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ABSTRACT 

We study neutron stars with cores consisting of a mixture of constituent mass 

quarks and diquarks. Diquarks are colored, two qua.rk bound states which have 

been conjectured to exist in the density range above deconfinement. We compute 

an approximate equation of state for such a mixture. At relatively low densities this 

ha.s the form of a polytrope with adiabatic index I? = 2. We find that the maximum 

mass star with a quark-diquark core surrounded by a low density envelope of 

nucleons has mass 1.79M0, radius 11.4 km and central density 1.8 x 10’5g/cm3. 
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It is believed that the density of matter in the core of a neutron star exceeds 

that of nuclear matter”‘, pnuc N 2.8 x 10’4g/cm 3. Moreover, in most models of 

neutron stars a large part of ‘the mass will be in this high density core region. 

Consequently, many properties of neutron stars depend strongly on the properties 

of matter at such high densities. 

At densities above pnuc, individual nucleons overlap substantially and one ex- 
: 

pects that the system should properly be described in terms of quarks and gluons. 

Indeed, at very high density the strong interactions are screened”’ and the quarks 

can be described by a weakly interacting fermi gas. Most models of neutron stars, 

however, use equations of state for interacting nucleons to describe the high den- 

sity core. This will be a good description, if quarks rema.in spatially localized and 

correlated in color singlet states resembling nucleons. Estimates have been ma.de 

of the density at which the transition bet,ween nucleon matter a.nd quark matter 

takes place’31. The transition is found to happen at many times nuclear density; 

above what is estimated for maximum central densities in most models. Thus, it 

has been thought that quark matter probably does not p1a.y a role in neutron stars. 

R.ecently it was suggested that there might be an intermediate stage in the 

transition between ordinary nuclear matter a.nd qua.rk matter[‘] in which nucleons 

have disassociated but a majority of quarks rema.in localized and correlated in spin 

singlet pairs, known as diquarks. Such pairing seems likely because the attractive 

spin-spin energy in this channel*‘] is sizable on the scale of quark energies in the 

density region above pnuc (a few hundred MeV). The spin-spin interaction is re- 

sponsible for the splitting of about 300MeV between the spin l/2 nucleon and the 

spin 3/2 A. Two of the quarks in a nucleon a.re in a spin singlet, color 3 combi- 

nation, with the third quark carrying the overall spin. From the spin interaction 

there is no energetic advantage to having this third quark grouped with the others. 

The energy of the system would be lowered further if it found another unpaired 

quark a.nd formed a spin zero diqua.rk with it. Such a rearrangement is clearly 
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impossible in the confined hadron phase, but in the deconfined regime at higher 

density it should be possible. 

It seems plausible that the diquark correlated state describes part of the den- 

sity range appropriate to the high density cores of neutron stars. In this paper 

we compute an approximate equation of st,ate for the diquark state and use this 

equation of state to build neutron stars. The equation of state we find is com- 

parable to the stiffer equations of state for nuclear matter which appear in the 

literature. The speed of sound in the quark-diquark mixture is more than an order 

of magnitude greater than the speed of sound for a gas of noninteracting nucleons. 

For a model neutron star composed of a charge zero mixture of diquarks and con- 

stituent mass quarks surrounded by an envelope of low density neutrons we find 

that the maximum mass stable star has mass 1.8hfa, radius 11.4km, and central 

density 1.79 x 1015g/cm 3. We note that pa.iring in the diquark channel has been 

studied previously in the very high density regime where QCD perturbation the- 

ory is valid161. The binding forces in this regime are then perturbatively weak, and 

though pairing is found to happen through a BCS mechanism, this only involves 

quarks near the Fermi surface and the effect on the equation of state is small. Our 

considera.tions here are for the regime just above deconfinement where the binding 

forces a.re still expected to be fairly strong. The pairing can then involve a large 

fraction of the quarks and significantly alt,er the equa.tion of state. 

