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-. 
The SLAC Linear Collider (SLC) was constructed in the years 1983-1987 for 

two principal reasons: 

1. To develop the accelerator physics and technology that are necessary for the 

construction of future linear electron-positron colliders. 

.- 2. To produce electron-positron collisions at the 2’ pole and to study the 

physics of the weak neutral current. 

To date, the SLC program has been quite successful at achieving the first goal. 

The machine has produced and collided high energy electron and positron beams of 

three-micron transverse size. The problems of operating an open geometry detector 
-- 

._ in an environment that is more akin to those found in fixed-target experiments than 
. . . . 

in storage rings have largely been solved. As a physics producing venture, the SLC 

has been less successful than was originally hoped but more successful than is 

commonly believed. Some of the results that have been produced by the Mark 

II experiment with a very modest data sample are competitive with those that 

have been produced with much larger samples by the four LEP collaborations. At 

- the current time, SLAC is engaged in an ambitious program to upgrade the SLC 

luminosity and to exploit one of its unique features, a spin polarized electron beam. 

These lectures are therefore organized into three sections: 

1. A brief description of the SLC; 

2. A review of the physics results that have been achieved with the Mark II 

detector; 

3. A description of the SLC’s future: the realization and use of a polarized 

electron beam. 
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2. The SLAC Linear Collider .- 
c 

2.1. THE IMPORTANCE OF LINEAR COLLIDERS 
_. 

Circular electron-positron (e+e-) storage rings were developed in the 1960’s 

and early 1970’s as an inexpensive technique for the production of high energy 

collisions (the center-of-mass energies were typically a few GeV). They proved to 

be such extremely important tools in the development of particle physics that two 

_ more generations of higher energy machines have been constructed. 

Unfortunately, the size and cost of e + - e storage rings increase rapidly with 

the beam energy. This can be illustrated by considering a simple cost model for 

electron storage rings. The cost C can be expressed as follows, 

. . E4 
C=aR++ (24 

where: R is the radius of the storage ring; E is the beam energy; and cy, p are 

constants. The first term represents the costs that are proportional to the size of 

the ring (such as the tunnel, magnets, vacuum chamber, etc). The second term 

represents the cost (size) of the RF acceleration system that is necessary to replace 

the energy that is lost to synchrotron radiation. The optimal size of the ring for a 

given beam energy can be found from the zero of the first derivative dC/dR. The 

optimal radius and cost, Rapt and Copt, scale with the square of the beam energy, 

P Rapt = -E2, Copt = 2fiE2. 
J a 

The unpleasant reality of this scaling law can be illustrated by considering the 

scaling of LEP200 to 1 TeV. The size and cost of a LEPIOOO are listed in Table 

I. The cost is comparable to the entire CERN budget since its inception in 1954. 

The size is roughly eight times larger than that of the SSC. (If the beams were 

injected into LEPlOOO at CERN, the 180’ interaction region could be located in 

Zurich!) 
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Table I 

Machine CM Energy 

LEP200 180 GeV 

LEPlOOO 1 TeV 

TLC 1 TeV 

Length of Tunnel 

27 km 

833 km 

14 km 

cost 

FS 1~10~ 

FS 31 x 10’ 

FS 3~10~ 

.- 
c 

.- Table I also lists a guess at the size and cost of a 1 TeV linear collider (TLC). 

-The size and cost of the linear machine are smaller than the circular one by factors 

of 60 and 10, respectively. The size is well within the range of existing machines. 

The cost, while large, is smaller than those of the next generation of hadron collid- 

ers. It appears that linear colliders are the only practical technique for the building 

of very high energy e+e- machines. 
. . . . 

2.2. LINEAR COLLIDERS 

---Linear colliders differ from circular machines in that the beams are accelerated 

to collision energy (in one or two linear accelerators), collided, and discarded after 

only one use. 

- The luminosity L of any collider is given by the following expression, 

where: N+ and N- are the number of positrons and electrons in each bunch; f 

is the frequency of collision of the bunches; and 47rq,crY is the overlap area of the 

Gaussian bunches of size oz. by by. 

Circular machines have rather high frequencies of bunch collisions (from 4x lo4 

at LEP to -lo6 at small storage rings). Unfortunately, non-superconducting linear 

accelerators are limited to collision frequencies in the range lo2 to 103. In order to 

produce comparable luminosity, a linear collider must compensate the low collision 

frequency with increased bunch population or with reduced beam size. The former 
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leads to a number of technical difficulties and would require a tremendous amount 

c of RF power. The latter approach is the choice of all linear collider designers. Since 

the beams are to be discarded after a single use, they can be subjected to extreme 
_. 

._ 

.- 

perturbations from the transport system or from the other beam. It is therefore 

quite natural to use very small beams in a linear collider. The SLC has produced 

beams of 3 pm transverse size which is substantially smaller than the LEP design 

value of 12 pm by 300 pm (vertical by horizontal size). Future linear colliders are 

expected to utilize beams that are smaller than those of the SLC by nearly two 

orders of magnitude. 

2.3. TERMINOLOGY 

._ . . It is clear that the designer of a linear collider must concern himself (herself) 

with those aspects of the machine design that affect the beam size. The size of a 

charged particle beam within a magnetic transport system is determined by the 

focusing strength of the transport system and by the phase space that is occupied 

by the beam particles. 

- The concept of the phase space of a beam is an important one. Let us assume 

that we have a beam that consists of a large number of particles moving principally 

in the z-direction. We can then use Liouville’s theorem to write the following 

expression, 

1 
Yv c PYY = 7b-n; c Y’Y = 7ry@rnEy = constant, 

beam beam 
(2.3) 

where: N is the number of particles in the beam; P, is the momentum of a beam 

particle along one of the directions that is transverse to the beam direction; y is 

the displacement of the particle with respect to the beam axis; y and p are the 

usual Lorentz quantities; m is the particle mass; and y’ is the derivative dy/dz. 

The sums in equation (2.3) are taken over all particles in the beam. It is customary 
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to define the emittance of the beam (in the y direction) Q, as follows, 
_- 

c 
1 

cy G - 
TN c Y’Y- (2.4 _. 

beam 

Liouville’s theorem and the definition of the emittance lead to the following 

properties of the horizontal and vertical emittances: 
.- 

1. 

2. 
.- 
.~ . . 

3. 

4. 

The horizontal and vertical emittances, Ed and Q,, are invariant in conserva- 

tive fields. Note that magnetic transport systems are composed of conserva- 

tive fields. 

The products yez and yc, are invariant under acceleration (we assume that 

p N 1). 

The emittances cZ and Q, are intimately related to the transverse beam sizes. 

It can be shown that the variances of the (Gaussian) horizontal and vertical 

beam particle distributions, gZ and cY, are related to the horizontal and 

vertical emittances by the following expressions, 

0; = %&(z> 
0; = $/P&), 

P-5) 

where h(z) and Py( > z are functions which describe the focussing strength of 

the transport system (a complete description of the ,8 functions formalism 

can be found in Reference 1). 

The variances of the angular distributions of the beam particles, crZf and by’, 

are also related to the emittances and the ,B functions, 
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2.4. LINEAR ACCELERATORS 
_- 

c 

.- 

The main element(s) of a linear collider is a linear accelerator. The first linear 

accelerators were Cockroft-Walton and Van der Graaf accelerators. They consist 

of a linear drift space across which a large voltage difference V is maintained. This 

generates a strong axial electric field which is used to accelerate charged particles 

to kinetic energies that are equal to the voltage V. Unfortunately, it is not possible 

to maintain an arbitrarily large voltage across the accelerating structure. As the 

voltage is increased, one inevitably exceeds the dielectric strength of the insulators 

being used and discharges to ground occur. The maximum voltage that is typically 

obtained is lo-20 MV. 

- 

This limitation was overcome by the development of the traveling wave ac- 

celerator in the late 1940’s!’ The traveling wave accelerator is based upon the 

observation that the TMor mode of an electromagnetic field in cylindrical waveg- 

uide has a longitudinal electric field. The electric field is oriented along the axis of 

the cylinder which is the direction of propagation of the electromagnetic field (this 

is quite different from the case of a freely propagating em field). Charged particles 

can therefore be accelerated by a moving pulse of RF power and there is no need to 

produce a huge voltage along the entire length of the accelerator. Unfortunately, 

the phase and group velocities of the TM01 mode conspire to complicate the design 

of the accelerator. The phase velocity of the cylindrical waveguide is larger than 

the speed of light. A bunch of charged particles would see a longitudinal electric 

field of constantly changing sign and no acceleration would take place. The solu- 

tion to this problem is to load the cylinder with annular disks. The phase velocity 

can be adjusted to be equal to the speed of light. 

The group velocity of a radio frequency pulse of electromagnetic energy in a 

cylindrical accelerating structure is much less than the speed of light (in the SLC it 

is l%-2% of c). A bunch of electrons cannot travel along with an electromagnetic 

pulse of energy. The solution to this problem is to feed-in RF power at short 

intervals along the length of the accelerator. In the SLC, this is done at intervals 
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of 3 m. 
_- 

c 

2.5. A DESCRIPTION OF THE SLC _. 

A layout of the SLAC Linear Collider is shown in Figure 1. A cycle of the 

machine begins when one bunch of positrons and two bunches of electrons are 

extracted from the damping rings and are accelerated down the linac structure. 

-As the after the positron bunch and the first electron bunch pass the 2/3 point 

of the linac (the 3 km linac is composed of 30 sectors), a pulsed kicker magnet 

diverts the second electron bunch onto the positron production target to make 

more positrons. The positrons are returned to the beginning of sector 1 by a long 

return line. The electron gun at the front end of the machine fires to produce two 

electron pulses which are coaccelerated with the positrons to 1.15 GeV in the first 

linac sector. The beams are then injected into their respective damping rings. 

- 

--- The positron bunch and the first electron bunch continue to be accelerated 

to -46.5 GeV at the end of the linac. The bunches pass through a large dipole 

magnet which sends them into the north (electron) and south (positron) machine 

arcs. The beams each lose approximately 1.0 GeV as they traverse the 1.5 km 

arcs. They then enter the final focus regions which cause them to be demagnified 

to sizes of a few microns at the interaction point. After the collision, the beams 

are ejected into beam dumps by kicker magnets. 

The following sections describe each of the machine susbsytems in more detail. 

The Linac 

The actual linac has been modified substantially for use in the SLC. The 

klystron power supplies which provide the s-band RF power (2860 MHz) have been 

upgraded from 20 MW devices to 67 MW devices. The energy upgrade along with 

the implementation of a pulse compression technique have increased the maximum 

energy of the linac from 20 GeV to more than 50 GeV. 
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The increased energy has required that the focussing strength of the of the 
_- 

c quadrupole lattice be increased. Improved quadrupole magnets are placed at 12 m 

intervals along the machine. 

._ 

.- 

As we have already mentioned, the production of very small beams is a critical 

design feature of any linear collider. This requires that the emittance of the beam 

be kept a small as is possible. Unfortunately, there are several effects that can 

increase the emittance of a beam as it is accelerated in a linac. Collectively, they 

-are known as wakefield effects. They fall into two categories: 

1. Transverse wakefield effects are caused by the interaction of a bunch with its 

own image fields or with the image fields of other bunches. Within a single 

bunch, the image fields of the head of the bunch can affect the transverse 

positions of the particles in the tail of the bunch. The ensuing rotation of the . . 
bunch causes an effective increase in the transverse emittance of the beam. 

The solutions to this problem are to make the bunches as short as possible 

-- and to steer the beam as close to the axis of the accelerator structure as is 

possible (the effect vanishes on the accelerator axis). 

- 
2. Longitudinal wakefields effects are caused by the intrabunch electrostatic 

fields. Fields from the bunch head tend to decelerate the particles in the 

bunch tail. This causes an increase in the energy spread of the beam as it 

is accelerated in the linac. This problem is minimized by making the beam 

bunches as long as is possible. 

In order to control wakefield effects, a number of changes to the linac and its 

mode of operation have been implemented: 

1. The linac is operated with a short (optimized) bunch length of 2 mm. 

2. Beam position monitors and corrector magnets have been installed at inter- 

vals of 12 m along the linac. The system can control the trajectory of a single 

beam bunch to 4~100 urn of the accelerator axis. 

3. The linac RF phases are adjusted to introduce and to remove an energy 
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spread as the beam is transported down the linac. This causes the beam to 

c decompose into filaments of different momenta which follow different orbits. 

The transverse wakefield effects are reduced by this technique (which is called 
_. 

BNS damping). 

The electron source consists of several components. An electron gun produces 

two 2-ns pulses of up to 2 x 10 *’ electrons from a hot cathode. The 175 kV electron 

-pulses are separated in time by 61 ns. 

A system of three RF bunchers is then used to reduce the bunch length from 

-20 cm at 175 kV to 2 mm at 40 MeV. The bunchers make use of the non- 

relativistic velocity of the electrons that are emitted from the gun. A long wave- 

. . length axial electric field is used to accelerate the tail of the bunch and to decelerate 

the head of the bunch. This velocity dispersion decreases the bunch length until 

the increasing energy causes the velocity to saturate at c along the entire bunch. 

Finally, an accelerator section is used to increase the beam energy to 200 

MeV at the entrance to the first. linac sector. The electron bunches are then 

coaccelerated with positrons returning from the positron production target to 1.15 
-. 

GeV for injection into the damping rings. 

Damping Rings 

The electron and positron bunches that are produced by the respective sources 

have invariant emittances that are too large for the high luminosity operation of a 

linear collider. It is therefore necessary to make use of a phenomenon that doesn’t 

conserve energy to reduce the beam emittances. 

The emission of synchrotron radiation is particularly useful for this purpose. 

Let us consider a bunch of electrons circulating in a storage ring. Let the z-axis 

define the instantaneous direction of a particle that is traveling along the central 

orbit of the bunch. Most of the remaining particles have some momentum com- 

ponents that are perpendicular to the central orbit (let x and y be the horizontal 
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and vertical directions in the perpendicular plane). As the average beam particle 
.- 

c passes through the machine arcs, it radiates photons that are collinear with its 

instantaneous direction of motion. The momenta along the three directions, pz, 
_. 

py, and pz, are reduced by the emission process. This lost energy is replaced in 

an RF accelerating cavity. Note, however, that the energy is replaced along the z 

direction only. 

.- In the vertical direction (which is orthogonal to the bending plane of the arcs), 

-the transverse momentum of the beam is reduced without affecting the spatial 

distribution of the particles. The vertical emittance, yeY, therefore becomes smaller. 

In the horizontal direction, the transverse momentum components are also re- 

duced. Unfortunately, the particle trajectory moves horizontally when the particle 

energy changes (the radius of the orbit becomes smaller when energy is lost). Thus, 
. . 

we have two competing effects: one that reduces the transverse momentum com- 

ponents, and one that increases the spatial distribution of the beam. The machine 

lattice can be designed to enhance the damping effect and to reduce the horizontal 

emittance, yEZ, at a cost in longitudinal energy spread. 

