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1. INTRODUCTION 

Matter is made of fermions and bosons. Spin and statistics is what makes a 

difference between the two. Fermions are characterized by half-integer values of 

spin, and by the Pauli exclusion principle. They are described by sets of quantum 

operators with simple anti-commuting rules. Bosons, on the other hand, have in- 

teger values of spin, a state can contain an arbitrary number of bosons with the 

same. quantum numbers, and commutators rather than anticommutators charac- 

terize the corresponding operators. It is well known from the statistical, nuclear, 

and particle physics that an even number of fermions can form a boson. For exam- 

ple, quark-antiquark pairs (Le., pairs of fermions), are believed to compose mesons 

(which are bosons). This is really not a surprise: if some binding force keeps an 

even number of objects with a half-integer spin together, it must be possible to 

combine them into an object with an integer spin. Along these lines one might even 

tend to believe that fermions are perhaps more fundamental objects than bosons, 

and consider the latter merely as composed states. 

However, such a view neglects among other things the fact that the oppo- 

site direction is also possible: fermions may be made out of suitably arranged 

bosons, at least in a lower dimensional space! The present article deals just with 

such a surprising relationship between fermions and bosons in the one-dimensional 

space. During the past thirty years this subject was thoroughly studied by many 

distinguished physicists, and with a good reason. The transformation of bosons 

to fermions and vice versa (or the “bosonization” of fermions, as it is sometimes 

called) might prove to be a very useful tool in getting a valuable insight into the 

long-standing problem of confinement in the quantum chromodynamics. The con- 

cept was also used to solve complicated, interacting models in 1 + 1 dimension, 

by replacing them with simpler and/or non-interacting theories. Furthermore, the 

mere notion that fermions and bosons are deeply inter-related, has a beauty on its 

own. Yet, students are most often exposed to the subject only in highly specialized 

graduate courses. E.g., the popular introductory-level textbooks on quantum field 
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theory very rarely mention the bosonization. Similarly, in the last decade there 

was not even a single article on the topic in this Journal. 

This paper is meant to be an elementary introduction to the fermion-boson 

duality. It considers the simplest possible situation: the world is reduced to one- 

dimensional segment of a finite length, and we study the possibility of forming 

free fermions in the segment, by using only the free, massless bosons. Truly, in 

one-space, one-time dimension (1 + 1) th e angular momentum is not defined, and 

we-do not have to worry about the spin, but fermions and bosons are still distin- 

guishable by their statistics. Our task is therefore to find the transformation from 

a set of commuting operators characterizing bosons, into another set of anticom- 

muting operators corresponding to fermions. But why would anyone want to know 

anything about such a simplified world in which some non-interacting particles are 

kept in a segment ? First, the finite length of the interval is really not a serious 

restriction. This length is an infra-red cutoff which can be set to infinity at the 

end of the analysis. Furthermore, the free and massless theory in 1 + 1 dimension 

is simple enough to be easily absorbed by beginners and non-experts, and yet it 

contains almost all important elements needed in a more advanced study of mas- 

sive and interacting systems. Once the interactions are introduced, the whole new 

world opens, and not only of the pure academic interest. For example, a better 

understanding of interacting one-dimensional systems might prove crucial for the 

development of synthetic metals, new types of transistors, or light-weight, recharge- 

able, high-energy-density batteries. More on these possibilities in the concluding 

section. 

This article is primarily aimed at the first and second year students of graduate 

schools, but an undergraduate with some knowledge of relativistic quantum me- 

chanics, and inclined to quantum field theory or condensed matter physics, could 

also benefit from it. Those readers not interested in the relativistic quantum fields, 

can neglect all the dynamics and consider this paper an exercise in transforming 

commuting into anticommuting variables within the framework of ordinary quan- 

tum mechanics. We begin by finding a general solution @(t, Z) of the Klein-Gordon 
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equation dJ‘“d,@ = 0 in a segment of a finite length L. The field @ is described in 

terms of various time-independent operators, and the operators satisfy simple com- 

mutation rules (Section 2). The time evolution of “physical” states is determined 

by hamiltonian and the momentum operator, which are constructed in Section 3. 

The one-dimensional Dirac equation iypa,!P = 0 , and general properties of a 

fermion field operator Q(t,x) in a segment of length L, are studied in Section 4. 

Section 5 is the heart of this article: we use boson operators to construct the 

fer-mien field, and show that field operators in the resulting set satisfy the correct 

anticommutation rules. We then express fermionic annihilation and creation op- 

erators in terms of the bosonic counterparts, and discuss single particle states for 

fermions (Section 6). Delta functions relevant to finite intervals are described in 

Appendix A, and a brief review of the Klein’s factor can be found in Appendix B. 

In preparing this paper I benefited most from the two articles by Wolf and 

Zittartzt’] in which one can also find a good list of references to the earlier works 

as well as the discussion on the relevance of the subject for the solid state and sta- 

tistical physics. The articles by Boyanovsky:’ Kogut and Susskindy’ and Klaibery] 

were also very useful in my study. For the lattice version of the problem see e.g., 

the article by Shultz, Mattis and Lieb15]. I truly enjoyed following this miraculous 

transformation of bosons to fermions, and hope that the readers will also find it 

exciting. 