EQUATION OF STATE 

Donoghue and Sateesh 141 gave an approxima.te met,hod for computing the prop- 

erties of a gas of interacting diquarks. Diquarks are antisymmetric in spin and color 

and spa.tially symmetric under interchange of the quarks. They must therefore be 

antisymmetric in flavor in order to satisfy the exclusion rule, and so contain one up 

quark and one down quark. Diquarks can be described by an effective field theory 

for a color triplet scalar field 4” with la.grangia,n 

L l (a,Pw - mf&+$) - x (o’q!y . eff = Tj (1) 
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From the A - N splitting the mass of a diquark is etimated to be m,,d ~575MeV. 

The coupling constant X was estimated from the quark intera.ctions using a variant 

of the P-matrix formalism of Jaffe a.nd Low”‘. They found a value X = 2-7.8 which 

we shall use in our numerical work. Not,e tha.t for X = 0 the diquarks would 

condense into the zero momentum state and form a pressureless gas, which is 

unphysical for the case at hand. 

In this approximation the classical energy of a collection of diquarks is given 

2 

E = 
J 

d3kj(k) (k” + rnzd)’ + $ Jd3k f(k) 

(k” + mid)’ ’ 
(2) 

where j(k) is the distribution of diquarks in momentum space. The p ressure 

defined by P = -g, is then 

P =& /d3ej(k) 
k2 x 

i+21/2 
(k2 + mzd) 2 (J 

2 

d3 k 0) 
(“2 + mzd) fr 

(3) - 

The distribution j(k) is approximated by a gaussian 

j(k) = N k2 
(2xa2)g e-=y (4 

where N is the total number of diquarks. The width of the gaussian CT is taken to 

be the value which minimizes the energy (2). 

For a general value of the overall diquark density, R = F, the integrals for the 

energy and pressure (2) and (3), and the minimization with respect to the width 

of the distribution must be carried out numerically. In the limits of high and low 
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density, however, this can be done zmalytically. In these two limits the width ~7 is 

given by 

where FL = n/mzd. Then the energy and pressure are 

P = mud? 
x 2 P=-n 

2mzd ’ 
ii+0 

(5) 

(6) 

where a is a numerica, factor, a II 1.76. Eliminating the number density from 

these expressions we obtain the equation of sta.te in these two limits 

(7) 

The numerical results for the diquark equation of state in the intermediate density 

range are given by curve (a) in Fig. 1. 

For low densities the diquark energy density is just the mass density. Since the 

diquark mass is less than twice the constituent quark mass (m, N 360MeV), at 

low density as many quarks as possible will be in diquark clusters. As the density 

is increa.sed, interactions raise the diquark chemical potential to a point where it is 

energetically favorable for some of the quarks to remain unpaired. We should then 

consider a mixture of quarks and diquarks. We will neglect the interactions of the 

quarks, keeping only the diquark-diquark interactions, which are necessary to avoid 

a bose condensate. Starting with fixed overall densities of up a,nd down quarks, we 

minimize the energy of the mixture to find how many of each species of quark will 

be paired. For an isoscalar mixture (equal number of up and down quarks) we find 

that all qua.rks will be paired below p 21 2.7 x lOI g/cm3 21 pnuc. The fraction 
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of quarks paired drops to l/2 at p N 2.3 x 1Or5 g/cm3. For a charge zero mixture 

coming from pure neutron matter (the number of down quarks equals twice the 

number of up quarks) all the up quarks will be paired until p = 8.5 x 10r4g/cm3 

and at ten times nuclear density the fraction in pairs reaches 2/3. We see that the 

fraction of diquarks remains significant for quite large densities. The equation of 

state for the isoscalar mixture is given by curve (b) in Fig. 1. For comparison curve 

(c) is the equation of state for an isoscalar mixture of constituent mass quarks. The 

equation of state for the charge zero mixture is given by curve (a) in Fig. 2. Curve 
. 

(b) in Fig. 2 gives the equation of state for a charge zero mixture of quarks. 

DIQUARK STARS 

The Einstein equation for a spherically symmetric, static spacetime, with per- 

fect fluid stress energy, reduces to the well known Oppenheimer-Volkoff[” equations, 

dm 
- =4?rr2p, 
dr 

(8) 

This must be supplemented by an equation of state. Then there is a one-parameter 

family of solutions, parameterized by the central density pc. In general relativity, 

there is a. maximum mass which a static st,ar can ha.ve. Here we find the mass and 

radius as a function of pc and, in particular, the maximum mass. 