- 

The SLC has two small storage rings that are designed to reduce the verti- 

cal and horizontal emittances of the electron and positron bunches. The north 

(electron) damping ring is shown in Figure 2. The ring is designed to reduce the 

emittance of a particle bunch with a characteristic l/e time of 3 ms. Since the 

positron bunches are produced with larger emittances, they must be stored for two 

machine cycles (16 ms) to be sufficiently damped. 

-. The Positron Source 

As was described at the beginning of this section, a positron bunch and two 

electron bunches are extracted from the damping rings and accelerated in the linac. 

As they pass the lgth sector of the machine, the trailing electron bunch is diverted 

onto the positron production target by a pulsed kicker magnet and a short beam 

transport system. The electrons produce electromagnetic showers in the 6 radiation 

length target. Positrons between the energies of 2 MeV and 20 MeV are captured 
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by a solenoidal focusing system and are accelerated to 200 MeV. The system is 

c designed to capture 2 positrons for each incident electron. The positrons are then 

returned to the front end of sector 1 for acceleration and storage in the south 
-. 

damping ring. Including losses enroute, the system is designed to store 1 positron 

in the damping ring for each electron striking the positron production target. 

The Arcs 

After the positron and leading electron bunches are accelerated to full energy 

(which is approximately 1 GeV larger than the interaction point energy), they are 

transported to the final focus systems in 1.5 km, S-shaped arcs. In our discussion of 

radiation damping, we noted that particles traversing a magnetic field lose energy 

along three coordinates. Since we have no RF system to replace the lost energy, the 

emittance of a beam bunch that is transported through a large arc must increase. 

The horizontal emittance is also increased by the horizontal displacement caused 

by the energy change (this is called dispersion). 

- 

- The increase in the horizontal emittance can be minimized by keeping the beam 

strongly focused as it is transported through the arcs. In order to do this, the SLC 

arcs consist of three-pole, combined-function magnets. The fields produced by 

these magnets have strong dipole, quadrupole, and sextapole components. Each 

arc is constructed of 460 such magnets arranged to alternately focus and defocus 

in each plane. The arcs are designed to be achromatic to second order and to be 

capable of transporting a beam with an energy spread of 0.5%. 

Final Focus 

The last 150 m of each (electron and positron) beamline is called the final focus. 

Each final focus system is a transport system that consists of 8 bending magnets, 26 

quadrupole lenses, 8 sextapole magnets, and a number of correction and monitoring 

devices. These systems are designed to demagnify the 250 pmx30 pm beams that 

leave the arcs to spots of 2 pmx2 pm at the interaction point. The final focus 

systems are designed to cancel all geometrical and chromatic aberrations to second 

order. 
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Beam Monitoring 
_- 

c The beams that are stored in storage rings have stable orbits and energies. 

After stored electron and positron beams are brought into collision, they will gen- -. 
erally remain in collision for some macroscopic time. Unfortunately, this convenient 

behavior is not necessarily true in a linear collider. 

.- 
The problem of energy stability in the linac is confronted with feedback sys- 

terns and by making the arcs and final foci fairly achromatic (they can transport 

-momenta over a range Ap/p = 0.5%). R es1 ua energy drifts are measured on ‘d 1 

each pulse by spectrometers that are placed in the extraction lines. These will be 

described in chapter 4. 

Linear colliders must rely heavily on sensors and feedback systems to control 

. the orbits of the beams. The SLC makes use of several techniques to bring the 

beams into collision: 

- 

1. A system of beam position monitors is used to measure the positions and 

directions of the beams at the interaction point. These devices measure 

the beam centroid position by comparing the beam induced signals in pickup 

loops that are placed on either side of the vacuum chamber. They are capable 

of steering the beams to within 20 pmof each other. 

2. The phenomenon of beam-beam deflection provides the single most impor- 

tant technique for establishing collisionsf3l The fields of each beam deflect 

the other in a manner that depends upon their transverse sizes, the distance 

of closest approach, and number of particles in the bunches. The deflection 

angle 19 of an infinitely narrow beam by a target beam of finite size is given 

by the following expression, 

8= 
-2reNe 1 _ e-A2/2u2 

7 * A ’ (2.7) 

where: re is the classical radius of the electron; y is gamma factor of the 

deflected beam; N, is the number of particles in the target bunch; A is 
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the (signed) miss distance of the beams; and u is the size of the target 
-- 

c beam. Note that the deflection angle has maxima at the miss distances, 

A 2 f1.60. As the beams are moved closer together, the deflection angle 

becomes smaller. It passes through zero when the beams collide and changes 

sign as the original beam positions are interchanged. Using the system of 

beam position monitors to measure the deflection angles (which are of the 

order of 100 prad), it is straightforward to target the beams to within a small 
.- 

fraction of a beam size. 

3. The strong magnetic fields that are associated with the beam-beam deflec- 

tion process (up to 100 T) also produce a large quantity of synchrotron 

radiation (lo6 to lOlo photons of energy larger than 20 MeV). This radia- 

tion, called beamsstrahlung, is separated from the electron beam by a large 
. 

bending magnet in the final focus. Since there is a large background of lower 

energy photons (typically 2 MeV) f rom the focusing elements of the beam 

transport system, the beamsstrahlung photons are converted into e+e- pairs 

with a radiator and detected in a cerenkov counter. 

- 

4. The transverse profiles of the electron and positron beams are measured by 

the devices called wire scanners. These devices work by passing the beams 

through a very fine carbon filament (the smallest has a 4 pm diameter) and by 

detecting scattered radiation. The wire scanner used in the interaction point 

produces bremsstrahlung photons that are detected by the beamsstrahlung 

monitor. 

. . 
2.6. SLC PERFORMANCE 

The performance of the SLC has not yet approached the level that was in- 

tended when the machine was designed. The technical capabilities of the machine 

were recently assessed by a committee of experts!’ They conclude that it is pos- 

sible to improve the performance of the SLC to produce lo4 to lo5 2 events per 

year. The correctness of this assessment will be established in the next several 
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years. In chapter 6, we shall see that if this level of performance is achieved, the 
.- 

c implementation of the polarized electron beam should provide an interesting and 

unique test of the Standard Model. 
. 

3. Physics with the Mark II Detector 

.- 
The Mark II detector was originally constructed to study e+e- collisions at 

the PEP storage ring. It was upgraded for use at the SLC by the replacement 

-of the tracking system. The detector has operated at the SLC in 1989 and 1990. 

Beginning in 1991 it will be replaced by the new SLD detector. 

3.1. THE MARK II DETECTOR 

. A schematic diagram of the Mark II detector is shown in Figure 3. The detector 

consists of a system to reconstruct the tracks of charged particles, a calorimeter 

to measure the energies of charged and neutral particles, and a system to identify 

penetrating charged particles (which are presumed to be muons). 

- 

__ 

The cylindrically symmetric tracking system consists of three distinct devices. 

A three-layer silicon strip detector (SSD) occupies the region from a radius of 

2.5 cm from the beam axis to a radius of 5.0 cm from the beam axis. Each of 

the three measurements is made in the azimuthal direction with a precision of 

approximately 10 pm. The SSD is followed by a twelve-layer high pressure drift 

chamber microvertex detector (DCVD). The DCVD occupies the region between 

the radii 5.0 cm and 17 cm. It is capable of measuring tracks in the azimuthal 

direction with a precision of approximately 40 pm per measurement. The DCVD 

is followed by a large cylindrical drift chamber that spans the region between the 

radii 19 cm and 147 cm. The sense wires of the chamber are organized into 6-wire 

vector cells. There are 12 layers of vector cells which provide 72 measurements of 

each track. Alternate layers are oriented parallel to the beam axis or are tilted by 

f3’ with respect to the axis (the axial coordinate is provided by this small-angle 

stereo arrangement). The typical precision of each measurement is 145 pm. 
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The tracking system is capable of reconstructing tracks in the region of polar 

angle 1 cos 19 < 0.8 with an efficiency of 99%. The momentum resolution of the c 
combined system is given by the following expression, a,/p - O.O02p, where p is 

. . 
the momentum in GeV. The large drift chamber has the capability to measure the 

ionization energy loss in the gas with a precision of roughly 7%. 

The tracking system is surrounded by barrel and endcap calorimeters. The 

barrel calorimeter is a lead-liquid argon device that covers the region of polar angle 

_ 1 cos 81 < 0.7. Since it is only 14 radiation lengths thick, the energy resolution is 

given by the following expression, 

.- 

CE 

{ 

0.12. GeV112/fl E < 15 GeV 
-= 
E 0.15. GeV112/&!? 15 GeV< E < 50 GeV. 

_ The resolution of the barrel calorimeter in azimuthal and polar angle is approxi- 

mately 3.5 mRad. The endcap calorimeter is a lead and proportional wire chamber 

device that covers region of polar angle 0.7 < 1 cos 81 < 0.98. It has a thickness 

of 20 radiation lengths and is sampled each 0.5 radiation length of thickness. The 

energy resolution is given by the following expression, 

- y = 0.20. GeV1i2/fi. 

The muon system is a sandwich structure composed of iron of the flux return 

of the solenoid and an triangular proportional tubes. The system covers 60% of 

the solid angle and has a total thickness of 1.05 m. The probability that a hadron 

be misidentified as a muon is less than 1%. 

__ The luminosity is determined from the number of small angle Bhabha scattering 

events that are detected in two different detectors. The minisam consists of a pair of 

cylindrical tungsten-scintillator calorimeters that detect both legs of Bhabha events 

in the region of polar angle between 15 and 25 milliradians. Each calorimeter is 

segmented into four quadrants. The small angle monitor (SAM) is comprised of a 

pair of lead-proportional wire chamber calorimeters that detect both legs of events 

in the region of polar angle between 50 and 160 milliradians. 
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4. The Lineshape of the 2’ Boson 
c 

The measurement of the 2’ lineshape provides a great deal of information 

about the Standard Model. In order to fully appreciate the relevance of the mass 

measurement, we must discuss the Standard Model briefly. 

4.1. PARAMETERS OFTHE STANDARD MODEL 

The minimal Standard Model contains some 21 empirical parameters. They 

are listed in Table II with their approximate values. The dynamics of electroweak 

physics are determined (at tree level) by three of the parameters: the SU(2) cou- 

pling constant (g), the U(1) coupling constant (g’), and the vacuum expectation 

value of the Higgs field (( 4)). Th e complete specification of the electroweak sec- 

tor of the Standard Model requires that all three parameters be precisely known. 

The values of these quantities are extracted from the measurement of three related 

quantities: the electromagnetic fine structure constant (cy), the Fermi coupling 

constant ( GF), and the mass of the 2’ boson (Mz). The current values of these 

quantities are listed in Table III. 

The value of c~ is extracted from a very precise measurement of the anomalous 

magnetic moment of the [51 electron. The value of GF is derived from the measured 

value of the muon lifetime! The first precise measurements of the 2’ mass have 

been made quite recently at the Tevatron collider, the SLC, and at LEP. The 

quoted value is determined mostly by the remarkable measurements of the LEP 

collaborations!’ Although Mz is determined with far less accuracy than are o and 

GF, it is expected to remain the most well-determined Standard parameter for the 

foreseeable future. It is clear that the measurement of a fourth physical quantity 

should overconstrain the determination of the electroweak parameters. We should 

therefore be able to test the electroweak sector of the Standard Model. 

Unfortunately, the expression given in Table III that relates Mz to g, g’, and 

(4) is valid only at tree-level. Since Mz is measured at a substantially larger 

energy scale than are (Y and GF, we must include virtual electroweak corrections 
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Table II 
.- 

c 

_. 

.- 

. ~ 

- 

Parameter 

9s 

9 
I 

84) 
MH 

mu, 

m% 
mu, 
me 

mP 
mr 

mu 

ma 

ms 

mc 

mb 

mt 
sin 812 

sin 023 

sin e13 

sin 6 

Description Approximate Value 

SU(3) coupling constant 1.3 @ 34 GeV 

SU(2) coupling constant 0.63 

U( 1) coupling constant 0.35 

VEV of the Higgs field 174 GeV 

Higgs boson mass ? 

electron neutrino mass < 12 eV 

muon neutrino mass < 0.25 MeV 

tau neutrino mass < 35 MeV 

electron mass 0.511 MeV 

muon mass 106 MeV 

tau mass 1.78 GeV 

up-quark mass 5.6 MeV 

down-quark mass 9.9 MeV 

strange-quark mass 199 MeV 

charm-quark mass 1.35 GeV 

bottom-quark mass 5 GeV 

top-quark mass ? 

K-M Matrix parameter 0.217-0.223 

K-M Matrix parameter 0.030-0.062 

K-M Matrix parameter 0.003-0.010 

K-M Matrix parameter ? 

m order to extract accurate values for the electroweak parameters. In principle, 

this requires a knowledge of all of the parameters listed in Table II. In practice, a 

dispersion relation is used to determine the dominant correction (due to low mass 

fermion loops) from the low energy e + - total cross section. The largest remaining e 

corrections depend upon the top quark mass (strongly) and the Higgs boson mass 

(weakly). A reasonably precise test of the Standard Model therefore requires at 

least two more experimental measurements (ideally a measurement of mt would be 
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Table III 
.- 

c The current values of the physical parameters that determine the deter- 
mine the electroweak sector of the Standard Model. 

_. 
Quantity EW Parameters Current Value Precision (PPM) 

CY 1 g2gt2 
G g2 +g2 [137.0359895(61)1-l 0.045 

GF &d 
1.16637(2)x10-5 GeVm2 17 

-- 
Mz J- w (4 91.16(3) GeV 320 

one of them). 

4.2. MASS AND WIDTH OF THE Z” 
~- 

. ~ We have already discussed the importance of a high precision measurement of 

the mass of the 2’. The width of the 2’ has a tree-level dependence upon the 

parameters of the Standard Model and the particle content of the theory. The total 
.- 

width is the sum of the partial widths for the decay into each fermion-antifermion 

final state, 

where: P,,- is the partial width for the decay 2’ --t ff; vf and af are the vector 

and axial vector coupling constants, 

(4.2) 

$” is twice the third component of the fermion weak isospin; Qf is the fermion 

charge; and the constant Cf is defined as 

l+sQ; for leptons 
Cf = 

3 * [ 1+ SQ! + 21 for quarks. 
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Note that the expression of each partial width in terms of Mz has the advantage 
.- 

c that the mtop and mH;ggs dependences are minimized. 

_. The partial widths for a generation of quarks and leptons are listed in Table 

IV. The last line shows the expected total width for three lepton flavors and five 

quark flavors. A small phase space suppression factor is included for the bb final 

state. 