2. KLEIN-GORDON EQUATION 

To begin, we consider the equation 

(&g)rn(r_.)=O (1) 

in the segment x E [-L/2,+L/2] , f or a real function @(t,x). The form of the 

equation (1) allows us to introduce the “charge density” p(t, x) = fD’(t,x)/J”, 

and the “current” J(t, x) = -$(t,x)/fi , where “prime” and “dot” denote 

4 



space and time derivatives. With these definitions, the “continuity equation”, 

+/at + &J/ax = 0 is clearly satisfied. We are now in a position to construct the 

“total charge” Q, and the “mean current” 0, 

+Ll2 +J5/2 

&= J dxp(t, x) = L 
fi J [I dx g 

da: 
-L/2 -L/2 

dxJ(t,x) = - L 1/;; J II d!!!! x at 
-L/2 -L/2 

(2) 

Note that at this stage the names “charge” and “current” are misleading. After 

all, we are dealing with the real function @(t, x) , which is expected to describe 

chargeless field. However, as we continue, the naming scheme will become more 

justified. 

Our first goal is to find the solutions of eq. (1) for which Q and Q are conserved 

(i.e., time independent). In order to find such solutions, we assume that @(t,x) = 

T(t)F(x) . Eq. (1) leads to F”(x)/F(x) = f’(t)/T(t) = -w2 , where w2 is an 

arbitrary constant. The conservation of charge and mean current then restricts 

the values of w to a discrete set of values, w + wn = 2m/L , with n 2 0 . By 

superposing partial solutions for all allowed values of wn, we can write the general 

solution of eq. (1) as 

w, 4 = w, 4 + cp(t, 4 

where 

R(t,x) =&F +$(x& - tij) 7 

(3) 

(44 

cp(t, X) = C 1 (anemi%?CtB2) + a-ne-iF(t+zJ ) + C.C, . 
n>O G 

w 
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In eq. (3), the first term R(t, x) corresponds to the zero-frequency mode w = 0 . 

It contains the constant operator P, ( see eq. (4~) ), which is related to @ by 

+L/2 
6 p”CT 

J 
dx @(O, x) 

-L/2 

(5) 

a, and a-, in (4b) are conveniently normalized coefficients in the Fourier expansion 

for ‘p , and C.C. denotes the complex conjugate values. Note that 

dx[b(O, x) - sgn(n) @‘(O, x)] e-‘FZ , (6) 

where the function sgn(n) E n/In] returns the sign of n. 

In the classical field theory, (3) and (4) describe a special solution of the Klein- 

Gordon equation called “plasmon”. Upon quantization, Q(t, x) becomes a Hermi- 

tian field operator satisfying equal-time commutation relations for boson fields, 

[%x),&y)] = ~AL(x - y) , 

P(t, IL'>, w, Y)] = [W, x), qt, Y)] = 0 
(7) 

- 

Here, AL is an equivalent of the Dirac delta function, relevant for the finite interval 

w/2, +Wl ( see Appendix A). The constants F,Q, Q and a, from eqs. (4) 

now also become operators, the first three being Hermitian. The complex conjugate 

part in (4b) is replaced by a Hermitian conjugate part. From relations (7), and 

with definitions (2) to (6), we find 

ian7 uk] = &cm 7 [ij,P]=i (8) 

while all the other commutators vanish. 
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As we might have expected, the boson field is described by an infinite set of 

harmonic oscillators with frequencies wn = 2r[nj/L, and characterized by annihi- 

lation and creation operators a, (a;), acting in the Hilbert space S, . In addition to 

these local degrees of freedom, there are other, global operators in the expansion of 

the field. These are Q with its conjugate pair F, and the operator Q. We usually 

neglect those operators when the value of x is unrestricted, but in the final interval 

they do play a central role. Since the global operators Q and Q commute mutually 

as-well as with all an(ak) operators, they generate two new Hilbert spaces, SQ 

and Sa . Consequently, the total space of states SB in our problem is the tensor 

product 

Here B stands for bosons. We shall see later that the Hilbert space SF , corre- 

sponding to fermions, is a subspace in Sg . In other words, not all the states in 

SB will be used to build fermions. 

To round out the discussion of massless, non-interacting bosons, we decompose 

the field @ into the right-moving (@+), and left-moving (@-) components, 

qt, x) = +D+(t, x) + $L(t, z) . (10) 

Our interest in these right- and left-moving sub-systems will become justified later, 

when we observe that the fermion field can also be decomposed into the right- and 

left-moving pieces. The two new field operators, @+ and a,_ , depend respectively 

on t - x and t + x combinations of variables. Unfortunately, due to the presence 

of constant terms in eq. (4), the partition (10) is not unique. It is convenient 

to introduce another new operator, P , which by assumption is conjugate to the 

charge operator Q (Le., [Q, P] = i). P is an operator in SQ space, and therefore 

it commutes with both Q and P, and with all a,(& ) operators. With the aid of 

P, we can achieve a highly symmetric partition:] where @& are defined as 
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and 

p*(t, X) = C L (afnemiYCtTz) + u~ne+i~(Q-~) ) 

n>O G 
(12) 

= &‘(t,x) + &‘(t,x) 
In_ expression (12)) (p!+’ C-1 is the positive-frequency component, and ‘p* describes 

the negative-frequency part. Note that functions cp* are periodic, cp*(t, x + L) = 

cp*(t, x) , while this is not true for the complete solutions Qi* . 

In this section we found the general form of the Klein-Gordon field, and decom- 

posed the field into right- and left-moving parts, keeping global and local degrees 

of freedom separated. The dynamics of the boson (plasmon) field is determined 

by the hamiltonian of the system, and in the next section we shall construct this 

operator and define the vacuum. 

3. HAMILTONIAN FOR BOSONS 

The hamiltonian, and the momentum operator, determine the time evolution of 

states in a system. In analogy with the procedure applied to the three-dimensional 

Klein-Gordon theory:” we define 

i-L/2 

HB = 
J 

dx;(i2 + (a’2) 

-L/2 

, 

+L/2 

IcB = 
J 

dx(-it@‘) . 