It is instructive to first look at diquark stars in the Newtonian limit, in which 

case the energy density is equal to the ma.ss density a.nd only the first term in 

the pressure equation is significant. This is a good approximation if the pressure 

is small compared to the energy density and the gravita.tional field is weak. For 

diquarks, this first requirement implies p << 1.8 x 10’5g/cm3. The low density 

diquark equation of state has the form of a polytrope, P = Kpr, with l? = 2 and 

I<=$-. For comparison, an ideal Fermi gas at T = 0 has l? = 5/3 in the 
ud 
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non-relativistic limit. For f’ = 2, the Newtonian equations can be reduced to a set 

of linear equations and solved exactly. The solution is 

sin (7rr/R) 
P = PC m-/R ’ 

where the radius R of the star is given by 

~34.Okm. 
. 

(9) 

(10) 

Note that the radius is independent of the central density. This fixed value for the 

radius comes out in the ball park of the radii of compact stars, rather than say the 

size of the universe, because the diquark mass is the same order of magnitude as 

the nucleon mass. The total mass of the star is given by 

M = (2A) i J$pc 2i 5.9 x (fi) AI@, 
ud 

rising linearly with the central density. Also, 2GM/R = &0.58(pc/pnuc) for the 

diquark stars, so we expect that general relativity cannot be neglected for p,/p,,, > 

1.7. * 

Next compare the diquark stars to stars made of nonrelativistic fermions. The 

equation of st,a.te for fermions in this limit, is given by 

2 213 
p=f !F ( > m-v3p5/3 7 

9 

where p is the total density, and g is the degenera.cy factor. From the known 

solution to the Newtonian equations for r = g equation of state of state PI one 

finds 
5 

pi. (12) 

For a star made of an equal number of protons and neutrons (g = 4 and m = 
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940MeV) we then have 

-+ 

km, (13) 

Now, fix the number of baryons, and compare a diquark star to a star made of 

nucleons. We see that 

h/rN = l.lM,d, 

2 = 3.6 (a)“’ (2)‘” = 2.4 (a>“’ (E)““, (14) 

(53 = .()46 (9” (3”’ 

The nucleon star is about 10% hea.vier. For central densities above pnuc the diquark 

sta.r is considerably larger and the central density of the diquark star is much lower. 

As the coupling X decreases, the ra.dius and central density of the diquark star 

become closer to the values for the nucleons. These qualitative features also occur 

in the general relativistic solutions. 

- 

It is also of interest to compa.re the diquark sta.r to one composed of an ideal 

gas of constituent mass up and down quarks. The solutions a.gain have the form 

(12), but with g = 12 and mq = 360MeV. Hence for isoscalar, Newtonian quark 

stars, 

& = 34(- pIIc )-116 km, A& = 4.4( “..)1’2hfa (15) 
Pnuc 

Comparing a quark star to a diquark star with the sa.me baryon number implies 

h& = 1.25hfu,d, 

2 = .61 (a>“’ (zf3 = 1.0 (G)"' (E)"", (16) 
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E = -60 (,)‘I2 (f3”‘. 

The diquark star is less massive than the quark star by about 20%, is approximately 

the same size and has a lower central density. 

Of course, it is incorrect to take the matter to be diquarks when the density 

falls below nuclear; we must match onto a low density equation of state for nucleons 

at some density. This matching density is arbitrarily chosen a.t this point. We do 

not know the density at which deconfinement might allow the diquark state to be 

realized. We chose to do the matching when the ba.ryon number in the qua.rk- 

diquark soup falls to one baryon per sphere of r&us lfm, ??b = 2.3 x 1038cm-3. 

The corresponding energy density for the charge zero quark-diquark soup is Pud = 

4.4 x 10’4g/cm3 and the corresponding pressure is Pud = 3.9 x 1034dynes/cm2. 