Table IV 

Final State 

uv 

e+e- 

Uii 

dd 

166 MeV 

83 MeV 

297 MeV 

383 MeV 

2.75 Generations 2.481 GeV 

_- The actual measurement of Mz and rz is made by measuring the cross section 

for the process e+e- + Z” + ff for a number of center-of-mass energies about 

the 2’ pole. The theoretical 2 lineshape is then fit to the measured cross section 

- points to extract the desired parameters. The theoretical lineshape has been the 

“I subject of much analysis. It can be shown that the tree-level lineshape for the 

process e+e- + 2’ + ff is well-approximated by a relativistic Breit-Wigner 

form, 

127r 
a;(s) = - * 

sreerff 

M; (s - M;)2 + I’;s2/M;’ (4.3) 

Equation (4.3) does not apply to the process e+e- + e+e- which occurs via both 

s-channel and t-channel subprocesses. 

The electron and positron radiate real photons rather copiously in a hard col- 

lision. The lineshape is strongly affected by the initial state radiation. This effect 

can be treated in a Drell-Yan-like formalism by introducing an electron structure 

function. The electron structure function D(x, s) is defined as the probability that 
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.- 
an electron (positron) radiates a 

c collision (of cm energy J;F). The 

written as, 
_. 

r 

fraction 1 - x of its initial energy during the 

radiatively corrected cross section can then be 

Of(S) = 
J 

dxldx2D(xl, s)D(xz, s)c$(i = 21x259, (44 

where x1 and 22 the electron and positron energy fractions. The leading term of 

the electron structure function has the form, 

D(x,s) 11$1 - x$-l, (4.5) 

where the dimensionless constant p is the effective number of radiation lengths for 

the process, 

(I E F[ln(s) - l] 3 0.11. 
e 

The effect of the convolution described in equation (4.4) is to reduce the peak cross 

section by ~257 o and to shift the peak of the cross section by roughly 120 MeV 

from the pole position. 

It is convenient to write the radiatively corrected cross section in a form that 

is close to the underlying Breit-Wigner form, 

127r sreerff 
uf (‘) = z - (s _ M2)2 + r;,2/j,,f2 ’ I1 + sRc(s)17 

Z Z Z 
P-6) 

. . 

where the effects of the radiative corrections are contained in SRC(S). Using equa- 

tion (4.1), we can expression all of the quantities that appear in equation (4.6) in 

terms of a single parameter, Mz. Note that this choice of parameters minimizes 

the sensitivity of the lineshape to higher-order terms in mtop and mhjggs. 

Equation (4.6) is the basis for the measurement of a number of 2 resonance 

parameters. The Mark II analysis was performed with several sets of constraints: 

1. All resonance parameters are constrained to their Standard Model values. In 

this case, the only free parameter is Mz. The measurement was performed 

by summing all of the final states except the electron-positron final states. 
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2. The visible partial widths are constrained to their Standard Model values 
.- 

f and the invisible width is allowed to vary as a free parameter. The total 

width rz is decomposed into visible and invisible portions, 
_. 

rz = c rqq + 3rete- + 3r-h 

= r . v1.9 + Gnu, 
(4.7) 

where the visible width r,,is contains all hadronic final states and all charged 

lepton pairs, and rinv contains the neutrino decays and any additional un- 

observed particles. All of the final states except the electron pairs are used 

to perform the measurement. The data are therefore fit to a function of two 

parameters (Mz and I’inv), 

. aerff 
af(s) = 2 ’ cs _ ~;)2 + (rvis + rinv)2s2/M; ’ I1 + ‘Rc(s)le (4’8) 

.3. The resonance parameters of the total hadronic cross section are not con- 

strained to their Standard Model values. The hadronic cross section is de- 

scribed by the model-independent form, 

where the free parameters are: Mz, rz, and the tree-level hadronic peak 

cross section a&d. The Standard Model prediction for the tree-level peak 

cross section is, 

12~ reerhad f&d = - * Mi r22 z 41.5 nb -1 . (4.10) 

Scanning Theory 

A hadron collider gives the experimenter a free energy scan. The hadron struc- 

ture functions are quite broad in that reasonable quark-quark luminosity is pro- 

duced over a large range of energies. The electron structure functions have an 
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integrable singularity at x = 1. Most of the e + - e luminosity is produced near the 

c nominal value of A. The experimenter can therefore choose the most efficient 

energy scan to optimize the measurement he/she wishes to measure. Note that 
-. 

.- 

an optimal scanning strategy requires some a priori knowledge of the parameters 

that one desires to measure. In the earliest runs of the SLC, the 2’ mass was not 

well known and it was necessary to search for an enhancement in the event rate. 

Once Mz became somewhat constrained, it was possible to choose very efficient 

-operating points. The presence of the Standard Model as a predictor of widths 

and couplings made this task much easier. 

Let us consider a hypothetical scan of N energy-luminosity points: 

-- 
Eb = El, . ~ r 

E2 EN , **a, 

J Ldt = L1, L2, . . . . LN. 

-- 
We assume that a cross section 0; is measured at each point, 

The M parameters aj (j = 1, M) f o our theoretical lineshape CT(E) can be 

extracted from a x2 fit to the measured points. The quantity x2 is defined as, 

N [a; - a( 
x2 E c 

i=l (sui>2 ’ 
(4.11) 

where Sai is the error on the jth measurement. 

The best estimate of the parameters (tij) is the one that minimizes x2. The 

parameter errors are found from a Taylor expansion of x2 about the minimum 
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value, 
.- 

c 

-. 

Caj - cj)(ak - ak> 

7 (4.12) 

= x2(a) + C (C-l)jl;(Uj - aj)(Uk - 'k> 

j,k=l 

where the matrix C-l is the inverse of the parameter covariance matrix. The error 

hyperellipsoid is determined by changing x2 by one unit about the minimum value. 

-It is straightforward to show that the parameter errors are given by the diagonal 

elements of the covariance matrix C, 

(SUj)2 = Cjj. (4.13) 

.- _ Averaging equation (4.12) over many experiments, the inverse matrix can be ex- 

pressed in the following form, 

(4.14) 

Although equation (4.14) is quite general, it is useful to express the cross section 

errors in terms of the luminosity and the theoretical cross section. Ignoring the 

statistical errors on the luminosity measurements: we can express the cross section 

errors as (SO~)~ = a(&)/&. Equation (4.14) can then be written as, 

* J&E,) = 5 Li * S(Ei, Uj) * S(Ei, Uk), (J-15) 
i=l 

where we define the so-called sensitivity function S(E, uj) as 

If the lineshape is a function of a single parameter or if the off-diagonal elements 

of the inverse matrix C-l are small, the parameter errors have a particularly simple 

* This assumption is quite valid for the measurement of non-resonant cross sections. 
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form, 

(Suj)-2 E 5 Li * [S(Ei, aj)] 2. 
i=l 

._ 

-- 

Equation (4.17) implies that the error Suj is minimized when the integrated lumi- 

nosity is concentrated in regions of scan energy where IS(E,uj)I is large. Note 

that (S(E,aj)l 1 g is ar e where the derivative Ida/aajI is large and where the cross 

section is small. 

The correlations between the parameters are described by the off-diagonal ele- 

ments of the matrices C-l and C (the error ellipsoid is unrotated if they vanish). 

The presence of non-zero correlation always increases a parameter error beyond the 

value given in equation (4.17)! It is clearly important to minimize the off-diagonal 

elements by our choice of the scan point luminosities. 
~ 

Equations (4.15) and (4.13) predict the complete parameter error matrix in 

terms of the theoretical lineshape and the scan point luminosities. Note that it is 

assumed that x2 is well-defined (N > M) and that a suficient number of events is 

collected at each point that the errors are Gaussian. 

- 
Since any cross section measurement has an associated normalization uncer- 

tainty, it is important to consider the sensitivity of the final result to systematic 

shifts in the measured cross sections. Expanding the theoretical cross section in 

parameter space about the best estimates Zj, it is straightforward to derive the 

average shift in a parameter Aoj caused by shifts in the measured cross sections 

A% 

(4.18) 

It is clear that we would like to choose the energies and luminosities to minimize 

the parameter errors and the correlations between the parameters. We can be 

guided in this task by examining the energy dependence of the functions S(E, aj). 

t The presence of non-zero correlation allows the error associated one parameter to leak into 
the error associated with another parameter. 
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- 

As an example of the usefulness of the sensitivity functions, let us consider the 
.- 

c measurement of the model-independent parameters of the hadronic cross section. 

For simplicity, we assume that values of Mz, l?z, and aiad(Mi) are 91 GeV, 2.5 
. 

GeV, and 40 nb, respectively. The sensitivity functions for Mz, rz, and c$,,(Mi) 

are plotted in Figures 4-6 as functions of E - Mz. The maximum sensitivity to 

Mz occurs at the scan energies -0.8 GeV and +l.O GeV about the pole. Note that 

there is little sensitivity to Fz at these points. The maximum sensitivity to Pz 

occurs at points that are approximately f2 GeV about the pole. If we choose our 

energy-luminosity points symmetrically about the pole, the sum of the products 

S( Ei, Mz) . S( Ei, Fz) will tend to cancel since S( E, Mz) is odd about the pole and 

S(E, rz) is even about the pole. The maximum sensitivity to agad occurs at the 

pole. The same odd-even effect that cancels the Mz-rz correlation will cancel the 
._ . Mz-aftad correlation. The I’z-ai,d correlation cannot be cancelled by a choice of 

scan energies. However, it is not intrinsically large since S(E, Fz) is small in the 

energy region where S( E, atad) is large. 

In general, a scan strategy that is based upon equations (4.15) and (4.13) is 

a problem in linear programming.. The scan planner must decide how important 

various parameters are and what constraints must be satisfied. Nevertheless, fairly 

simple considerations lead to the conclusion that a minimal Z-pole scan should 

include points at 0, fl, and f2 GeV about the pole. 

- 

4.3. THE EXPERIMENTAL ANALYSIS 

. . 
In order to appreciate the selection criteria that must be applied to the data, 

we must first discuss the signatures and the relative rates of various processes that 

occur in an electron-positron collider. 

The Electron-Positron Environment 

Unlike the situation with hadron colliders, the most copious processes in a 

high energy e+e- collider are also the most interesting ones. The signatures and 

relative sizes of the various processes are indicated in Table V. T11c most serious 
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background to 2’ production is due to the various two-photon processes. The 
_- 

c two-photon background is rather trivial to remove from the data sample (a total 

energy cut is sufficient to suppress it by several orders of magnitude). 

Table V 

Event Type 

e+e- + 2’ + hadrons 

e+e- 4 e+e- 
(small angle) 

e+e- + e+eT?+t- 
e+e- + e+e-h+h- 

e+e- + Z” + p+p”- 

e+e- + Z” + T+T- 

Signature 

2-3 jets 
;L 20 charged tracks 

45 GeV clusters in 
small angle tugger 

Transversely balanced 
low energy track pairs 

back-to-back 
high energy tracks 

acolinear track pairs 
l-3 combinations 

a(& = Mz) 

-30 nb 

-50-200 nb 
(dep on acceptance) 

-7-8 nb 
(dep on acceptance) 

-1.5 nb 

-1.5 nb 

Event Selection 

- The Mark II 2’ mass and width measurement “’ was performed with a data 

sample that corresponds to a total integrated luminosity of 19.3 nb-r that was 

collected at 10 center-of-mass energies. The hadronic final states were selected 

with the following criteria: 

1. Each event is required to contain three or more charged tracks. Each charged 

. track must originate from within a cylindrical volume of 1 cm radius and 6 cm 

length that is centered upon the nominal interaction point. The momenta of 

all reconstructed tracks must be larger than 110 MeV/c and the reconstructed 

polar angle must fall within the region I cos 61 < 0.92. 

2. The visible energy (track momenta and/or calorimeter energy) that is ob- 

served in each of the forward and backward hemispheres must be larger than 

5% of the center-of-mass energy. The criterion suppresses beam-gas and 
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two-photon events. 
.- 

c 3. Any events which are also identified as r+r- pairs are removed from the 

-. sample. 

._ 

-- 

A total of 450 events passed the selection criteria. The detection efficiency for 

hadronic events is 95.3&0.6%. The residual background contamination is at level 

of a few parts in lo3 (mostly from r+r- events). 

Leptonic events were selected with the following criteria: 

1. Each event is required to contain between two and six charged tracks. 

2. The polar angle of the thrust axis must be contained within the region 

- 1 cos Othrustl < 0.65. 

3. The energy measured in the calorimeters must be less than 80% of the center- 

of-mass energy. (This criterion eliminates e+e- pairs.) 

-4. Each event must satisfy either of the following: 

- 

(a) If the momenta of each. of two tracks are larger than 50% of the beam 

momentum, the event is categorized as a muon pair. 

(b) If the event fails the previous criterion and has a total visible energy that 

is larger than 10% of the center-of-mass energy, the event is categorized 

as a r+r- pair. 

A total of 30 events passed the lepton selection criteria. The efficiencies of the 

selection criteria are 9951% and 96&l% for muon and tau pairs produced within 

the fiducial region 1 cos 01 < 0.65, respectively. 

Luminosity Measurement 

The luminosity at each scan point is inferred from the measured rate of small 

angle (15-160 milliradian) Bhabha scattering. In the small angle region, this pro- 

cess is dominated by t-channel exchange of photons and is independent of the 
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parameters of the 2’ system. The tree-level differential cross section has the form, 

hum 4ncY2 1 -N-.- 
dd - s 19~’ 

(4.19) 

._ 

-- 

where the scattering angle 19 is assumed to be small. An accurate determination 

of the luminosity requires that the radiative corrections be included in equation 

(4.19). Nevertheless, equation (4.19) d oes illustrate one of the difficulties in the 

-measurement of the luminosity. The measured cross section aEzs is a sensitive 

function of the angular acceptance of the detector edges, 

- 

2$(-$--$), mea3 
glum (4.20) 

where 01 and 02 are the angles of the inner and outer detector edges. 

It is clear from equation (4.20) that the very small angle luminosity monitor, the 

miirisam, has a much larger rate than does the larger angle SAM (the counting rate 

of the former is six times larger than the latter). However, the larger angle device 

has good spatial (angular) resolution whereas the minisam has no segmentation in 

polar angle. The systematic error that is associated with the detector acceptance 

is substantially smaller for the SAM than for the minisam. The strategy that 

was used to determine the luminosity of each scan point was therefore to use the 

minisam to determine the relative luminosities of different scan points and to use 

the SAM to determine the overall normalization. 

- 

._ Each SAM event was required to satisfy the following selection criteria: 

1. The measured energies of the scattered electron and positron were required 

to be larger than 40% of the beam energy. 

2. The measured scattering angles had to satisfy one of the following criteria: 

(a) Both scattering angles were larger than 65 milliradians. Events in this 

category were assigned a weight of 1.0. 
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(b) One of the scattering angles was larger than 60 milliradians and the 
_- 

CI second was larger than 65 milliradians. Events in this category were 

assigned a weight of 0.5. 