-L/2 

(13) 

According to eq. (3), the field Q, is the sum of R and ‘p , and from (4 b) it follows 

that J(j=Jcp’=O.Th e h amiltonian therefore reduces to 

+-L/2 +L/2 

HB= & J dx(Q2 + G”) + f .I dx((p2 + (P’~) 
-i/2 -i/2 

This shows that, except when L -+ 00 , the “charge” and the “mean current” of 
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a state also contribute to the total energy. Since the second integral in eq. (14) 

represents the standard harmonic contribution, we can immediately write 

HB=&(Q2+~2)+~wn(a!a,+~) . 
n#O 

(15) 

In eq. (15), wn = 2rlnl/L is the frequency (and, at the same time the energy) of 

the massless harmonic excitations. The expression still contains an infinite energy 

of the vacuum, a C wn, which should be subtracted. As a convenient shorthand for 

this subtraction we introduce the normal ordering with respect to the SB vacuum 

state. For an operator X , let iXi denotes 

:x:=x-(01X10) , (16) 

where I 0 ) is the state with zero charge and mean current, Q I 0 ) = Q I 0 ) = 0 , 

and no oscillators, a, I 0 ) = 0 . Using this definition, we may now express the 

normalized hamiltonian for bosons as 

+L,2 

HB = i 
J 

dxi(&2+@12) i = &(Q2+Q2)+Cwnaian . 

-L/2 n#O 
(17) 

In the tensor product notation we can describe the vacuum state as 

(18) 

Here, IO), d enotes an eigenstate of Q with the eigenvalue zero, Q IO), = 0 . 

Similarly, Q IO) - = 0, and an IO), = 0 Q f or all allowed values of n. By construction, 

I 0 ) is the state with the lowest energy, HB I 0 ) = 0. 

We can excite the vacuum IO), in S, , by applying the creation operators in 

the standard way. E.g., for an arbitrary integer value of n, we can form single 

particle states of the frequency wn , by constructing the vectors a! IO), G la,), or 
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at, IO), E (a-,), . Th e si ua ion is slightly different in SQ and Sa subspaces. ‘t t’ 

While in S, the frequencies of oscillators are quantized, here we find no restrictions 

to the values of Q and Q. Consequently, both may assume arbitrary real eigenvalues 

from --oo to +oo . In order to create various non-zero eigenstates of Q and Q , it 

is convenient to use the conjugate operators P and P . E.g., consider the state 

b)Q = exP(-iqP) lo), - It is easy to see that Q lq)Q = q 1q)Q , and thus, 1q)Q is 

indeed an eigenstate of Q with the eigenvalue q . The proof is left as an exercise 

for. the reader. In a similar way, starting with IO),- , and by making use of 

conjugate operator P , we construct all the eigenvectors of Q . 

In analogy with the procedure applied to hamiltonian, we also subtract 

momentum of the vacuum from the momentum operator in (13), and write 

+-L/2 

the 

the 

I-B = : J d5(-&v) i = ; Qa + c k&n, (19) 
-L/2 n#O 

where k, = 2mx/L is the momentum corresponding to the excitation ai IO), . The 

second term in (19) is the standard harmonic contribution. From the first term we 

find again that for any finite length L, the charge and current modify values of the 

operator. 

- 

In this section we defined the vacuum I 0 ) as a tensor product of states with 

zero charge, zero mean current, and with no harmonic excitations. Having con- 

structed the vacuum, we renormalized the hamiltonian and momentum operator by 

subtracting corresponding vacuum expectation values. Next, we turn our attention 

to fermions. 
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4. HOW SHOULD FERMIONS LOOK? 

In 1 + 1 dimension, the Dirac equation for massless fermions is 

+i 
od a 

dt + rljjp(t, 2) = 0 3 

where in the “chiral” representation, 

For the components Q& , we find that 

d d 
(at f gw’“) = 0 

(20) 

(22) 
Consequently, it becomes clear that 9+ is a function of t - 17: combination, and 

describes a propagation in the positive (right) d irection along the x axis, while the 

Q- is a function of t + x , thus corresponding to propagation in the negative (left) 

direction. 

We are interested in a particular set of solutions of eq. (22), which satisfy 

anti-periodic boundary conditions, XP*($, t) = -Q&(-t, t) . Namely, it turns out 

that for such anti-periodic solutions we can most easily accomplish the intended 

transformation of bosons into fermions. Given the boundary conditions, we can 

write the general solutions of eq. (22) as 

9*(t, x) =& E(O*), eWn+9(-) , 
-CO 

(23) 

where (0-t )n and (D- )n are appropriately normalized constants defined by 

+L/2 

(&)n = & / d17 e-i%n+f)q ~~(0, ‘I) 
-L/2 

. (24) 

We can now quantize the theory. The main difference from the procedure in the 

Klein-Gordon theory is our use here of anticommutators instead of commutators. 
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We require that 

{Qlr(C x:), w+(t, Y)) = &T1 ;IL(X, Y) , (r,d = *) (25) 

with all the other anticommutators vanishing. In (25), AL is an antisymmetric 

delta function which is described more thoroughly in the Appendix A. The differ- 

ence between AL and AL lies in the fact that AL(X) + 00 when x + fL , 

while in the same limit AL(X) + --oo . In the limit L --t cc, both AL and AL 

are replaced by the ordinary Dirac delta function 6(x) . We point out that the 

antisymmetric fields 9* require an antisymmetric delta function in (25). 

