The various tests used to certify these values are described in Ref. 9. The correspond-

ing values for N, = lo”, k = 0, 1,2,3,4, have similar magnitudes. Let us choose AJi

of Section 2 so that q = AJi/sJi = 104, with N, = 104. Then the subset 0, of R is

defined by

2.54 < J1 < 2.79 , 1.38 < J2 < 1.60 . (9)

Any orbit beginning in R, will stay within the slightly larger region R for at least

pN,, = lo8 turns. This result is quite satisfactory, since a stability time of lo8 turns is

in a range of practical interest, and far beyond the range accessible by direct tracking.

Recall that we have obtained the result by tracking for lo4 turns from many initial

conditions, a technique that implies good control of rounding error.
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All resonances in the region R defined above are weakly excited, and have little

effect. The variation of J on the resonance lines is hardly stronger than elsewhere

in the region. In other regions, at comparable amplitudes, we encounter strong reso-

nances that are associated with larger variations of J. This does not necessarily imply

a degradation of the time for stability, since oscillations on a well isolated resonance

can be stable for a long time and not associated with fast transport to nearby reso-

nances, even if the amplitude of oscillation is fairly large. The derivation of long-term

bounds in this situation is discussed in Ref. 9.

We have demonstrated the feasibility of bounds on Hamiltonian motion for very

long time intervals under conditions of strong nonlinearity. The scheme is quite

general, and proceeds in the same way for any Hamiltonian system. Points on orbits

of the-time evolution map M are the only data required to establish bounds. Although

the method was motivated by problems in accelerator theory, it should be of interest

as well for stability questions in other fields such as plasma theory and celestial

mechanics.

We are indebted to J. Irwin and I?. Forest for encouragement and good ideas.
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