._ 

The weighting procedure reduced the sensitivity of the result to detector mis- 

alignments and to radiative corrections. A total of 485 events satisfied the selection 

criteria. 

-- 
The theoretical cross section for accepted SAM events is given by the following 

expression, 

as(E,m) = 25.2 nb * 
[ 91.gdy ) 

._ where EC, is the center-of-mass energy. The systematic error due to uncertainties 
. . ~ 

on the detector resolution and position is 2%. The systematic error due to uncer- 

tainties on the radiative corrections are taken to be 2%. The combined systematic 

error is therefore 3%. 

The total integrated luminosity for the 10 scan points is therefore evaluated to 

be, 

J Ldt = 19.3 f 0.9 nb-‘, 

where the 5% error includes both statistical and systematic effects. 

Each minisam event was required to satisfy the following selection criteria: 

. . 1. The measured energies of the scattered electron and positron were required 

to be larger than 25 GeV in diagonally opposite quadrants. 

2. The timing of the minisam signals was required to be consistent with that 

expected for a scattering process. 

A total of 4299 minisam events were recorded during the energy scan. The 

theoretical cross section for accepted minisam events is given by the following 
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expression, 

aM(Ecm)=230 nb. 
91.1 GeV 2 [ 1 E . 

cm 

The luminosity of each point, L;, is given by the following expression, 

._ 

-- 

L. = (Ni + N&)/(w(E;) + &oM(~)) 

’ Ci(N,.$ + N&)/(cs(E;) + $cTM(E;)) ’ s ‘dt7 
(4.21) 

-where: N$ and Ni are the number of SAM and minisam events recorded at 

energy E;, respectively; and where & is the minisam efficiency for scan point i 

(the minisam was sensitive to radiation background during some runs). 

Experimental Results ~- 
._ ~ In order to improve the statistical accuracy of the mass and width measure- 

ments, the qj final states are combined with the leptonic final states (p+,u- and 

r+r- within the region I cos Sl < 0.65) t o calculate the cross section at each scan 
- 

point. The average energy, integrated luminosity, and measured cross section are 

listed in Table VI. 

- The measured cross sections and the results of the one, two, and three parame- 

ter fits are shown in Figure 7. The parameter estimates for the three fit hypotheses 

are listed in Table VII. 

. . 

The measured value of Mz agrees well with the results of the LEP measure- 

ments. The number of neutrino species is consistent with the expected number of 

3. Including the systematic errors, the upper limit on the number of light neutrinos 

is 3.9 with 95% confidence. 

Systematic Errors 

The errors listed in Table VII include systematic uncertainties on the cross 

section normalization and on the energy scale of the SLC. The various resonance 

parameters vary in their sensitivity to the energy scale and normalization uncer- 

tainties. 
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._ 

-- 

Table VI 

Average energy, integrated luminosity, number of events, MiniSAM effi- 
ciency and a~ for each energy scan point. The luminosity for each scan 
point is given by Lum = (Ns + NM//L,, where a~ = as + CMCM. The 
given error is the statistical error on Ns and NM only; there are additional 
statistical errors on a~ due to the scaling errors on as and CrM. 

Table VII 

2 resonance parameters. The three fits are described in the text. 

Fit mz NV r CO 
GeV/c2 GeV nb 

1 91.14f0.12 - - - 

2 91.14f0.12 2.8f0.6 - 

3 91.14f0.12 - 2.422;$ 45f4 
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The determination of Mz depends completely on the accelerator energy scale. 
.- 

c The energies of the SLC beams are measured by a pair of energy spectrometers 

after they have collided. A schematic diagram of the north (electron) energy spec- 

trometer is shown in Figure 8. The beam is focused by a quadrupole doublet to 

a point at the detector plane. The beam passes through a small horizontal bend 

dipole magnet, a large vertical bend dipole magnet, and a second small horizon- 

tal bend magnet. The passage of the beam through the horizontal bend magnets 

produces flat distributions of synchrotron radiation which are detected by a phos- 

phor screen detector. The separation of the flat distributions is proportional to 

the beam energy. The spectrometers have sufficient resolution to determine the 

center-of-mass energy (and the value of Mz) to f40 MeV. 

The model-independent determinations of Mz are completely insensitive to the 
. . ~ 

normalization uncertainty. The model constrained determinations of Mz have a 

slight sensitivity to the normalization uncertainty. These uncertainties are typically 

a few MeV or less (even with the model constraints, most of the Mz information 

is derived from the resonance shape). 

- 

The peak cross section and the invisible width are strongly affected by nor- 

malization uncertainty. This can be seen from an inspection of equation (4.8). 

The invisible width enters the cross section as a component of the total width. 

The influence of the total width is maximized when the center-of-mass energy is 

s = Mg. The effect of the normalization uncertainty 60 upon the invisible width 

is approximately, 

. . = 75 MeV 

= 0.45. 

The measurement of I?z depends almost entirely upon the measurement of the 

resonance shape. It is therefore insensitive to the absolute energy and normaliza- 

tion errors. It is sensitive to point-to-point errors in the energy and luminosity. 

These are much smaller than the absolute errors. 
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The effects of the theoretical uncertainties on the 2 lineshape upon the value 
.- 

1c of the extracted parameters are small as compared with the energy scale and nor- 

malization uncertainties. 

4.4. MASS AND WIDTH OF THE W  

The measurement of the W boson mass and width will become possible in the 

second phase of LEP operation. The installation of superconducting RF cavities 

-will permit the beam energy to be increased to a value above the threshold for the 

process e+e- + W+ W- . The low event rates at the W pair threshold will make 

essential to optimize the scan to measure the threshold shape. 

High Energy e+e- Cross Sections 

The tree-level expression for the W-pair cross section is somewhat complex!] 

The inclusion of initial state radiation (as in equation (4.4)) and finite widths 

for the final state W bosons involves a four dimensional convolution of the tree- 

level expression. We therefore choose to present only the result of a Monte Carlo 

integration. The cross section for the process eSe- -+ WsW- is plotted in Figure 

9 as a function of I!& - Mw where I$, is the single beam energy. The mass and 

width of the W are assumed to be 80 GeV and 2.1 GeV, respectively. Note that 

three curves are plotted: the dashed curve is the basic tree-level cross section; 

the dashed-dotted curve is the cross section including the effect of initial state 

radiation; and the solid curve is the cross section including initial state radiation 

and the effect of a finite W width. The inclusion of initial state radiation reduces 

the size of the cross section. The finite W width produces non-zero cross section 

at energies below the nominal threshold at &, = Mw. 

The basic et-e- 
- 

--) ff cross section for five quark and three lepton flavors in- 

creases from about 7 units of R at center-of-mass energies below the 2’ pole to 10 

units of R at energies above the 2’ pole.* At fi = 160 GeV, the tree-level cross 

* The unit, of R is the cross section for e+e- ---) y* + pL+~-. Numerically, the cross section 
has the value UR = 86.8 nb-GeV2/s. 
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section is approximately 34 pb. Unfortunately, the initial state radiative correc- 

tions increase this number enormously. Although the photon structure functions 

decrease greatly as x is decreased from 1, the 2 pole is sufficiently large that the 

convolution given in equation (4.4) is several times larger than the tree-level cross 

section. The process e+e- + yZ” therefore dominates the visible cross section at 

W-pair threshold. Using equation (4.4), we estimate the size of the visible cross 

section to be -150 pb at fi = 160 GeV. 

-e+e- + W+W- Threshold Scan 

There are several different techniques that can be used to measure the W mass 

at LEP II. It is possible to extract Mw from the measured distributions of jet 

masses or lepton energies. These methods are are described in Reference 10. The 

technique that we’ll discuss here is the measurement of the threshold behavior of 

the W pair cross section. 

It is clear than the W mass can be extracted from the step in the cross sec- 

tion that is shown in Figure 9. Since there is a large background from ordinary 

processes, it is necessary to apply. selection criteria to the data to improve the 

signal-to-noise ratio. The background processes produce mostly two- and three 

jet hadronic events or lepton pair events that are often highly boosted along the 

beam direction. The visible energy of the background is often small as compared 

with &. The W-pair events appear most often as four-jet events (-44% of W- 

pairs) or as an energetic lepton and two jets (-44% of W-pairs). The authors of 

Reference 10 have studied a number of selection criteria to reduce the background 

cross section to less than ~1 pb while retaining -75% of the four-jet and -45% of 

the lepton+two-jet events (we assume that r leptons cannot be used and that one 

third of the remaining events are eliminated by the isolation cut used to suppress 

heavy flavor events). Assuming that the residual background is due to the large 

& continuum, the measured cross section would have the following form, 

%zeas(&,) = Wm&%) + &, (4.22) 
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where: c is the efficiency to identify a W-pair event (e N 0.53); aww(&) is the 
_- 

c cross section plotted in Figure 9; and B is a constant that represents the residual 

background (which presumably scales as l/s). 
-. 

Sensitivity Functions 

._ We can analyze the Mw and rw sensitivity of a cross section scan of the W  

pair threshold by using the scanning theory that was discussed in the last sec- 
.- tion. Numerically differentiating the measured cross section (as defined in equa- 

-tion (4.22)), t i is straightforward to calculate the sensitivity functions for Mw, 

l?w, and the background constant B. For the purpose of this exercise, we assume 

that B = 1 pb . (~Mw)~ or that the background cross section is 1 pb at W-pair 

threshold. 
~~- 

._ ~ The sensitivity function s(@,, Mw) is plotted in Figure 10 as a function of 

cb = Eb - Mw. Note that the maximum sensitivity occurs at cb 21 0.5 GeV. 

- 

. . 

The sensitivity function s(Eb, rw) is shown in Figure 11 as a function of IQ. As 

one would expect, it peaks just below the nominal threshold (Eb = -1 GeV) where 

the width-induced tail in the cross section is largest. The function ,!$(&,rw) 

decreases rapidly as Eb is increased. It passes through zero near eb = 1 GeV 

and plateaus above Eb = 3 GeV. The sensitivity in the plateau region is due to 

the reduction in the cross section caused by the finite width (see Figure 9). The 

maximum value Of IS(Eb, rw)( is smaller than the maximum value of the mass 

sensitivity function by a factor of three. A good measurement of rw will clearly 

require a substantial commitment of luminosity to a point of very small cross 

section. Note that the product S(&, Mw) . S(E , IT b w is an odd function about ) 

the point Eb = 1 GeV. In principle, the Mw-I’w correlation can be cancelled by 

measuring the cross section on both sides of this point. The functions S(.&,, Mw) 

and S(.&,rw) are not large in the region Eb > 1 GeV. The cancellation of the 

correlation therefore requires a substantial commitment of luminosity to a relatively 

insensitive region. 

The function s(Eb, B) is plotted as a function of Eb in Figure 12. As one would 
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expect, the background sensitivity is largest at small beam energy and decreases 
.- 

c dramatically as &, increases through the W pair threshold. Note that it is possible 

to cancel the B-I’w correlation but that it is not possible to cancel the B-Mw 
_. 

correlation. 

Scan Strategies 

It is clear that precise measurements of Mw and I’w require that LEP be 

operated in regions of small cross section. Since all other studies of the W-pair 

system require a large sample of data, there will be considerable pressure to operate 

the machine on the cross section plateau at the largest available energy. In order 

to estimate how precisely Mw and I’w could be measured in a l-2 year run (500 

pb-l), we assume that 50% of the luminosity is dedicated to operating at the largest 

available energy (we assume that Eb = 15 GeV or & = 190 GeV is achieved) and 

the remaining 50% is dedicated to operation in the threshold region. 

- 

It is instructive to first consider an extremely unrealistic scan scenario. We 

assume that we will measure only one parameter and that the other parameters 

are precisely known. In this case, we need only one scan point in the threshold 

region for a constrained fit. We choose to allocate the entire 250 pb-’ luminosity 

to operation at the most mass-sensitive point (cb = 0.5 GeV) or at the most width- 

sensitive point (eb = -1 GeV). Using equation (4.17) we estimate the precision of 

these measurements to be 

SMw = 92 MeV or SI’W = 286 MeV. 

The Mw measurement would be a very desirable result. The l?w measurement is 

not competitive with the recent indirect determinations that ). have been published 

by the CDF and UA2 collaborations~“121 

rw = (0.85 f 0.08) - rz = 2.19 f 0.20 GeV (CDF) 

l?w = (0.89 f 0.08) - rz = 2.30 f 0.20 GeV (UA2). 

Since the width cannot be measured to an interesting level, it is clearly unwise to 
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design a scan to measure l?w. We therefore concentrate on the measurement of 

z Mw. 

._ 

A real measurement of Mw will require that the background constant B be 

varied as a fit parameter. Unfortunately, the B-Mw correlation cannot be can- 

celed by a clever choice of scan points. It is therefore necessary to measure both 

parameters well. 

.- The number of scan points is somewhat arbitrary. A minimum of three points 

are required to constrain the two parameter problem. The presence of a high energy 

point implies that only two points are needed in the threshold region. Equation 

(4.15) implies that several closely spaced points in a region of large sensitivity 

are equivalent to a single point in the same region. We can therefore analyze 
~~- 

._ the optimization of the Mw measurement by considering a two-point threshold ~ 
measurement. 

- 

An optimal scan must include an energy point in a region of large background 

sen%itivity IS(Eb, B)] d p ’ t an a om near the maximum of the mass sensitivity func- 

tion IS(Eb,Mw)). W e c h oose the. scan point energies to be cb = -5 GeV and 

Eb = 0.5 GeV, respectively? The apportionment of the available luminosity be- 

tween the two points is a straightforward problem in one-dimensional optimiza- 

tion. We find that the error SMw has a very broad minimum about the ratio of 

luminosities, L(0.5 GeV)/L(-5 GeV) N 2/l. If the luminosities of the -5 GeV 

and 0.5 GeV points are 85 pb-r and 165 pb-‘, respectively, the minimum value of 

the error SMw is approximately 155 MeV. 

. . A two-point threshold scan is somewhat risky. It is safer to bracket the region 

of maximum Mw sensitivity with several scan points. We therefore construct an 

optimal four-point scan (a five-point measurement when the cb = 15 GeV point 

is included) by assigning one third of the 165 pb-’ (55 pb-I) to each of three 

points: Eb = 0 GeV, 0.5 GeV, and 1.0 GeV. It is instructive to compare this scan 

* Varying the energy of the second point about Eb = 0.5 GeV verifies that the B-Mw corre- 
lation does not shift the point of maximum MW sensitivity. 
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(Scan 1) with a slightly modified version. The modified version (Scan 2) is created 
_- 

c by shifting the luminosity from the eb = 0 GeV point to Eb = -1 GeV. We expect 

the second scan strategy to improve the width measurement at the expense of the 

mass measurement. Finally, we note that our modified scan strategy is similar to 

the scan strategy that was studied in Reference 10 (which we label Scan 3). The 

authors of Reference 10 assigned 100 pb-’ to each of the following five points: 

Eb = -5 GeV, -1 GeV, 0 GeV, 1 GeV, and 15 GeV. 