Upon quantization, the constants (24) t urn into operators whose algebra is 

assigned by the anticommutators (25). It is convenient to replace operators in (24) 

by a set of new operators 

4-L/2 

bn>o = (O+)n = -L 
a J 

dxe-“%n+i)” Q+(o, x) 

-L/2 

i-L/2 

b n<O = (II-)n = & J dxe-“~(“+f)” Q-(0, X) 

-L/2 

-kL/2 

dn>o = (o+)i-,wl = L 
a J 

dxe-“%++)” I$ (0, x) 

-L/2 

-l-L/Z 

d n<O = (D-)tnT1 =A / dxe-“?‘(“++ !$(O,x) 

-L/2 

. 

The new operators have simple anticommutators, 

{bn, bi} = {dn, dk} = ham 7 

(26) 

(27) 

as we verify by direct calculation. All the other anticommutators of operators 

in (26) vanish. We recognize the operators (26) as the annihilation operators 
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for fermions. Likewise, the hermitian conjugates of (26) are fermionic creation 

operators. From (23) we obtain 

Q+(t, x) = s& g (bne-“i”b+t)@-“) + df,e’y(n++)(-) ) , 
n-0 

(28) 

q-(t, 2) = .& z (b-ne-"i"(n-b)(t+z) + dinei?(n-+)(t+") ) . 

n-l 

Consequently, for non-negative values of n, b, and b! are annihilation and creation 

operators for the right-moving massless fermions with energy cn = 27r(n + $)/L . 

Similarly, d, and di correspond to the right-moving massless antifermions. For 

n < 0, the corresponding operators describe left-moving fermions and left-moving 

antifermions. We are now in the position to define the fermion vacuum, 140) . This 

is the state for which bn 140) = 0 and d, I&) = 0 , for all values of n . 

We can also introduce the hamiltonian and the momentum operator for the 

system of massless Dirac particles. They are readily constructed in parallel with 

the three-dimensional theoryL7’, 

+L/2 

HF =: 
J 

dx[iQ+(t, x)i!(t, x)]: 

-L/2 

+L/2 

IcF =: J dx[-iQ+(t, x)Q’(t, xc>]: 

-L/2 

. 

(29) 

Columns in (29) d enote the normal ordering with respect to the fermion vacuum 

160) . With the aid of (28), HF and KF may be rewritten as 

HF =? E In+:/ :[bibn-dndL]:= E cn(bftbn+dkdn) , 
n=-co n=-co 

~~F=~ E (n+i) :[bLbn-dndL]:= E &(bLb,+dkd,) , 

(30) 

n=--00 12=-m 

where & = $F(n + i) is the momentum of the n-th excitation, and cn = lenI its 
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energy. 

The charge and axial charge of the fermions can also be defined in the standard 

way: q = : J dxQ+Q : , and 4 = : J dxQty”y19 : . It turns out that the 

newly-defined operators satisfy 

Therefore, !P+ operator decreases the charge and the axial charge by one unit. 

Similarly, q- operator changes the charge for -1 unit, and axial charge for +l 

unit. 

In this section we analyzed general form of the solutions of Dirac equation for 

massless particles. We expressed the fields and the dynamic observables in terms of 

creation and annihilation operators. In the next section we demonstrate that there 

are many similarities between the components q*(t,x) and the combinations of 

plasmon fields, exp[fifi@*((t, x) ] . 

5. FROM BOSONS TO FERMIONS 

In Section 2, we constructed operators Q and Q from the current-like structure 

Pa. We called them “charge” and “mean current”, although the field @ was real, 

and - consequently - the plasmons were chargeless. In this section we show that 

these global degrees of freedom in the expansion of the plasmon field really become 

the charge and mean current (or “axial charge”) of the newly created fermions. 

Anticipating the result, and knowing that the charge and the mean current can 

assume only some discrete values, we restrict our analysis to a subspace of the total 

Hilbert space SB . 

The subspace, which we name SF (F for fermions), consists of those states 

- from SB for which both Q and Q have integer eigenvalues, and Q - Q is an even 

number. This condition may be rewritten as Q - Q + 2n , Q + Q + 2m , 
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where n and m are arbitrary integers. This simply says that if fermion states are 

to have integer charges, then the resulting currents may differ from the charges 

only by an even number of units. We immediately observe that the vector ] 0 ) , 

which describes the plasmon vacuum, is one of the vectors in the subspace SF . 

Having defined the new Hilbert subspace SF c SB , we made the first step 

in the construction of fermion fields from the boson counterparts. Next, we recall 

two useful operator relations:’ 

B Ae =e B (A+bWl) (324 

eAeB = eBeA elA,Bl = ,A+B ei[A,B] > (3W 
which are valid if the commutator [A, B] is a number, and not another operator. 

With the aid of (32), ‘t 1 is straightforward to prove that 

and 

(33) 

(35) 
The new combinations, exp[fi&&*], transform eigenstates of Q to eigenstates 

of Q - 1 (relation (33) ), change th e values of the mean current by - 1 (+l) unit 

(relation (34) ), and satisfy the Dirac equation (35). Although these are exactly 

the properties we expect of the components XP* of fermion fields (compare to eqs. 

(31) and (20) ), the operators exp[fi&@*] are not yet the right combinations. 

Namely, they turn out to be incorrectly normalized. Instead, we introduce the 

operators 

(36) 

Here, T denotes + or - signs, and vT C-1 ( p$+’ ) are negative- (or positive-) 
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frequency components of the operators qk((t, x) ( see eq. (12) and below ). The 

operators (36) d’ff 1 er only slightly from those used in expressions (33) to (35): the 

normalization constant l/a is added, and the exponent i&r( R, +cp$-)+cp$+)) is 

factorized into three separate exponents. We observe that in the new arrangement 

(36) all creation operators at( are to the left of annihilation operators a, . As 

a convenient shorthand for such an ordering , we may introduce the Na symbol, 

and write xr(t, x) = Nh ( eir 6% )/a . The changes introduced in (36), as 

we-shall see, improve the normalization without affecting the Dirac equation and 

the commutators with Q and Q in (33) and (34). Consequently, operators (36) 

become prime candidates for the description of fermions. It only remains to check 

the equal-time anticommutators of the operators x+ and x- . 