Pressure is continuous in the star, so we match onto a low density equation of 

state at this pressure. Hence there will be a discontinuity in the energy density 

at the boundary. For example, if we match onto the equation of state for free 

nucleons, the energy density in nucleons at the matching pressure is quite large 

pN = 9.4 x lo’4g/cm 3. Such a large discontinuity seems unphysical. However, 

at these high densities interactions are certa.inly important, and we should be 

ma.tching onto an equation of state for intera.cting nucleons. After all, if the density 

in nucleons is much above nuclear, the picture seems inconsistent. A variety of 

equations of state appear in the literature and we can at least get an idea of the 

direction of the effect. Consulting, e.g., a gra.ph of a number of these equationsno’, 

we see tha.t interacting equations of stat,e have lower energy densities than free 

neutrons in the range of the transition pressure. The energy density of the quark- 

diquark mixture is comparable to that of the stiffer equations of state displayed. 

For simplicity we chose to match onto the equation of state for free nucleons. This 

seems reasona.ble in order to get an idea of the effect of adding a quark-diquark core. 

It also allows us to vary the ratio of charge to baryon number of the surrounding 

material easily. 



Now let us study general relativistic stars, in which case the densities and pres- 

sures may be large and the gravitational fields may be strong. Therefore we use 

the numerically determined equation of st,a.te for the diquark-quark soup: Perhaps 

the most interesting feature of general r&tivistic solutions is that there exist max- 

imum masses for stable equilibria. It is the masses and rotation rates of compact 

stars that can be observed (or more fairly, one can hope to infer the mass from 

other observations). So one way to “tell” if stars are diquarks or nucleons, is if the 

mass-radius relation for stable sta.rs is different for the two equations of state, and 

a star is observed which can be explained by one but not the other. 

The “most physical” model we will look at is a star ha.ving a charge zero quark- 

diquark core surrounded by an envelope of neutrons. It is instructive to compare 

these results with a number of other cases in order to illustrate the separate effects 

of adding quarks in the core and the envelope of low density nucleons to the basic 

diquark core. 

We integrated (8) numerically using a trapezoidal algorithm. This method 

gave quite good results for the solutions to t,he Newtonian equations with polytrope 

equations of state, which can be compared to known results. Solutions to the full 

OV equations agreed with the Newtonian solutions in the appropriate limits. 

Our results a,re summarized in Table 1. MC,,,, a.nd R,,,, are respectively the 

ma.ss and ra.dius of the region above the mat.ching pressure. With the exception of 

the second line, these results are for the maximum mass stars. First consider the 

simplest case, when the whole star is diquarks. The maximum mass of a stable 

diquark sta.r is 2.56M0, which occurs at a central density pc = 1.4 x 1015gm/cm3 

and ha.s a radius of 12.8km. As anticipated from the Newtonian results, the diquark 

stars a.re larger, and hence less dense, tha.n sta.rs ma.de of noninteracting nucleons. 

We also see that the maximum mass for a stable diquark star is at the high end 

of neutron star masses and occurs at a fairly low central density. This is a general 

feature of neutron star models with stiff equations of state for the core material. 

The next case is a star made of the isoscalar diquark-quark soup, but no crust. 
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Compared to the pure diquark star, the maximum mass is somewhat larger in this 

case and occurs at a much lower central density. Hence the soup interpolates be- 

tween pure diquarks and pure (massive) quarks, which is also listed for comparison. 

Of course, the equation of state for the mixture interpolates, and we can under- 

stand the sta.bility properties of the mixture as follows. The star is stable to radial 

perturba,tions if the adiabatic index l?r = $$ satisfiesl’l s dvp(I’l - $klEj/M) 2 0 

where E is the Newtonian gravitational self-energy and k is a constant (which de- 

pends on the equation of state) of order unity. If the star is the sum of two species 

the condition for stability becomes 

J dv{&dra - f, + (rb - f) - (17) 

This assumes Pb 2! cp and pa N (1 - c)p, where c is a constant. If this is not a 

good approximation then l?; is repla.ced by lY’if% in (17). Therefore the stability 

properties of the mixture interpola.tes. Suppose ra + 4/3 at a lower density than 

rb. Then “b” stabilizes the star, and there are stable equilibria at higher densities 

than if only “a” were present. On the other hand, the presence of “a” means that 

the net force for collapse is stronger than if only “b” were present, tending to 

destabilize the mixture. 