Using equation (4.15) and the sensitivity functions, the performance of each 

scan scenario can be estimated. The expected number of detected events and the 

expected precisions SMw, SI’w, and SB are listed in Table VIII for each of the 

three scan strategies. The presence of a high energy point in each strategy reduces 

the Mw-I’w correlation sufficiently that the Mw precision obtained from the three 

parameter fit is essentially identical to that obtained from a two-parameter fit. 

As one might expect, the third scan strategy which allocates 400 pb-’ to 

the threshold measurement provides the most precise Mw measurement, SMw = 

150 MeV. The Mw precision obtained from the optimized mass scan (Scan 1) is 

worse by 7%. Note however, that Scan 1 produces nearly 60% more events than 

does Scan 3. Surprisingly, the second scan strategy provides a slightly better width 

measurement than does the third strategy. This occurs because the second scan 

produces a smaller B-rw correlation than does the third scan strategy. 

It is clear from equation (4.22) that the functions S(Eb, ai) are sensitive to the 

level of residual background and to the W-pair detection efficiency. We investigate 

these effects by reducing the background constant to B = 0.5 pb . (Mw)~ and 

by increasing the detection efficiency to eww = 0.70. The results are listed in 

Table VIII. The error SMw is improved by approximately 20 MeV in the case 

that the background is reduced by a factor of two. The mass error is improved 

by approximately 30 MeV when the efficiency is increased. Note that the optimal 

luminosity ratio L(O.5 GeV)/L(-5 GeV) is nominally sensitive to both effects. 

However, the optimal region is so broad that the use of a 2/l ratio degrades the 

39 



.- 
- 

Table VIII 

c The predicted results of three different five-point measurements of the W- 
pair threshold. Scan 1 is optimized for the measurement of Mw. Scan 2 is 
an attempt to improve the measurement of rw. Scan 3 is identical to the 
threshold scan used in Reference 10. The results are presented for several 
assumptions about the level of residual background B and the W-pair 
detection efficiency. 

Quantity 

L[-5 GeV] (pb-‘) 

L[-1 GeV] (pb-‘) 

L[O GeV] (pb-‘) 

L[O.5 GeV] (pb-‘) 

L[l GeV] (pb-‘) 

L[15 GeV] (pb-‘) 

B = 1.0 pb . [2Mw12 
e .vJw = 0.53 

Number of Events 

SMw (MeV) 

Srw (MeV) 

6.~ (pb - [2Mw12> 

B = 0.5 pb . [2Mw12 
E .ulw = 0.53 

Number of Events 

SMw (MeV) 

Srw (MeV) 

6.~ (pb - [2Mw12> 

B = 1.0 pb . [2Mw12 
E .tfJ.ul = 0.70 

Number of Events 

SMw (MeV) 

6I’w (MeV) 

613 (pb - [2Mw12> 

Scan 1 Scan 2 Scan 3 

85 85 100 

0 55 100 

55 0 100 

55 55 0 

55 55 100 

250 250 100 

2951 2912 1863 

160 176 150 

531 482 492 

0.12 0.12 0.12 

2737 2698 1627 

137 154 130 

508 450 448 

0.096 0.098 0.098 

3760 3709 2309 

130 144 123 

453 407 410 

0.12 0.13 0.13 
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- 
result by less than 1%. 

Systematic Errors 

The measurement of the W-pair threshold is affected by systematic uncer- 

tainties on the energy scale and cross section normalization. The energy scale 
._ 

.- 

uncertainty affects the Mw measurement directly. Assuming that the fractional 

error on the beam energy scale is constant, the uncertainty on Mw should be com- 

parable to the one that applies to the Mz measurement. By 1994, this uncertainty 

is expected to be -20 MeV. 

The sensitivity of the results given in Table VIII to normalization errors can 

be estimated from equation (4.18). Taking the first scan strategy as an example, 

~~- we estimate that the uncertainties on the parameters are related to an overall 
.- ~ normalization uncertainty 6a/fl as follows, 

6Mw = - 2.26 GeV + E 
u 

srw = - 19.3 GeV . a. 
u 

- The normalization error must be controlled to the 3% level to avoid inflating the 

Mw error. 

Sensitivity to Assumptions 

. . 

Our analysis assumes that we have complete a priori knowledge of the W 

resonance parameters. Although the characteristic width in &, space of the Mw- 

sensitive region is larger than the current uncertainty on Mw, our precision esti- 

mates are likely to be somewhat optimistic. It is possible to alter the results by 

=510% by varying the resonance parameters over reasonable intervals. 

Conclusions 

Despite the uncertainties on the ultimate W-pair detection efficiency and resid- 

ual background contamination, several conclusions can be drawn from this analysis: 
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1. The most sensitive scan region for the measurement of Mw is cb = O-l GeV. 
_- 

c The mapping of the entire threshold shape would produce a less precise mea- 

surement. 
_. 

2. It is not possible to remove the correlation between the background parameter 

and Mw by a clever choice of scan point energies. This implies that a scan 

point of energy below the nominal threshold is quite important. If the energy 

is chosen to be Eb = -5 GeV (Eb = 75 GeV), an Mw-optimized scan strategy 

would allocate twice as much integrated luminosity to the Mw sensitive 

region as is allocated to the low energy point. 

3. A measurement of Mw at the 2160 MeV level is possible with the dedi- 

cation of a large integrated luminosity (250 pb-‘) and good control of the ~~- 
._ . . ~ background contamination. 

4. The measurement of I’w to an interesting level is difficult or impossible. It 

is probably unwise to attempt anything more than a cursory measurement. 

5. The Search for New Particles 
- 

The 2’ is the largest-mass neutral particle known to exist. Its couplings to 

fundamental particles are unambiguously determined from the quantum numbers 

of the particle in question. The strengths of these couplings are fairly uniform 

which implies that the 2’ is remarkably democratic in its choice of final state. 

The branching ratio of the 2’ into most hypothetical final states is typically larger 

than 1% unless it is suppressed by phase space or virtual intermediate states. The 

2 pole is therefore a good place to search for new particles. 

The branching ratios of the 2’ into hypothetical final states are large enough 

that the very modest Mark II data sample is adequate to perform new particle 

searches. A number of searches have been performed for new quarks and P31 leptons, 
P41 supersymmetric particles, and non-standard extensions to the Higgs D51 sector. 
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Since most of these searches have also been performed by the LEP collabora- 

c tions, I will discuss the only search which is unique to the Mark II, the search for 

doubly charged Higgs bosons. 

5.1. DOUBLY CHARGED HIGGS BOSONS 

There are currently two popular scenarios that give rise to doubly charged Higgs 

bosons. The first, known as the Gelmini-Roncadelli modelt16-171 is a straightforward 

-extension of the standard model to include a Majorana mass for the left-handed 

neutrino. The second scenario is the left-right symmetric extension of the stan- 

dard model!181 Before describing these two models, it is worth reviewing the mass 

generation scheme of the Standard Model. 

5.2. THE STANDARD MODEL 

.m_ The Standard Model describes the masses of all leptons in terms of a trilinear 

Lagrangian of the form, 

. . 

where: $, f; are dimensionless coupling constants;* @ is the ordinary (isodoublet) 

Higgs field; lR is the right-handed charged-lepton field; 72 is the standard Pauli 

matrix; UR is the right-handed neutrino field; and where 2~ is the left-handed 

doublet 

IL- v 
0 e- L’ 

Note that the quantum numbers (IW, Y) of the Higgs boson, (3, -l), are equal to 

the quantum numbers of the bilinear product SLeR, (i, t-1) 63 (0, -2). 

* There is a pair of constants $,, f; for each lepton generation. For simplicity, generational 
labels are suppressed in this and the following expressions. 
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The actual mass terms are generated by the same spontaneous symmetry break- 

c ing that generates the gauge boson masses. The Higgs field is expanded about its 

non-zero minimum, 
-. 

@ = ,+w (5.2) 

where: 4(x) is a phase function; v is the vacuum expectation value of the Higgs 

field; and 77 is the physical Higgs field. Substituting equation (5.2) into equation 

_ (5.1) the usual Dirac mass terms for the charged and neutral leptons emerge 

where the neutrino and lepton masses are m, = fEv and me = &v, respectively. 
. 

5.3. THE GELMINI-RONCADELLI MODEL 

- 

-~- The entire motivation of the Gelmini-Roncadelli model is to give the neutrino 

a mass without adding a right-handed (neutrino) field to the theory. The secret 

of doing this is to note that the charge conjugate of the left-handed lepton field 

doublet, Ii, is projected from the charge conjugate field 1” = Cp (C is the charge 

conjugation matrix) by a right-handed projection operator, 

. . It is important to emphasize that Zi creates left-handed fermions and destroys right- 

handed anti-fermions exactly as IL does. Some authors like to confuse everything 

by labelling Zi with an R subscript. It is clear that the bilinear ~ZL does not 

vanish and represents a kind of mass term. In fact, it represents the mass term for 

a self-conjugate or Majorana field. 

To generate a Majorana mass term from the vacuum expectation value of a 

Higgs field, we note that the Higgs field must have the same quantum numbers as 
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the bilinear ~;ZL, 

f c;, -1) 63 ($ -1) = (1, -2) $ (0, -2). 

. . 

The bilinear must be coupled to a weak isotriplet or a weak isosinglet. The charge 

of the isosinglet must be & = I3 + Y/2 = -1. It therefore cannot be coupled to 

the neutral neutrino pair. On the other hand, the charges of the isotriplet Higgs 

are Q = 13 + Y/2 = 0, -1, -2. The presence of a neutral member allows one to 

construct a mass term of the form 

L Majorana = fM@? . (b2F)lL + h.c. (5*3) 

where: f~ is a dimensionless coupling constant; 2 are the three Higgs fields; and 

7’ are the three Pauli matrices. 

The actual mass term is generated by giving the neutral member of the isotriplet 

a vacuum expectation value as follows 
-- 

Substituting equation (5.4) into equation (5.3) p ro d uces the desired Majorana mass 

term 

L Majorana = Mv (fi;vL + CLvi) (5.5) 

where the Majorana mass, M,, is defined as M, = five. Note that the vacuum 

expectation value VT must be small to avoid disturbing the p parameter, 

p= M& v2 + 2v; 
M; cos2 0, = v2+4v$’ 

However, since we know that any left-handed neutrino is light as compared with 

the ordinary Higgs VEV (v is roughly 250 GeV), th is condition is rather naturally 

satisfied. 
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Equation (5.3) 1 a so contains pieces that involve the coupling of the H- to a 
.- 

c lepton-neutrino pair (the H- doesn’t couple to quarks since Y = -2), 

W-9 

and the coupling of the He- to a left-handed charged-lepton pair 

(5.7) 

-where gee G fife is a dimensionless coupling constant. Note that we would ex- 

pect to get to increase with neutrino mass. The coupling of the H-- to r-r- could 

therefore be significantly larger than the couplings to p-p- or e-e-. Although 

both the singly and the doubly charged Higgs bosons formally violate lepton fla- 

. vor, only the doubly charged member visibly manifests the effect (because a light 

Majorana neutrino is virtually indistinguishable from a Dirac neutrino). Since the 

H-- couples only to charged lepton pairs, most existing searches for lepton flavor 

violation are fairly insensitive to doubly charged Higgs bosons. The existing limits 

are therefore relatively weak!1g-211 

5.4. LEFT-RIGHT SYMMETRIC MODELS - 

. . 

Another model that incorporates doubly charged Higgs bosons is the so-called 

Left-Right Symmetric model of Pati and Salam! As its name implies, this model 

begins by treating both left- and right-handed fermions in a symmetric fashion. A 

right-handed weak isospin quantum number is added to the theory. All fermions 

are singlets of one isospin and doublets of the other. This permits one to discard 

the weak hypercharge quantum number and to replace it with a more physical one, 

B-L(B=b y ar on number and L - lepton number). The electric charge of each 

state is then given by the relationship 

Q = Ii + If + ;(I? - L) 

where IL and IR are the left- and right-handed weak isospins, respectively. The 
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quantum numbers (I L , I , R B - L) of the quark and lepton doublets are therefore: 

.- The gauge group of this model is expanded to SU(2),5 ~$3 su(2)R @ U(~)B-L. 

_ Since we know that nature is left-handed in the low energy limit, the right-handed 

gauge symmetry must be broken at a significantly larger mass scale than its left- 

handed counterpart. The minimal Higgs sector that preserves the correct low 

energy phenomenology consists of a bidoublet @ with quantum numbers (i, f, 0) 

-- and two triplets, I!?, and ZR, with the quantum numbers (l,O, -2) and (O,l, -2), 
_. . respectively. The vacuum expectation values of the Higgs sector are 

(5 &) = - (C ii y”z-))=(:L ; ) 

The Standard model phenomenology is preserved by choosing the vacuum expec- 

. . tation values K, K’, VR, and VL to have the following hierarchy 

The Higgs sector now contains 20 degrees of freedom. Six degrees of freedom are 

used to provide mass for the IV:, Zi, IV;, and 2: gauge bosons. The remaining 14 

degrees of freedom contain four doubly-charged states, four singly-charged states, 
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and six neutral states. Since the 2~ and i’lR triplets already have the quantum 
.- 

c numbers of the bilinear combinations FL/~ and ?‘$R, it is quite natural to include 

the following Majorana mass term for the neutrino sector (in addition to the normal 

Dirac mass term) 

There are now three masses for each neutrino generation: a left-handed Majo- 

rana mass, ML = ~&vL; a Dirac mass, mg = fb~; and a right-handed Majorana 

mass, MR = fj$lR. Unless something very perverse is done with the coupling 

constants, the natural hierarchy of the masses is A!L < ?-f&D << MR. In fact, the 

most natural occurrence would be to have mD = me. Making this assumption, the 
.- . 

mass lagrangian for a neutrino generation can be written in the form* 

-- L Neutrino mass = ( ‘$L ‘$R ) 

where the fields 
- Majorana fields, 

(5.9) 

GL = VL + u; and r/JR = UR + vi are the left- and right-handed 

respectively. The physical neutrino masses are given by the eigen- 

values of equation (5.9), 

m,2 
m1 = 4MR (5.10) 
ma II MR. 

. . There is a light, left-handed neutrino (presumably the standard one) and a very 

heavy, right-handed neutrino (the magnitude of MR is roughly that of the right- 

handed W boson). The beauty (sic) of this model is that light, left-handed neu- 

trinos are generated without diddling coupling constants. Since the mass of each 

light neutrino generation increases with rn:, the coupling constants fh and fz do 

not necessarily increase with generation. 