To do that, we first consider the product x7(t) 5)X!@, y) . With the aid of (32b), 

we write 

t ’ 

(37) 
In an analogous way we rewrite the product xi(t, y)xT(t, x) as 

XtxT = $~(TR~-s&) ,i&%(Tp~-‘-~+9$-‘) ei&(Tp$,+)-sW$+)) x 
5 L 

(38) 
e--7s~[Rr,Rs] e2TS4~~+),9$-)] 

7 

By (8), the commutators in eqs. (37) and (38) are 
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[RT@, x), &@, y) ] = &TS ’ ;cx - Y> , 

[ p i+)(t, 2) , cp!-)(t, 7J) ] =  -&cTTs C b  eiTT(‘-y) 

n>O 

, 

[ +9$+)(l, y), cp!-)(t, X)] = &b,, C A. emi %FT(‘-Y) 
n>O 

n 

(39) 

and they all have zero value when the signs of r and s are not equal. Consequently, 

for r #  s , expressions (37) and (38) coincide, and we find the troublesome result 

that a  commutator instead of an  unticommututor vanishes, 

[XT@, x), &, y)] = 0 (for r #  s) . 

The situation looks less unpleasant for r = s , because we shall be  able to combine 

(37) and (38) ’ t m  o  an anticommutator (see below). However, the right hand side in 

the resulting expression gets much more complicated than we m ight have expected. 

Indeed, with the aid of (A.8), and by using (37) to (39), we can write for r = s, 

{xTkx:>, ?&, Y>> = 
ei& T[&(Q)-K-(CY)I nl, e"6 T[k'r(+)-Q'r(t,Y)l zL(x _  y) . 

>  

(41) 

The alarm caused by this expression is lessened when we observe that the term 

n/,(. . .) in fact reduces to one, due to the presence of EL(x- y) function. W e  verify 

this in a  direct calculation, by noticing that within the range of interest LL(X - y) 

contains 6(x-y-L),S(x-y) and 6(x-y+L) t erms (see Appendix A). On  the other 

hand, the functions cpT(t, Z) are periodic, and particularly, (Pr(t) X&L)-pT(t, x) = 0. 

Therefore, indeed n/a(. . .) + 1  . There is another exponential factor on  the 

right hand side of (41) h  h  w ic we would like to see eliminated. Now it becomes 

crucial that the analysis is carried out in the SF subspace. Namely, by (la), 

ifi r [RT(t, x) - R,(t, x f L) ] = F ia(Q + T  Q) . But, since Q  + Q  and Q  - Q  
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combinations have even eigenvalues in the subspace, the remaining factor in (41) 

also takes the value of one. The anticommutator (41) is now simply 

{x7, xf } = ( 6(x - y) - eir(6+TQ)b(x - y - L) - e-iX(Q+TQ)6(x - y + L) + . . .) 

- LL(z - Y) 
(42) 

Therefore, for r = s, in contrast with the r # s case (eq. (40) ), the anticommutator 

of--XT- and xl operators looks fine, and we can claim at least a partial success. 

We turn next to the product x7(t) x)xs(t, y) . Th ere is a complete parallel here 

with the previous discussion, and we readily find that for r # s , 

kT(t~ xc>, X&T Y)] = 0 , (43) 

and for r = s , 

{XT(~,X),XT(~,Y)) = 0 . (44) 

Again, a commutator instead of an anticommutator appears for T # s , while for 

T = s , the expression has the form corresponding exactly to the Fermi statistics. 

Our attempt to determine the equal-time anticommutators of xT operators 

apparently met some serious difficulties. In expressions (40) and (43), a wrong 

sign appeared between combinations of operators. However, the solution of this 

particular problem turns out to be very simple. To accomplish the sign change 

in (40) and (43), and at the same time preserve the relations (42) and (44)) we 

only have to multiply xT by a suitably chosen “Klein’s factor”. The procedure is 

thoroughly explained in the Appendix B. According to the prescription, we change 

XT@, Xc> + exp[irQ(l+4/2] XT(~, X) = QT(t, Xc>, and finally obtain a set of fields 

obeying the correct anticommutation rules for all values of T and s , 

@jT(h xc>, Q:(t, Y)} = STS&(x - Y> 7 
(45) 

iqT(h x>, ‘&Y>> = o 

The newly created operators !P*(t, x) therefore have all the properties required of 
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the fermion fields. They satisfy the Dirac equation for components, change charge 

and current for one unit, and yet, are entirely expressed in terms of boson operators. 

The “miraculous” transformation of bosons into fermions is thus achieved: fermions 

become a kind of collective excitation modes of bosons. 

In concluding this discussion of the transformation, we present the expression 

for the Fermi field with the main parts factorized in two different ways. The 

transition from one form to the other is readily achieved with the aid of (32). 

eirQ ,i(P+F) e-i5(Q+e-l)(t-z) ,+i&Gp$-’ ,+i&Gpj+) 

,i(P-F) e- iF(Q-Q-l)(t+z) e-ifip(-) ,-i&Gp(_+) 
> 

* (47) 

We shall use both of these forms in the following section. 