Next consider the effect of replacing the low density region of the star with 

an envelope of nucleons. We would like to understand why the maximum mass 

decreases. To isolate this effect, compare a star ma.de just out of diquarks, to 

one with a diquark core and a nucleon envelope. The gravitational self-energy 

term which appears in condition (17) has th ree contributions, the the self-energy 

of the core, the self-energy of the shell, and an intera.ction piece. Look at the 

ca.se for pc = 1.4 X 1015g/cm3; this is the highest central density possible for a 

sta,ble diqua,rk star. For a fixed diquark core, the nucleon envelope is considerably 

thinner than the diquark envelope. If the same mass were packed into the two 

envelopes, the self-energy of the nucleons would be much higher, which destabilizes 

the star. The actual nucleon envelope has a smaller mass, which helps stability, 
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and so the star with nucleons is less massive. Now increase the central density to 

pc = 1.7 x 1015g/cm3, the value at the maximum mass for a stable diquark plus 

nucleon star. This central density is higher t.han that for a stable diquark star, 

and the self-energy of the diquark core is quite high. The total self-energy is kept 

sufficiently low by putting even less mass in the envelope. One can check these 

remarks by computing [E//M, with EC,,, N -$G$, Eint N -$G”&y(l + %) 

and E,,, N -;G$(l + 3%). One then sees that E/M is approximately the c 
same for the three cases just discussed; the core contribution increases and the 

contribution from the successively less massive envelopes decreases. 

Finally we come to our “most physical” case of a charge zero quark-diquark 

soup surrounded by an envelope of neutrons. The maximum ma.ss in this case is 

1.79hfa a,t central density 1.8 x 10’5g/cm3 with radius 11.4km. Here again we 

see tha.t adding the envelope lowers the ma.ximum mass, but raises the maximum 

cent.ral density. Figs. Sand 4give plots of the mass vs. central density and mass 

vs. radius rela.tions for the charge zero soup with (curve a) and without (curve b) 

the neutron envelope. 

CONCLUSIONS 

We ha.ve studied the thermodynamics of a mixture of interacting diquarks and 

a fermi sea. of noninteracting, constituent mass, up and down quarks, which may 

be a useful model of matter at densities above nuclear. At low densities, the 

mixture is dominated by diquarks, which have a stiff polytrope equation of sta.te, 

with adiaba.tic index two. At high densit,ies, t,he equation of state of the diquarks 

a.pproaches that for a fermi gas of relat,ivistic pa.rticles. (However these densities 

are probably too high to be of interest for the cores of neutron stars.) The global 

properties of neutron stars having a diqua.rk-quark core, surrounded by an envelope 

of nucleons, are similiar to those of stars constructed from stiff equations of state 

for interacting nucleons. It would be of interest to see what effect the inclusion 

of diquarks has on modelling supernovae bounces. It would also be interesting to 
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see how strange matter calculations change when the diquark pairing interaction 

is included. 
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TABLE CAPTIONS 

1: Some results for stars calculated using different equations of state which are 

discussed in the paper. 

FIGURE CAPTIOYS 

1) The equations of state are displayed for an isoscalar mixture of quarks (curve 

e), a pure diquark gas (curve a) and an isoscalar soup of diquarks and quarks 

(curve b). 

2) The equations of state are displayed for a cha.rge zero mixture of quarks 

(curve b) and a charge zero mixture of diquarks and quarks. 

3) The mass vs. central density relations are plotted for sta.rs made of a charge 

zero mixture of diquarks and quarks with (curve a) and without (curve b) a 

low density neutron envelope. 

4) Th e mass vs. radius relations are plotted for st,ars made of a charge zero 

mixture of diquarks and quarks with (curve a) and without (curve b) a low 

density neutron envelope. 
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diqua.rks + nucleons I 1.7 x 1o15 

isoscalar soup I 5.2 x lOI 

isoscalar quarks 
I 
~ charge 0 soup 

5.2 x 1014 

1.1 x 10’5 

~ ch;trEe 0 soup + neutrons I 1.8 x 1Ol5 

2.35 11.8 1.6 

2.3s 11.5 1.7 

2.74 22.7 -0 

1.91 22.4 

2.09 16.5 1.00 

1.79 I 11.4 I 1.2 

10.3 

10.2 

10.3 

10.2 

-0 

9.2 

Table 1 
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