* The hierarchy ML < ml < MR is commonly known as the Seesaw Mechanism. 
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The same comment must therefore apply to the couplings of the doubly charged 
.- 

c Higgs bosons to left- and right-handed charged-lepton pairs. Using equation (5.8), 

the H** - e*!* couplings are 

CHki = - 
[ 
g&(zL!;H,-- + G~LH~+) -I- g~‘(~R~~H~- + QJ,H++)] (5.11) 

where gb = Fiji and g; = fife. 

Unlike the Gelmini-RoncadeZZi model, there is No reason to expect that the H** 

decays dominantly into T&T* pairs. 

5.5. EXISTING LIMITS 

If we assume that the coupling of the doubly charged Higgs to lepton pairs is 

diagonal in lepton flavor, the best limits’1g-211 on the existence of doubly-charged 

Higgs bosons are derived from the Bhabha scattering data of several PEP and 

PEfRA experiments and from searches for conversion of muonium (p+e-) into 

antimuonium (p-e+). Both processes involve the t-channel exchange of a doubly 

charged Higgs boson. These searches have the unfortunate property that they limit 

the ratio g[t/MH. Searches for real H** production can extend the limits to very 

small values of the coupling constant for moderate mass values. 

5.6. THE CROSS SECTION FOR e+e- + H++H-- 

The coupling of the 2’ to a pair of doubly charged Higgs bosons of either the 

Gelmini-Roncadelli type[17’ or of the Left-Right Symmetric type t221 is given by the 

following expression, 

‘z”-H** = -ie 
I.f - QH sin2 4, 

sin 8 cos 8 ] z”$$(-& - +&&jH (5.12) 
W W 

where: e is the electric charge; QH is the charge of the Higgs bosom sine, is the 

sine of the electroweak mixing angle; .Z* is the 2’ field; and c$H is the Higgs field. 
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Note that the quantum numbers (I~,QH) are (1,2) for the Gelmini-Roncadelli 
.- 

c Higgs and for the left-handed Higgs of the Left-Right Symmetric model. The 

right-handed Higgs has the quantum numbers (0,2). 
-. 

Using equation (5.12) ‘t 1 is straightforward to calculate the cross section for the 

process e+e- + H++H-- , 

da 9n -=- r&,rees 
dcos0 M; (s - M;)2 + sI’; [ 1 l-- “? ;(l - cos2 0) (5.13) 

where: Mz, rz are the mass and width of the Z”, respectively; ree is the leptonic 

width of the 2’; s is the square of the center-of-mass energy; and r&H is the 

partial width for the decay 2” --+ H++H-- (unsuppressed by phase space), 

r&H = ziz (It - 2 sin2 8,)2. (5.14) 

The ratio of the decay rates of the 2’ into Higgs pairs and into a single neutrino 

species can therefore be written as 

I’(Z” + H++H--) 
- 2(I,” - 2 sin2 f9w)2/33 E p3 . 

C 

0.57, Hf’; 
rp + G) - 0.43, Hi* 

where the Higgs velocity ,8 is defined as 

The branching ratio of the 2’ into Higgs pairs is roughly one half of the branching 

ratio for a neutrino species (multiplied by a p3 factor). 
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5.7. THE DECAY OF THE DOUBLY CHARGED HIGGS BOSON _- 
c 

The conservation of quantum numbers greatly restricts the available decay 
-. 

modes of triplet higgs bosons. A member of the triplet can decay into a lepton 

pair or into a (perhaps virtual) W boson and another member of the Higgs triplet. 

To fully understand the branching ratios of a doubly charged Higgs boson, we 

must know the hierarchy of the triplet masses. In order to simplify the search, it is 
.- 

assumed that the doubly charged member of the triplet can decay only into lepton 

-pairs. The decay rate of a doubly charged Higgs boson into a same-sign pair of 

leptons, l?u, s given by the following expressiont17’211 

rtt=$MH[l-?$] [I-!.!?.&” . (5.15) 

where me is the lepton mass. The Higgs bosons are therefore short-lived (in an 

experimental sense) unless the coupling constants gee are very small (less than 

10-7). 

5.8. THE MARK II SEARCH 
- 

In order to place limits on the decay 2’ 4 H++H--, we must search for final 

states of the form Z+Z+PP where 1 and e may or may not be the same flavor of 

lepton. Of the six possible four-lepton final states, the most difficult to detect is 

the one consisting of four 7 leptons. The strategy of this analysis is to define a set 

. . of topological selection criteria that can identify the four-T final state with high 

efficiency. It is clear that such criteria select four-lepton final states that contain 

two or more stable leptons with comparable or larger efficiency. 

Since 90% of all four-T events decay into six or fewer charged particles, we 

consider only those event candidates that contain six or fewer charged tracks that 

project into a cylindrical volume of 2 cm radius and 6 cm lengt,h that is centered 

on the interaction point of the SLC. In order to suppress two-photon events and 
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badly accepted hadronic final states, we require that the scalar sum of the track 
.- 

c momenta be at least 10 GeV/c. 

.- 

Isolated r leptons appear as isolated single tracks or as low-mass clusters of 

tracks. The 4-vectors of the charged tracks are thus subjected to a mass-based clus- 

tering algorithm. Initially, each track is defined to be a cluster. The pair of clusters 

with the smallest invariant mass is merged if its mass is less than 2.0 GeV/c2. The 

procedure is repeated until all pairs of clusters have invariant masses larger than 

-2.0 GeV/c2. 

We expect most H ++H-- events to appear as four-cluster events. There is a 

reasonable probability, however, that a cluster occurs in one of the forward regions, 

1 cos 81 > 0.80, and is not detected (approximately 30% of all events fall into this 

.~ . ~ category). We therefore require that each event candidate contain either three or 

four clusters of energy larger than 1.0 GeV. The net charge of each cluster must be 

unity. The event must not contain any clusters with charges larger than unity. The 

net event charge must be zero for four-cluster candidates or unity for three-cluster 

candidates. 

None of the events in the Mark II data sample pass the selection criteria. 

Using a Monte Carlo simulation, we can predict the number of events that would 

have been observed if doubly charged Higgs bosons were present in the data. The 

detection probabilities for electron and muon final states are essentially identical. 

The limit is therefore a function of the Higgs boson to rr branching ratio, B,, only. 

In the regions of parameter space that the expected number of observed events is 

larger than 2.3 and 3.0, we can exclude the presence of the H** with 90% and 95% 

confidence. In the short lifetime region, the intervals of MH that are excluded with 

90% confidence and with 95% confidence are listed in Table IX for several values 

of B, and Ii. The upper limits on MH are due to the p3 suppression of the cross 

section. The lower limits are due to the loss of efficiency as MH becomes small. The 

efficiency function for stable leptons falls sharply at the cluster mass of 2.0 GeV/c2. 

The 90% and 95% confidence limits occur quite close to this point. For B, = 0.5, 

. . 
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the number of events with four stable leptons is sufficient to exclude values of MH .- 
c down to the r-pair threshold. The short lifetime constraint requires that there 

be at least one coupling constant in the region gu X 7.4 x 10W7/& (MH in 
_. 

GeV/c2). This implies that the dominant coupling(s) be larger than - 5 x lo-' 

in the small mass region and - 1 x lOA in the high mass region. 

Table IX 

-- The intervals of MH that are excluded at 90% confidence and at 95% 
confidence for left-handed (I,” = 1) and right-handed (I,” = 0) doubly 
charged Higgs bosons. The excluded intervals are tabulated as a function 
of the r branching ratio B,. They are valid in the region of coupling 
constant gee X 5 X 10B7. 

I: & 90% Limit (GeV/c2) 95% Limit (GeV/c2) 

. . 0 1.0 6.5 < MH < 36.4 7.3 < MH < 34.3 

0 0.5 3.6 < MH < 37.7 3.6 < MH < 36.0 

0 0.0 2.0 < MH < 38.5 2.0 < MH < 36.7 

1 1.0 5.9 < MH < 38.2 6.5 < MH < 36.6 

1 0.5 3.6 < MH < 39.2 3.6 < MH < 37.9 

1 0.0 2.0 < MH < 39.7 2.0 < MH < 38.4 
- 

__ 

The excluded regions overlap and significantly extend the existing small-coupling 

L [211 limits on MH (which are independent of I3 ). The 90% confidence limit for B, = 0 

is extended from approximately 21.5 GeV/c2 to 39.7 GeV/c2 (38.5 GeV/c2) for left- 

handed (right-handed) Higgs bosons. For B, = 1, the 90% limit is extended from 

14 GeV/c2 to 38.2 GeV/c2 (36.4 GeV/c2) for left-handed (right-handed) Higgs 

bosons. 

In order illustrate the dependence of the limits upon the mass and coupling 

constants, the least restrictive 90% limit (B, = 1, Ii = 0) is plotted in gee - MH 

space in Figure 13 (the solid curve). Note that it extends to gee = 7.2 x lo-‘. The 

limit is compared with two rather specific limits from Reference 21. 
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6. Polarization Physics at the SLC 

c 
6.1. THE POLARIZED SLC 

One of the advantages of linear colliders is that they are relatively straight- 

forward to polarize. A layout of the polarized SLC is shown in Figure 1. The 

orientation of an electron spin vector is shown as the electron is transported from 

the electron gun to the interaction point. 

A gallium arsenide based photon emission source produces pulses of up to 1011 

longitudinally polarized electrons at repetition rates of up to 120 Hz. The electrons 

are then accelerated in the first sector of the linac. The beam pulse achieves an 

energy of 1.21 GeV as it arrives at the entrance of the LTR (Linac To Ring) transfer 

line. 

The electrons must be stored in the North Damping Ring for one machine cycle 

(the cycle time is N 8 ms). A system consisting of the LTR bend magnets and 

a -superconducting solenoid is used to rotate the spins into the vertical direction 

that is necessary for storage in the damping ring. After one machine cycle, the 

bunch is extracted and passed through another spin rotation system consisting of 

the bend magnets of the RTL (Ring-To-Linac) transfer line and two superconduct- 

ing solenoids. The system is sufficiently flexible to provide essentially any spin 

orientation as the bunch reenters the linac at the beginning of sector 2. 

The beam pulse is then accelerated to 46.5 GeV in the linac (due to synchrotron 

radiation losses, the energy at the end of the LINAC is -1 GeV larger than it is 

at the interaction point). To insure that the spin gymnastics in the damping ring 

have worked properly and to study many of the potential sources of depolarization, 

a Mprller polarimeter is located at the end of the linac near the PEP injection line. 

This polarimeter is used primarily for diagnostic purposes. 

The beam pulse is then transported through the north machine arc and the 

final focus section to the interaction point. At full energy, the spin vectors precess 

roughly 26 times. Vertical precession also occurs in the nonplanar arcs. Since 
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longitudinal polarization is required at the interaction point, the total precession 
.- 

c angle must be calculated for the exact machine energy and the polarization at the 

arc entrance must be adjusted appropriately. 

After colliding with the unpolarized positron bunch, the electron beam is trans- 

ported through the south final focus system where a Compton polarimeter is lo- 

cated. The beam continues to the south extraction line where a second Moller 

.- polarimeter is located. The bending magnets of the final focus and extraction 

-line cause an additional spin precession of roughly 540’ between the interaction 

point and the Mprller target. Both polarimeters continuously monitor the beam 

polarization. 

-- 6.2. THE POLARIZED SOURCE 

The SLC polarized electron source is based upon polarized photoemission from 

Gallium Arsenide (GaAs). The band structure of GaAs at the energy maximum of 

the valence band and energy minimum of the conduction band is shown in Figure 

14. The band energy versus momentum is shown on the left-hand side and the 

energy level structure is shown on the right-hand side of the figure. The band gap 

of the material is E, = 1.52 eV. At the minimum of the conduction band and the 

maximum of the valence band, the electron wavefunctions have S and P symmetry, 

respectively. Spin-orbit splitting causes the P3j2 states to reside in energy above 

the P1j2 states by an amount A = 0.34 eV. The absorption of single photons 

proceeds via an electric dipole transition. The selection rules for the absorption of 

right- and left-handed circularly polarized photons are Amj = $1 and Amj = -1, 

respectively. They are indicated by the solid and dashed arrows in Figure 14. Since 

the electric dipole operator changes the orbital angular momentum of the initial 

state by one unit, the spin of the electron remains unchanged in the process. 

Let’s consider what happens when a right-circularly polarized photon is inci- 

dent upon a GaAs crystal. The photon direction is the only vector in the sys- 

tem. All angular momentum projections refer to the incident photon direction. If 
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the photon energy E, is in the range E, 5 E, 5 E, + A, then transitions can 

only occur from the P3/2 states to the Slia states. Specifically, the P state with 

mj = -3/2 can make a transition to the S state with mj = -l/2 and the P state 

with mj = -l/2 can make a transition to the S state with mj = +1/2. In the 

former case, the emitted electron has spin antiparallel to the incident photon direc- 

tion (or parallel to its ejected direction). In the latter case, the spin of the emitted 

electron is parallel to the incident photon direction (antiparallel to its ejected di- 

rection). Due to Clebsch-Gordon coefficients (the P state with mj = -3/2 is a 

pure spin state whereas state with mj = -l/2 is not), the former transition is three 

times more likely than the latter. The relative transition rates are indicated by 

circled numbers in Figure 14. This implies that the absorption of a right circularly 

polarized photon produces a right-handed electron with a polarization 

P= 
3-l 
- = 50%. 
3+1 

Actually, all that’s been shown so far is that polarized electrons can be pumped 
-- 

into the conduction band with a beam of circularly polarized photons. In order to 

make a polarized source, the electrons must leave the material. In normal GaAs, 

the energy gap from the bottom of the conduction band to the free electron state 

is approximately 2.5 electron volts. Even with a large applied electric field, pure 

GaAs is a poor photoemitter. The magic that is necessary to make it an efficient 

photoemitter is shown in Figure 15. The energy of the various bands is shown as 

a function of depth near the surface for several materials: pure GaAs, GaAs with 

a cesiated surface, and GaAs with a surface layer of Cs20. The energy of the free 

electron state is shown as E,. The addition of cesium to the surface causes the 

energy gap between the conduction band and the free electron state to decrease 

to zero. The addition of Cs20 to the surface causes the gap to become negative! 

Quantum efficiencies as large as 5% have been observed for GaAs photocathodes 

that have been treated with Cs20 (actually CsF is currently used instead). 

Figure 16 shows the electron polarization that was measuredLz5’ for several 

photocathodes as a function of the photon wavelength. The photocathodes are 
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composed of pure gallium arsenide and several forms of gallium aluminum ar- 
.- 

c senide. The gallium aluminum arsenide is made by substituting aluminum atoms 

for fraction x of the arsenic atoms. At the wavelength of the SLC polarized light 
_. 

source, 715 nm, the pure GaAs sample produces a polarization of only 35%. The 

electron polarization will be improved to 42% by the use of GaAlo.lAss.9. 

6.3. THE SPIN ROTATION SYSTEM 

The second major element of the polarized SLC is the spin rotation system. 