6. SINGLE - PARTICLE STATES FOR FERMIONS 

In the preceding section we constructed fermion field operators from the boson 

field operators. In this section we discuss vectors of states, and construct single- 

particle fermion states in terms of plasmon states. We first rewrite the annihilation 

operators b and d . Following from (26) and (47), 
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+J5/2 

b 
1 

n>O = - L J 
da: e-i~(n+l)zeirQei(P+~)eif(Q+&“)zeifip~)ei&p~) 

-L/2 

-IL/2 

b 
1 

n<O = - L J 
da: ,-i$nr,i(P-F),-iF(Q-~)z,-i&tp~),-i&p’_+) 

-L/2 

-IL/2 (48) 
=&). = 1 

J 
dx e -iFnz ,-if(Q+&,- i(P+F)e-ixQ,-ia pr),-i& cpy’ 

- L 
-L/2 

SLl2 

d 
1 

n<O = - L J 
dx e-i~(n+l)zei~(Q-~)ze-i(P-~)eifip”)ei&(p(+) 

-L/2 

Here, cpk is a shorthand for operators v*((t = 0,x) . The fermion vacuum state 

I&) should contain no fermions, and our first task is to find the state for which 

bnI&)=dnI$o)=O.S UC h t t a s a e indeed exists in the subspace SF, and - perhaps 

not surprisingly - turns out to be exactly the boson vacuum I 0 ) . In other words, 

the state with no fermions coincides with the chargeless, currentless state with no 

bosons, 140) = I 0 ) . We shall d emonstrate this in the next paragraph, by proving 

that bn>o _ ] 0 ) = 0 . In an analogous way it is possible to establish the similar 

relations for all b, and dn operators. 

Let us apply bn>o to the boson vacuum. The operator most to the right - 
in b,zo is exp[i&cp!+) ] , and we first observe that q!+’ contains only the 

annihilation operators an . Therefore, 

exp[i&~$?)]IO)=[l + idGq!+) - 7r((p!+‘)” + . ..]lS)= IS) , (49) 

because only the first term in the formal expansion is non-vanishing. Furthermore, 

exp[ir(Q + a)x/L] lo), 8 10)~ = lo), 8 10)~ (recall that Q lo), = 0 10)~ = O), 
and exp[irQ] exp[i(P + P)] IO), @ 10)~ = exp[irQ] I-1)Q @ I--l),- = - I-1)Q @ 
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1-1)~ (recall that e.g., exp[-iPq] IO), = Iq)Q ). Consequently, when bnlo is 

applied to the vacuum state ] 0 ) , only the factor which have cpt’ operator in 

the exponent can survive. We find 

+L/2 

b n>O 10 ) = - I-l)Q@l-l)~ 8 i J dx emi? (n+l)zeifiv!-) lo), * (50) 
-L/2 

&first we might think that the expansion for exp[ifiv$)] does create at least 

some non-zero states, but in fact this does not happen. Namely, none of the terms 

in the expansion (compare to the similar expression in eq. (49) ) matches correctly 

the factor exp[-i 27r(n + 1)x/L] in the integrand. (Recall that for an integer p , 

the integral Jexp[-i 271-(n + 1)x/L] exp[-i 27rpx/L] is different from zero only for 

p = -n - 1 < 0 , but that never happens if n 2 0 ). Therefore, from (50) it follows 

that bn>o I 8 ) = 0 . I n a very similar way we can treat the other operators in (48), 

and conclude that for all of them, bn I 0 ) = 0 , d, I 0 ) = 0 . Consequently, 

10) and 140) are really identical, and the state with the lowest plasmon energy 

at the same time is the state with no fermions or antifermions. Henceforth, we use 

only one symbol, 140) , for the vacuum state. In the same spirit, the two normal 

orderings coincide, : A : = iAi , and from now on we use only the : A : notation. 

Turning next to the operators which determine the dynamics of systems, we 

demonstrate that the fermion hamiltonian and the momentum operators (29) are 

equivalent to the plasmon hamiltonian (17) and momentum (19). We first rewrite 

the original expressions (29) as 

+J5/2 

HF = hy : 
J 

dx [ i Qt(t, y = x + t)$(t, X) ] : 
-L/2 

+L/2 

I<F = hill : 
J 

dx [ -i Qt(t, y = x + e)Q’(t, X) ] : 
-L/2 

(51) 

There is a good reason for the introduction of the point splitting in eq. (51). 
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The product of two fields given by (46) or (47) is highly divergent if both fields are 

evaluated at the same point (t, x), and we must define a limiting procedure in order 

to handle the resulting divergences and make sense of the product. According to 

the procedure, the limit should be taken only after the integration. 

In (51) we need the space and time derivatives of the components 9* . From 

(47), we find 

=&*(t,x) = -A- 
a 

,i;(lzkl)Q ei(PzkF) ,-iF(Q*Q”-1)(2-z) 

{e 
*i&G&-) e*iJz;;P!+’ [ *t;& +!+I ] 

+ [-iz(Q f a _ 1) f i& +k) ] ,&i&U!-’ ,*ifiP!+) } . 

(52) 

(The space derivatives are given by Q*’ = ?Qk ). In order to find the hamiltonian, 

we multiply eq. (52) by iQl(t, y), and with the aid of (32) bring all v$-’ operators 

to the left of all vi” operators. After some rearrangement, we obtain 

i Qi(t, y)+*(t,x) = F&[ sin + - ‘) -1 ,~i;(Q*@(y-t) L ] 

{ T’& [-ii(Q f a) f id% +!+)(t, x) F z cot a(yi x, ] 

where 

T* = ,rdm d&Y)-&‘w 

(53) 

1 ,r;m &‘(6Y)-&+‘(o) I (54) 

Now it is not difficult to make an expansion to the second order in the “small” 

quantity E = y - 2, and we readily show that 

iQ!Jt, x + e)**(t, x) = & + f[: (Q*‘(i,x) )2: F-l ~v*“W- &] +w* 

(55) 
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Recall that the notation : A : means A - (40 I A I&,) , and therefore 

The first, divergent term in (55), as well as the constant in the brackets, drop 

out when the vacuum expectation value is subtracted. The integral of the remain- 

ing c-independent term can be evaluated, and since s dx pk”(t, x) = 0 , we 
finally obtain 

+J5/2 

lim : 
E-+0 J dxi( Q:Xb+ + \lrL$-): 

-L/2 

-IL/2 

= : J dx f 

-L/2 

+L/2 

. =. -J dx ;[ (T$)~ + (@‘)2 ] 

-L/2 

; . 