As was mentioned at the beginning of this chapter, the spin rotation system has 

two functions: 

1. To rotate the (initially longitudinal) polarization vector of the electron bunch 

into the vertical direction for storage in the North Damping Ring. 

2. To allow the orientation of the electron polarization vector to be controlled 

as the bunch reenters sector 2 of the linac. This is necessary to compensate 

for precession in the machine arcs. 

A detailed representation of the north damping ring, the north LTR transfer 

line, and the north RTL transfer line is shown in Figure 2. The orientation of the 

polarization vector at various places is shown by the double arrow. The electron 

bunch arrives at the entrance to the LTR transfer line with an energy of 1.21 

GeV. At this energy, the spins precess by 90’ for each 32.8’ that the electron 

trajectories are bent by a transverse magnetic field. The initial bend angle of 

the LTR has been chosen to be 5 x 32.8’. The longitudinal polarization of the 

beam emerging from sector 1 of the linac is therefore rotated into the horizontal 

direction. A superconducting solenoid of strength 6.34 T-m is introduced into 

the LTR optics after the first bend. The solenoid has only a small effect on the 

optics of the transport system but causes a rotation of the spin vector about the 

beam axis by 90’. The spins are therefore rotated into the vertical (either upward 

or downward) direction. After one machine cycle (Z 8 ms), the electron bunch 

is extracted from the damping ring with a horizontal kicker magnet and passed 
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through a second superconducting solenoid magnet. The horizontal bend magnets 
.- 

c of the RTL transfer line then deflect the beam by an angle of 3 x 32.8’ before it 

reenters the linac at the beginning of sector 2. A third superconducting solenoid 

is introduced into the linac lattice just downstream of the reentry point. If the 

second (RTL) solenoid is adjusted to have the same strength as the first (LTR) 

solenoid has, the system will restore the longitudinal beam polarization. If it is 

not energized, the beam polarization will be vertical upon reentry into the linac. 

The third (linac) solenoid can then rotate the polarization vector to any transverse 

orientation. The combination of the two solenoids and the RTL bending magnets 

permits the selection of any orientation of the polarization vector. 

6.4. POLARIMETRY AT SLC 

The polarization of the SLC electron beam will be monitored by three po- 

larimeters. Two of the polarimeters are based upon polarized electron-electron 

scattering (Moller scattering) and one is based upon polarized electron-photon 

scattering (Compton scattering). 

The Mgller Polarimeters 

The Mprller polarimeters measure the elastic scattering of the polarized electron 

beam from the polarized atomic electrons in a magnetized foil target. The cross 

section for this process has the form (in the limit of zero electron mass), 

da a2 (3 + cos2q2 
xi=s sin40 { 1 - pt%W) - 7’:7’&4t(0)cos(2~ - 41 - 42)} (6.1) 

where: s is the square of the total energy in the cm frame; 0 is the cm frame 

scattering angle; 4 is the azimuth of the scattered electron (the definition of 4 = 0 

is arbitrary); P,‘, Pz are the longitudinal polarizations of the beam and target, 

respectively; Pi, 7’: are the transverse polarizations of the beam and target, re- 

spectively; 41, $2 are the azimuths of the transverse polarization vectors; and 



- 
h(e) and At(e) are the longitudinal and transverse asymmetry functions which 

.- 
c are defined as 

(7 + cos20)sin2B 
-. Az(e) = (3 + cos2ep 

sin48 
AtP) = (3 + cos2e)2. 

.- 
The differential cross section is the product of the unpolarized cross section 

and the sum of one and two polarization dependent terms. The first is the product 

of the longitudinal polarizations of the beam and target particles and the function 

AZ(e). The second is the product of the transverse polarizations of the two elec- 

trons, an azimuthal factor, and the function At(e). Both asymmetry functions are 

maximal for 90” scattering. The longitudinal asymmetry function becomes quite 

large (A,(90°) = 7/9) h w ereas the transverse asymmetry function never exceeds 

l/9. The analyzing power of any polarimeter scales as the product of the unpo- 

larized cross section and the square of the asymmetry. This combination is also 

largest at 8 = 90” but h as a rather broad maximum. Because the longitudinal 

and transverse asymmetries have maxima at the same scattering angle, it is quite 

straightforward to build three-axis polarimeters. 

The polarimeters function by measuring the asymmetry in the scattering rate 

when either the beam or target polarizations are reversed, 

A 
ee 

~ @pa) - +P1p2) 
qlP2) + ,(-Pp2) = -p,lp,2A*(e)-ptp,2A,(8)cos(2~-~l-~2). (6.2) 

_. The beam polarization Pi is inferred from the measured asymmetry A,,, the mea- 

sured target polarization Pi, and the theoretical asymmetry AL(B) (where x is z 

or t). 

The precision of the Moller polarimeters is limited by the uncertainties on 

the target polarization and on the subtraction of background from the radiative 

process e-N -+ e-Ny where N is a nucleus in the target material. We expect that 

a precision SP/P of 5% is possible. 

59 



- 
- 

The Common Polarimeter 

The Compton polarimeter is the primary monitor of the polarization of the 

SLC electron beam. It measures the large asymmetry in the scattering of po- 

larized electrons from circularly polarized laser photons. The light source is a 

frequency doubled Nd:YAG laser which produces 2.23 eV photons. The backscat- 

tered electrons are separated from the SLC beam by the first large dipole magnet 

of the SLC final focus system after it has passed through the interaction point. 

The kinematical properties of the scattering of a high energy electron with 

an optical photon seem quite strange to those accustomed to working in reference 

frames that are nearer the center-of-mass frame. The energy of the electron is 

typically 10 orders of magnitude larger than that of the photon. It is clear that 

all final state particles are swept into the forward direction (along the incident 

electron direction). It is therefore convenient to define all angles with respect to 

the incident electron direction. The direction of the outgoing photon, fJK, differs 

from the normal definition of the scattering angle by 180’ (if the colliding e-y 

are collinear). Let E, E’, K, and K’ be the incident electron energy, scattered 

electron energy, incident photon energy, and scattered photon energy, respectively. 

The maximum energy of the scattered photon Iihaz and the minimum energy of 

the scattered electron EhiR can then be written as 

Knaz = E(1 - y) 

EL;, = Ey 

where the parameter y is defined as 

The emission angle of the scattered photon 0K is related to the scattered photon 

energy by the following expression, 

K’ = K’ ,,,[l +Y(%)“]-’ 

= K;,, . x 
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where the definition of x is obvious. The parameter x varies from unity at zero 
.- 

c emission angle to zero at larger angles. The scale of the angular range is set by the 

angle for which the energy has been reduced by a factor of two. This occurs when 
_. 

.- 

EOK,jij/m = 1 or at the angle 0K = m/E&. For the SLC Compton polarimeter 

operating with a 46 GeV beam, the value of the parameter y is 0.389. Therefore, 

the maximum photon energy is 28.1 GeV and the minimum electron energy is 17.9 

GeV. The angle at which the photon energy has been decreased by a factor of two 

is 1.8 x 10e5 radians. The scattered electron and photon both remain along the 

-b earn direction. 

The polarized cross section can be expressed in terms of the laboratory vari- 

ables x, y, and the azimuth of the photon with respect to the electron transverse 

polarization f$ as followst’“’ . ~ 
d2a ( > dxd+ Compton 

= (&),,,,,{ 1 - Py[7’;A:y(x) + 7’; ~0s &4;‘(s)]} (6.3) 

where: the unpolarized cross section is defined as 

= & 
x2(1 - y)2 l-x(l+y) 2 . 

’ - 1 - x.1 - y) +l+ Lx(l-y) I> 

P,, Pt are the longitudinal and transverse polarizations of the electron; Y is 

the circular polarization of the photon; and where the longitudinal and transverse 

asymmetries are defined as 

. . AEy(x) = r:y [l - x(1 + y)l l - [l _ .(: - y)]2 
At”Y(x) = r;yx(l _ y)[4xy’1 -x)1 

112 
(““)-’ 

1 - x(1 - y) ’ dxdcj unpol 

For y = 0.389, the unpolarized cross section is very large (several hundred 

millibarns) and peaked at x = 1. The longitudinal asymmetry has a maximum of 

75% also at x = 1. Note, however, that as x is decreased, A”,’ decreases rapidly 
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and becomes negative near x = 0.72. It reaches a minimum of -25% near x = 0.47 
.- 

c and returns to zero at x = 0. The transverse asymmetry is zero at both endpoints 

and reaches a maximum of 33% near x = 0.75. 

The acceptance of the SLC polarimeter integrates over the entire azimuth. 

The polarimeter therefore measures only the longitudinal asymmetry. Using equa- 

tion (6.2), the longitudinal beam polarization is measured. It appears that the 

.- polarimeter is capable of measuring the polarization with a precision of 1% to 2%. 

6.5. DEPOLARIZATION EFFECTS 

There are numerous possible sources of electron beam depolarization. None of 

~~- them are expected to be serious. The following is a summary of the most important. 

. ~ 
Depolarization in the Linac 

The depolarization of a longitudinally polarized electron beam by the SLAC 

linac has been calculated to be very small? This has been verified by several 
P3,241 experiments. The polarized SLC does differ in two respects from the old SLAC 

linac: 

- 
1. 

. . 2. 

The electron bunches are much smaller than they were for the fixed target 

experiments. It was pointed out by W.K.H. Panofsky’2g1 that the intra-bunch 

fields could depolarize the bunch via an effect that is analogous to Thomas 

precession. More detailed calculations indicate that this effect causes less 

than a one percent depolarization of the beam. 

The SLC must accelerate beams with transverse components of the polar- 

ization vector. This is not expected to be a problem, however, detailed 

calculations and experimental verification are still needed. 

Depolarization in the Damping Ring 

Since the helicity of each electron pulse is determined by a random number 

generator at the source, half of the electron pulses stored in the north damping 
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ring will have their polarization vectors aligned with the guide field and half will 

have anti-aligned polarization vectors. The natural polarization of a storage ring 

by the Sokolov-Ternov effect1301 causes the spins to anti-align themselves with the 

guide field. This would cause the depolarization of the aligned bunches if they were 

stored in the ring for an appreciable fraction of a polarizing time. The polarizing 

time for the damping ring is approximately 15 minutes. Since the storage time of 

an electron bunch is only 8 milliseconds (at a 120 Hz repetition rate), this effect is 

-negligible. Indeed, the short storage time (which is several damping times) implies 

that the only process that could cause a serious problem is resonant depolarization. 

The resonance condition is 

u = N + Iv, + Ju, + Ku, 

where: v is the spin tune of the damping ring (the number of spin precessions per 

orbit); N, I, J, K are integers; vZ and vY are the horizontal and vertical betatron 

tunes, respectively; and v, is the synchrotron tune of the damping ring. The SLC 

damping ring is designed to operate at an energy E = 1.21 GeV. The spin tune at 

this energy is given by the expression 

u=g-2 E E -.-= 
2 440.65 MeV 

= 2.746 
me 

(where (g - 2)/2 is anomalous magnetic moment of the electron). The horizontal 

and vertical betatron tunes are v, = 7.20 and vy = 3.20, respectively (the v, - vY = 

4 coupling resonance is used to produce round beams). The synchrotron tune is 

very small (vs N- 0.04). Th ere ore, f the nearest spin depolarizing resonance occurs 

when N, I, J = 6,0, -1 (the synchrotron tune is ignored since only relatively weak 

resonances are associated with it). The right hand side of the resonance equation 

is equal to 2.80 in this case. Since the natural width of this sideband resonance is 

expected to be less than 0.001, no serious resonant depolarization is expected. 
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Depolarization in the Arcs 
_- 

c The SLC arcs are fairly achromatic transport systems (they can transport a 

momentum interval AP/P = 5%). S _. ince the total precession angle is a sensitive 

function of the beam energy, the finite energy spread of the beam (APIP = 0.3%) 

causes a spread in the final spin directions of the electrons. The average longitu- ._ 
dinal polarization at the interaction point is reduced by a factor 0.93. 

.- 
Depolarization from Beam-Beam Interactions 

- 

Because the SLC beams are very small at the interaction point, each beam is 

subjected to very strong electromagnetic fields during the collision. These fields 

cause some depolarization of the electron bunch. The size of the effect is given by 

the expression 

.~ . ~ Ae, = 2!$2. .E . ed 
me 

where: Ae, is the average precession angle of beam particles; E is the beam energy; 

atid t9d is the disruption angle of the beam. Since the disruption angle at SLC is 

roughly one milliradian, the average depolarization is less than one percent. 

- Systematic Effects 

It is possible that the average beam polarization as measured by the two down- 

stream polarimeters be different from the luminosity weighted average polarization. 

There are two possible causes for this effect. 

1. The beam-beam interaction obviously changes the polarization before it ar- 

rives at the Compton and extraction line Moller polarimeters. The size of 

this effect is estimated to be less than 0.5%. 

. . 

2. If the electron beam at the interaction point has a non-zero dispersion func- 

tion, it is possible that a beam-beam targeting error could cause the luminos- 

ity weighted beam energy and polarization to differ from the average beam 

energy and polarization. The beam-beam deflection process allows the beam 

to be targeted to within a small fraction of the beam sizes. Therefore, even if 
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the dispersion function at the interaction point were as large as 3 mm (which 

c is quite large), the fractional deviation of the monitored polarization from 

the average one is less than two percent. If the dispersion function is the 
-. 

more normal 1 mm, this effect is a few tenths of one percent. 

6.6. THE LEFT-RIGHT POLARIZATION ASYMMETRY 

.- In order to understand the utility of a polarized electron beam, we must con- 

-sider the cross section for the (longitudinally) polarized process e+e- -+ ff. The 

beam polarizations, P- and P+, are described in terms of a helicity basis (P = +l 

describes a right-handed beam, P = -1 describes a left-handed beam). We can 

then write the tree-level cross section in the cm frame as follows, 
-- 

.- daf _ CY2Nf C . ~ 
-a-- 64s sin4 28, 

(1 - P+P-)[u, yZ + u,“] + p+ - P-)[u, ” + u;] > 
(6.4) 

where: the unpolarized partial cross sections due to yZ interference and pure 2 

exchange are defined as, 

u;I’ = -8Qf sin2 2&,Re[$)] [(l + COST 8*)uuf + 2 cos O*,af] 

- 
a: = ]I(#[(1 + COS2 e*)(W2 i- u2)(wj + $ -t 8 COS o*vUvfUf 1 ; 

8* is the angle of the outgoing fermion relative to the incident electron; the polar- 

ized partial cross sections due to yZ interference and pure 2 exchange are defined 

as, 

u;” = 8Qf sin2 2&,Re[I’(s)] [(l + COST O*)avf + 2 cos o*vuf] 

Z up = -lW12 [( I + cos2 e*)2wu(w; + + + 2 cos e*cw2 + u2)2vf af ; 
I 

the constant N,f is the color factor (3) for quark final states; I’(i) = i/(.G - it4; + 

iI’z>/Mz) is the normalized 2 propagator; and where the coupling constants with- 

out subscript, v and a, refer to the electron vector and axial-vector coupling con- 

stants. Note that we’ve assumed that the masses of all final state fermions are 
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small as compared with J s and that the unpolarized cross section for pure photon 
.- 

c exchange is small as compared with the pure 2 and interference terms. 

The forward-backward asymmetries are defined to select the part of the e+e- 

cross section that is odd under spatial reflection. The left-right polarization asym- 

metry is designed to select the part of the cross section that is odd in difference ._ 
of the beam polarizations P + - P-. It is therefore useful to define a general- 

ized beam polarization Fs that is proportional to P+ - P- and has a convenient 

-normalization, 

p - p+--p- 
9 l-P+P-’ (6.5) 

Note that Pg is positive whenever the electron beam is left-handed and/or the 

positron beam is right-handed. It is negative whenever the reverse is true. The ._ . . . 
generalized polarization becomes unity when either beam is completely polarized. 

The positron beam of the SLC is unpolarized. The generalized polarization there- 

fore has the simple form, Pg = -Pp. 

The left-right polarization asymmetry is defined as the ratio of the difference 

of the total 2’ production rates with left-handed and right-handed beams to the 

- total rate. This can be expressed more precisely as, 

Cf {f;, deaf (c, Pg = +l) - J..;, deaf (c, Pg = -I)} 

ALR - Cf {s_“:, dcaf(c, Pg = +l) + j-T;, dcaf(c, Pg = -I)} ’ (6’6) 

. . where: c 3 co&*; af(c, Pg) is shorthand for the differential cross section daf/dfi*; 

fxf are integration limits that depend upon fermion type; and where the sum is 

taken over all visible final state fermions except electrons (to exclude the t-channel 

scattering process). Note that the integrals must be taken over symmetric limits 

(which is a natural property of most e+e- detectors). 

Substituting equation (6.4) (actually, the version of equation (6.4) with finite 

final state masses) into equation (6.6) it is straightforward to show that the left- 
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right asymmetry takes the following form on the 2’ pole, 

where ,0f is the velocity of the final state fermion in the ff center-of-mass frame. 

Cancelling the common factor, we recover a familiar expression, 

A 
-2vu 2(1 - 4sin20,) 

LR = v2 + u2 = 1 + (1 - 4sin28,)2 * (6.7) 

A number of conclusions can be drawn from this derivation: 

1. ALR depends upon the Z”-electron couplings alone. The dependence on the 

final state couplings cancels in the ratio. 
._ . . . 

2. ALR is independent of the detector acceptance. This remains true even if 

each final state fermion is accepted differently. 

3. ALR is independent of final state mass effects (which would cause pf to differ 

from unity). 

- 
4. All of the visible final states except the electron pairs can be used to measure 

ALE. The measurement therefore utilizes about 96% of the visible decays. 

The various other Standard Model tests that are performed on the 2’ pole 

make use of much smaller fractions of the event total (- 4% for the muonic 

forward-backward asymmetry, N 0.9% for the 7 polarization measurement, 

and N 4% for the b-quark forward-backward asymmetry). 

. . 5. ALR is very sensitive to the electroweak mixing parameter sin20,. This is 

shown graphically in Figure 17. Small changes in ALR are related to changes 

in sin20, by the following expression, 

SALR N -8Ssin28,. (6.8) 

For Mz = 91.17 GeV, the asymmetry is expected to be in the range 13%- 

15%. 
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Radiative Corrections 
_- 

c The left-right asymmetry has the property that it is insensitive to a large 

-. class of relatively uninteresting real and virtual radiative corrections and is very 

sensitive to an interesting set of virtual electroweak corrections. This behavior can 

be summarized as follows: .- 

1. The left-right asymmetry is very insensitive to initial state radiative correc- 

tions. The emission of real photons by the incident electron and positron 

causes a smearing of the center-of-mass energy of the fJ system (fi). The 

left-right asymmetry is quite insensitive to small changes in &. The en- 

ergy dependence of ALR is compared with those of several forward backward 

asymmetries in Figure 18. The size of the initial state radiative correction 
.-- 

._ to ALR is calculated to beL3” SALR N 0.002 (this is a 2% correction to the 
. . . 

asymmetry). The uncertainty on the correction to ALR is smaller by an order 

of magnitude. 

2. The QCD corrections to the left-right asymmetry vanish entirely to all orders 

in the strong coupling constant CX, at the leading order in the electromagnetic 

coupling constant CY. The leading QCD corrections to ALR are the (extremely 

small) corrections to the weak vector boson box diagrams. - 

3. The theoretical uncertainty on ALR is completely dominated by the uncer- 

tainty on the renormalization of the electromagnetic coupling constant to the 

2’ mass scale. The current value of this uncertainty is[331 SALR N 0.002. 

4. The left-right asymmetry is quite sensitive to virtual electroweak corrections 

and to the presence of new particles. The sensitivity of the asymmetry to the 

top quark mass (mtop) and the Higgs boson mass (rn~i~~~) will be discussed 

in the last section of this document. 

Experimental Errors 

At the SLC, the measurement of ALR is performed by randomly flipping the 

sign of the beam polarization on a pulse-to-pulse basis and by counting the number 
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of 2’ events that are produced from each state. The measured asymmetry, Ayi, 
.- 

c is related to the theoretical asymmetry, ALR, by the following expression, 

_. A”L”R” E h-& = +%) - Nz(p, = -0) = POALR 
Nz(Pg = +%) + Nz(Pg = -%) 

7 (6.9) 

where PO is the magnitude of the beam polarization (PO - 0.40), and Nz(P) is the 

number of 2’ events logged with beam polarization P. Since the left-handed and 

right-handed 2’ cross sections are measured simultaneously, any systematic effects 

due to variations in detector livetime, luminosity, beam energy, beam position, etc., 

are cancelled in the ratio of the cross sections. This technique was used success- 

fully to measure a very small polarized asymmetry (- 10m5) in electron-deuteron 

scattering in 197812” The dominant systematic error is expected to be the uncer- 

tainty on the beam polarization measurement. We expect that the SLC Compton 

polarimeter is capable of measuring the beam polarization with a precision of l-2% 

(sPrJ/% = l-2%). 

- There are a number of consistency checks that can be made with the SLC 

polarization hardware. It is possible to reverse the circular polarization optics of the 

electron source laser to search for systematic problems in that system. The polarity 

- 

. . 

of the spin rotation system can be reversed to check for systematic problems in the 

damping rings. The polarization direction of each polarimeter target is reversible. 

The beam polarization can be measured separately with each target polarization 

direction (and must be consistent). Finally, the left-right asymmetry for small- 

angle Bhabha scattering is very small (- 10V4). Th e 1 uminosity monitors therefore 

provide an important check that the left-handed and right-handed luminosities are 

equal (the left-right asymmetry of the Bhabha signal must be consistent with zero). 

Assuming that the dominant systematic error is the beam polarization uncer- 

tainty, the combined statistical and systematic uncertainty on ALR is given by the 

following expression, 

SALR = [“iR(z12 + 1 -zzR’z] 1’27 (6.10) 
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where Ntot is the total number of 2’ events. The expected precision of the ALR 
.- 

41 measurement and the corresponding precision on sin20, are listed in Table X for 

several values of Nt,t . Note that the statistical uncertainty dominates the total 

error in the region Nt,,t < 106. At NtOt = 3 x 106, the statistical and systematic 

components are comparable. 

Table X 

The expected error on ALR and sin20, as a function of the number of 2’ 
events. The left-right asymmetry is assumed to be ALR = 0.135 (which 
is in the middle of the range that is expected for Mz = 91.17 GeV). The 
beam polarization is assumed to be Fs = 0.40 and the precision of the 
polarization monitoring is assumed to be S?o/Ps = 0.01. 

Not ~ALR Ssin28, ._ . . . 
1OOK 0.008 0.0010 

300K 0.005 0.0006 

1M 0.003 0.00035 

3M 0.002 0.00025 

- 

. . 

The experimental confidence intervals that are presented in Table X are com- 

pared with the theoretical expectation for ALR in Figures 19 and 20. The solid 

curves in Figure 19 enclose the 68.3% confidence region that is expected for ~~~~~~ 

= 500 GeV and mtop varying between 60 GeV and 240 GeV. The finite width of 

the region is due to a f20 MeV uncertainty on the 2’ mass (we assume Mz = 

91.17 f 0.02 GeV). The solid curves in Figure 20 enclose the 68.3% confidence 

region that is expected for mtop = 150 GeV and T?IHiggs varying from 100 GeV to 

900 GeV. The size of the theoretical error on ALR (f0.002) is shown as the dotted 

vertical error bar in each figure. The sizes of the experimental 68.3% confidence 

intervals that correspond to the various values of Nt,,t are indicated by the solid 

vertical error bars. Since the 7 polarization asymmetry is formally equivalent to 

ALR, we plot the confidence region that is expected from a measurement with a 
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6M 2’ sample. It is clear that ALR is quite sensitive to mtop. A measurement with 
.- 

c 300K 2’ events constrains the top quark mass to a region of roughly Smtop = f17 

GeV which is comparable to a 100 MeV determination of Mw. The sensitivity to 
_. 

mHiggs is clearly much smaller. A very high statistics measurement of ALR could 

provide, at best, an indication of ??ZHiggs. 
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FIGURE CAPTIONS 

c 

1) A layout of the SLAC Linear Collider. The orientation of an electron spin 

vector is shown as the electron is transported from the electron gun to the 

interaction point. 

2) The spin rotation system as incorporated into the north damping ring com- 

plex. The orientation of the polarization vector at several points is shown by 

the double arrow. 

3) The Mark II detector. 

4) The sensitivity function for Mz as a function of center-of-mass energy about 

the 2 pole, E - Mz. 

._ . . . 5) The sensitivity function for I?z as a function of center-of-mass energy about 

the 2 pole, E - Mz. 

-6) The sensitivity function for oflad as a function of center-of-mass energy 

about the 2 pole, E - Mz. 

“’ 7) The 2’ lineshape as measured by the Mark II Collaboration. The dashed 

- curve is the result of a single parameter fit (for Mz). The results of two and 

three parameter fits are indistinguishable and are shown as the solid curve. 

8) The north (electron) energy spectrometer of the SLC. The beam is focused 

by a quadrupole doublet to a point at the detector plane. The beam passes 

through a small horizontal bend dipole magnet, a large vertical bend dipole 

. . magnet, and a second small horizontal bend magnet. The passage of the 

beam through the horizontal bend magnets produces flat distributions of 

synchrotron radiation which are detected by a phosphor screen detector. 

The separation of the flat distributions is proportional to the beam energy. 

9) The cross section for the process e+e- + W+W- as a function of Eb - i&v. 

The mass and width of the W are assumed to be 80 GeV and 2.1 GeV, 

respectively. Note that three curves are plotted: the dashed curve is the 
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basic tree-level cross section; the dashed-dotted curve is the cross section 
_- 

c including the effect of initial state radiation; and the solid curve is the cross 

section including initial state radiation and the effect of a finite W width. 

10) The sensitivity function for Mw as a function of the single beam energy 

._ about the W pair threshold Eb - Mw. 

11) The sensitivity function for l?w as a function of the single beam energy about 

the W pair threshold Eb - Mw. 

12) The sensitivity function for the background parameter B as a function of the 

single beam energy about the W pair threshold &, - Mw. 

- 
. . . 

13) The 90% confidence contours of MH versus the leptonic coupling strength gee 

that are obtained from several processes. The excluded regions are indicated 

by the shaded side of each contour. The result of this search is shown as 

the solid contour (the limit is independent of lepton flavor). The limitLzl’ 

that is obtained from the limit on muonium to antimuonium conversion is 

shown as a dotted line (Jgz is plotted along the horizontal axis). The 

limitL211 that is obtained from the Bhabha scattering data of several PEP 

and PETRA experiments is shown as a dashed curve (gee is plotted along 

the horizontal axis). For reference, the sizes of the coupling constants g, g’, 

and e are indicated. The strong coupling limit occurs at the value 6. 

-- 

14) The band structure of GaAs near the bandgap minimum.[231 The energy levels 

of the states are shown on the right. Allowed transitions for the absorption of 

right (left) circularly polarized photons are shown as solid (dashed) arrows. 

The circled numbers indicate the relative transition rates. 

15) The band structure of Gallium Arsenide near its surface[231 for: (a) pure 

GaAs, (b) GaAs with a cesiated surface, and (c) GaAs with a layer of Cs20 

on its surface. 

16) The polarization of electrons emitted from several GaAs photocathodes as 

functions of photon wavelength!51 The cathodes consisted of pure gallium 
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arsenide and several compositions of gallium aluminum arsenide. 

* 17) The left-right asymmetry ALR is plotted as a function of sin28, and Mz (for 

some choice of mt and mh). The leptonic forward-backward asymmetry AFB 

is shown for comparison. 

18) The forward-backward asymmetries for leptons, u-quarks, and d-quarks are 

plotted as a functions of the center-of-mass energy about the 2’ pole. The 

asymmetries are also shown for the case that the incident beams are polar- 

ized. The energy dependence of the left-right asymmetry and an improved 

polarized forward-backward asymmetry AfFB (from Reference 31) are also 

shown. The 2’ mass is assumed to be 94 GeV. Note that the unimproved 

forward-backward asymmetries are much more sensitive to the center-of-mass 

energy than are the improved ones and the left-right asymmetries. 

19) The left-right asymmetry as a function of the top quark mass (mtoP). The 

Higgs boson mass (mHiss$) is assumed to be 500 GeV. The solid curves en- 

close the 68.3% confidence region that is expected for a f20 MeV uncertainty 

on Mz (we assume Mz = 91,17 f 0.02 GeV) as mtop is varied from 60 GeV 

to 240 GeV. The dotted vertical error bar shows the size of the theoreti- 

cal error (f0.002) on ALR. The sizes of the experimental 68.3% confidence 

intervals that are expected for the various values of Ntot are indicated by 

the solid vertical error bars. The confidence interval that is expected from 

a measurement of the T polarization asymmetry with 6M 2’ events is also 

shown. 

- 

20) The left-right asymmetry as a function of the Higgs boson mass. The top 

quark mass is assumed to be 150 GeV. The dashed curves enclose the 68.3% 

confidence region that is expected for a f20 MeV uncertainty on Mz (we 

assume Mz = 91.17 f 0.02 GeV) as mHiggs is varied from 100 GeV to 

900 GeV. The dotted vertical error bar shows the size of the theoretical 

error (f0.002) on ALR. The sizes of the experimental 68.3% confidence 

intervals that are expected for the various values of Ntot are indicated by 
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the solid vertical error bars. The confidence interval that is expected from 
.- 

z a measurement of the 7 polarization asymmetry with 6M 2’ events is also 

shown. 

- 
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