(57) 
This proves that hamiltonians of free massless bosons and free massless fermions 

are equivalent, HF = HB . In an analogous way we can verify that the momentum 

Operators are eqUiV&nt, KF = I(B . 

As anticipated before, the operators Q and Q , which were generated as some 

local degrees of freedom in the plasmon theory, become true charge and mean 

current (or “axial-current”) in the equivalent theory of fermions. We can prove 

that 
+L/2 

hi : J da: ‘P+(t,x + e)‘l+,x) : = Q 

-L/2 

+J5/2 

lim : J dx Q+(t, x + ~)+/~~~qt,x) : = tj 
C--r0 

-L/2 

. (58) 

Again, the split point limit must be used to handle the divergences. The proof of 

(58) with the use of the method applied in (51) to (56) is straightforward, and it 

is left to the reader as an exercise. 
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As discussed above, our fermions and bosons have the common vacuum state, 

and their dynamics is determined by the same operators. But ultimately, there 

must be a difference between bosons and fermions. Indeed, the equivalence goes 

up to the point where single-particle states are constructed. As an illustration, we 

consider the states generated by the creation operator b:,, . From (48), - 

+L/2 
ii,, = i J dx eiy (n+l)z e-if (Q+~)z ,-i(P+F),-i*Q ,-id%~),-i&u!+) . 

- 
-L/2 

(59) 

We want to construct a state with the momentum en = (2n + l)r/L and energy 

6 n = l&l, whichd escribes a fermion moving in positive direction. With the aid of 

formalism used in eq. (49) and below, we write 

-l-L/2 

ll(en,L,n 2 0)) = bkzo 140) = ll)Q 8 11)~ @ k J da: ei+Xe- d&~)(O,x) lo), . - 
-42 

(60) 
However, 

,-i&&9(+-)(0,x) = 1 _ -iFmx uL _ 1 
2 c 

-i~(m+s)xut .t + 
ms *** 7 

m,s>O 

(61) 

and (60) becomes 

Il(en,&,n L 0) ) = 11)~ @ 11)~ 63 { &a,0 lo), - C -S,,rn lam), 
m>O fi 

1 -- 
2 c L6n,m+s larn;as), + * * * > 

(62) 
* 

m,s>O Jms 
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From (62), th e f ew lowest lying states (e.g., for n = O,l, and 2) are 

I1 (f> $n = 0) > = ll)Q @ IQj @ IO>, 

11 ($, F,n = 1) ) = -i 11)~ 8 II), Q9 [al), (63) 

ll($,?,n=2)) = ll)~@II)g@ [ 12a1),+iJZlw2),] - 

The states (63) are genuine fermion states in the sense that there can be only one 

fermion per state. Addition of another identical fermion is not possible. E.g., we 

can easily demonstrate that 

bL=, ll(%,$,n=I)) = 0 , 

and therefore a state with two right-moving, n = 1 fermions, does not exist. Con- 

sequently, the Pauli principle is valid even for our composed fermions. 

7. SUMMARY AND CONCLUSIONS 

The one-dimensional space has a remarkable property: fermion systems can 

be completely described in terms of canonical one-dimensional boson fields. We 

illustrated this equivalence in the most simple example, by playing with the free, 

massless objects. While this example has mainly an academic value, it should 

be pointed out again that the same technique and methods could be extended to 

the more interesting cases of massive and interacting theories. This paper empha- 

sizes the unusual fact that fermions can be constructed from bosons. In reality, 

most often we use the presented techniques in the other direction: to make a 

transition from relatively complicated fermion systems to much simpler and better 

understood boson models. For example, in a complete parallel with the earlier 

discussion, we can verify the equivalence between the Schwinger model (which is 
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quantum electrodynamics of massless fermions in 1 + 1 dimension), and the theory 

of massive, but free bosons. The Schwinger model with massive fermions is, on 

the other hand, equivalent to the massive Sine-Gordon theory of bosons, etc. The 

one-dimensional models which were originally used as theoretical laboratories to 

explore some features of quantum field theory, more recently were directly applied 

to real condensed matter systems. The best known example is the polyacetylene 

(see e.g., Ref. 9 ). The material, which is an organic polymer, consists of parallel 

chains of (CH) groups. Electrons are moving primarily along the chains, while 

hopping between chains is strongly suppressed. The system is therefore effectively 

one-dimensional. Some nonlinear topological excitations (‘solitons’), which appear 

in all such quasi one-dimensional polymers, interact with fermions giving rise to all 

kind of remarkable electrical and optical properties of polyacetylene: fractioniza- 

tion of chargeno’, semiconducting and metallic attributes (‘synthetic metals’) when 

suitably doped with donor or acceptor species PII , etc. 

It is not known with certainty whether the equivalence between fermions and 

bosons will hold in higher dimensions, or whether it is only a peculiarity related 

to the topology of the one-dimensional space. The one-dimensional results can 

not be simply generalized to the three-dimensional space, because the spin degrees 

of freedom further complicate the picture. Still, the initial ‘pure’ field theoretical 

studies”‘], and the analyses of the Skyrme effective mode1[‘3”41 seem to strongly 

support the equivalence. Speculations of any kind are usually risky, but if one day 

the fermion-boson duality becomes proven even in the (3 + 1) dimension, perhaps 

we shall have to revise the standard classification of matter. Fermions and bosons 

might turn out to be just different faces of some even more fundamental entity. 

Acknowledgments: I would like to thank Prof. R. Blankenbecler and the 

SLAC Theory Group for kind hospitality. 
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APPENDIX A 

DELTA FUNCTIONS IN FINITE INTERVAL 

In the one-dimensional space divided into cells of length L, it is useful to define 

the following combinations of S functions: 

.~L(x) = 2 6(x - nL) = . . . + 6(x - L) + S(x) + S(x + L) + . . . , (A4 
?a=--00 

KL(x) = g (-)” S(x-nL) = . . .-6(x-L)+S(x)-S(x+L)+ . . . t (A.2) 
n=--00 

Here, S(z) d enotes the usual Dirac delta function. The first combination, AL(Z), 

is a periodic function, A,(x + L) = AL( C-C) , while the second one, AL(Z) is an 

antiperiodic function, iiL(x + L) = - EL(x). H owever, both have the same limit 

when L + co : AL(X) , AL ---f S(x). 

For any a inside the interval [-L/2, +L/2], we can write 

+L/2 +L/2 

J dx A,@ - a) = 
J 

dx iiL(x - a) = 1 7 
-L/2 -L/2 

-l-L/2 i-L/2 

/ dx AL(x - u)f(x) = / dx &,(x - u)f(x) = f(u) . 

-L/2 -L/2 

(A-3) 

These and other similar properties follow from the presence of the Dirac S functions 

in (A.l) and (A.2). We point out that care should be taken at the boundaries, 

when a approaches AL/2 . Then the values of integrals in (A.3) are different. For 
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example, 

+J5/2 +L/2 

J dxiiL(x+ =0 , / da: AL(XT $4 = f PC-;)+f($l , 

-L/2 -L/2 

+L/2 

J 
da: ~L(ZT $f(xJ = 7; if+ -f+ 

-L/2 

(A.41 
AL(X) is a periodic function of period L, and we can expand it in a Fourier 

series. The coefficients turn out to be all equal, having the value l/L, 

AL(x) = Jj- 2 eiFmX 

m=-co 

. (A-5) 

Similarly, EL(X) , although antiperiodic in the interval L, is a periodic function of 

period 2L, and can also be expanded, 

XL(~) = i 2 eiFl(m+$)x 

m=--03 

. w-3 

Another useful form for AL is based on the identity 

00 

c 
e ima = exp O” ’ inff 

m=O ( )- 
c 

-e 
n 64.7) 

n=l 

To verify (A.7) up to a constant, we first differentiate both sides. Then, by choosing 

a special value for cr’, we show that the constant is zero. Consequently, the relation 

(A.7) is valid, and we can rewrite the expression (A.6) as 

Note that the sum over negative values of m in (A.6) was transformed into the 

sum over positive m by changing m -+ --m - 1 . 
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The Dirac delta function 6 is a derivative of the (Heaviside’s) step-function 8. 

Likewise, we can define the step-function @L(X), relevant for a finite interval L, 

@L(X) = i + % - -& C iexpi$nx 
n#O (A-9) 

~~irOL(X) = B(x) , OL’(x) = AL(x) . . 

The distribution @L(Z) is particularly useful in expressing the equal time com- 

mutators [Q*(t, xc>, @*(t, y)] between the components of @(t, x) . 

APPENDIX B 
KLEIN’S FACTOR 

From Section 5, we know that 

XTXT ’ - XT'XT =O , x7x$ - &XT = 0 (1" # 4 

XTXT' + XT'XT =O 7 x7x:’ + &XT - & (T-d) . 

We would like to change xT in such a way that the commutators for r # r’ become 

anticommutators. However, the results for r = r’ , the equations of motion for 

the components xT , and the relations (33) to (34) should not be affected by this 

change. One way to achieve such a transformation is to multiply xT by unitary, 

r-dependent operators FT. We immediately observe that FT not only must be (t, x) 

independent, but also should commute with all space-time dependent pieces in xT . 

If this were not true, an additional (t, x) dependence would have been introduced 

into the product FTxT , thus spoiling the Dirac equation. It is convenient to assume 

that FT have the form 

FT = e y[ (a+/h)Q+(g+PT)Gl 
7 (B-2) 

and then determine the real constants cy, /?, 0 and p , by requiring that (compare 
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to (45) and (33)-(35) ) 

{(FTXT)Y (F?JXT~))+ = 0 , {(F~xT)~(F,~xTI)’ }+ = ST,! LL , (B-3) 

[(FTxT),QI- = (FTxT) , [(FTxT), Gl- = r (FTxT) , (B-4) 

and 

F+x+ i(r”g + 71;) F-x- = 0 ( > . P.5) 

With the form (B.2), relations (B.4) and (B.5) are automatically satisfied for any 

values of the parameters, as we easily verify by direct calculation. On the other 

hand, (B.3) can be satisfied only if 

0-p = odd integer P.6) 

The proof that the condition (B.6) follows from (B.3) is straightforward with the 

use of (B.l) and (36), and it is left as an exercise for the reader. Since (B.6) is 

the only condition on the parameters in F, , the choice of the Klein’s factor is not 

unique. Following Ref. 1, in this paper we chose cx = p = 1 , u = p = 0 . This 

gives 

F, = exp y(l + r)Q (B.7) 

However, any other choice (provided that (B.6) is satisfied), would be equally 

acceptable. Different Klein’s factors would merely change the phases of spinors, 

without affecting physical quantities. 
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