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Abstract 

Shielded coherent synchrotron radiation is discussed for two cases: 
(1) a beam following a circular path midway between two parallel con- 

ducting plates, and (2) a b earn circulating in a toroidal chamber. Wake 

-fields and the energy radiated are computed for both cases. Under condi- 

tions like those of the high-energy bunch compressor of the Next Linear 

Collider (NLC), in which bunches as short as 40 microns are contem- 

plated, the shielded coherent radiated power is estimated to be small 

compared to the incoherent power, but can still amount to a few hun- 

dred KeV over the compressor arc. 

1. Introduction 

Particles in a bunch following a curved path may radiate coherently at a wave- 
length comparable to the size of the bunch. The radiated power is proportional to the 
square of the current, hence proportional in this event to N2, where N is the number 
of particles in the bunch. The power of incoherent radiation will vary only as N, since 
each particle contributes a power proportional to its own squared current. In typical 
conditions in electron storage rings, most of the radiation is incoherent, peaking at 
frequencies far beyond the microwave region. In an experiment using short bunches 
from a linac, Nakazato et al.,’ observed coherent radiation, with a clear indication of 
a transition from N to N2 dependence. 

Fortunately for the operation of electron rings, shielding provided by metallic 
walls of the vacuum chamber greatly reduces the amount of coherent radiation. This 
effect was recognized in the early days of circular electron accelerators and has been 
studied theoretically from time to time ever since. In a simple, but relevant model 
first studied by Schwinger2 and Nodvick and Saxon,3 one considers a beam following a 
circular trajectory in a plane midway between two infinite, parallel, conducting planes, 
separated by a distance h = 29. According to work of Faltens and Laslett4 the real 
part of the longitudinal coupling impedance for this situation should satisfy roughly 
the condition 

m;xI 
Re Z(n, nw,) 

n 1 = 300; ohms , w 
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where n is the azimuthal mode number, R is the trajectory radius, and w, = /k/R is 

the revolution frequency. As we shall see presently, ReZ/n is negligible below a certain 
threshold, then rises rather sharply to this maximum, and henceforth falls slowly. The 

threshold can be estimated as 

n = ~(R/h)~l~ . (l-2) 

In terms of the frequency w = won, or normalized wavelength X = X/2n, the same 

criterion is 

wh/c = vrp(R/h)‘/2 , X = (h/R)lj2h/r . (l-3) 

For typical R/h, with h being the transverse dimension of the vacuum chamber, this 

threshold is at a much higher frequency than the “waveguide cutoff” for propagation 

parallel to the plates, which lies near wh/c = 1. 

The radiated power is determined by the impedance and the Fourier spectrum of 

the bunch. If the bunch is rigid (i.e., maintains a constant form in a rest frame) and the 

particles radiate coherently, then the energy change per radian on the circular path is 

dU/dB = -q2wo 2 IX,(‘Re Z(n, nw,) , (14 
n=-co 

where q is the total charge in the bunch and X, is the Fourier transform of the longi- 

tudinal charge distribution X(0), 

(1.5) - 

If the bunch has significant Fourier components near the maximum (1.1) of the 

impedance, the radiated power is quite large, as the following discussion will show. 

This situation usually does not occur in storage rings, since the bunch is long com- 

pared to the wavelength at the maximum impedance. On the other hand, in the last 

stages of bunch compression in the NLC, the bunches are sufficiently short to pro- 

duce appreciable coherent radiation, provided that the impedance resembles that of 

the parallel plate model. 

Section 2 gives definitions and formulas for the impedance, and derivations of 

expressions for the energy loss and wake field. The impedance for the toroidal chamber 

is taken from Ref. 5; that for the parallel plates is obtained by taking a limit of a formula 

in the same paper. Numerical examples are presented in Section 3 for parameters 

appropriate to four different designs of the NLC bunch compressor. 

The notation and point of view will be the same as in Ref. 5. The reader may 

refer to that paper for details of technique not discussed here, in particular, for the 

numerical treatment of high-order Bessel functions. 
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2. Impedance, Wake Field, and Energy Loss 

We work in cylindrical coordinates (r, 6, z), and suppose that the centroid of the 

bunch follows an orbit in the plane z = 0. For the present discussion, the orbit is cir- 

cular; slightly different ideas may be required for single-pass orbits. It is convenient to 

make a Fourier analysis of the longitudinal electric field with respect to 0 and the time t: 

Ee(r, 8, *, t) = 4 dwemiwt nzm eine Eo,,(r, z,w) . (24 
-CO 

Since we are interested primarily in longitudinal effects, we consider the average of this 

field over r and z, weighted with the transverse charge distribution of the beam. Spe- 

cializing to the case of a rigid bunch, we suppose that the charge and current densities 

have the form 

P(T 6 2, t> = qqe - d)f(r, 4 , Je (r, 4 z, t) = WY+-, 4 2, q , (2.2) 
where 

2* 

J X(B)dO = 1 , J J rdr dzf(r, z) = 1 . (2.3) 
0 

Here and in the following, the (r, z) integrals extend over the support of f. The field 
written without arguments (r, z) will be understood as the transverse average, 

JWU) = J J rdr dzf(r, z)Eo(r, 8, z, t) . (2.4) _ 

The Fourier transform of X(0 -wet), defined in analogy to (2.1), is A, S(w - w,n). The 

corresponding transform of the current is 

4i+-w> = JJ dr dzJe(r, n, z, w) = w,qX,S(w - won) . (2.5) 

If the environment of the beam has no longitudinal inhomogeneity, as in the 
models treated below, then there exists a complex function Z(n, w), the longitudinti 

coupling impedance, such that 

-2rREe(n, w) = .Z(n,w)I,g(n, w) . (2.6) 

If the environment is inhomogeneous, perhaps because of cavities in the vacuum cham- 

ber, this single impedance function is replaced by a matrix, Z(n, n’, w), since many 

harmonics of the current contribute to the excitation of one harmonic of the field. 

The use of the weighted average (2.4) in the definition of the impedance is not 

conventional; usually, the simple average or merely the value of the field at the center 

of the beam is used. The weighted average seems quite natural, however, and we shall 

see that it leads to a cleaner derivation of the formula for energy loss than would 

otherwise be possible. If f(r, z) = W(r)H(z), where rW(r) and H(z) are rectangular 
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step functions or delta functions, then the simple average coincides with (2.4). In 

Ref. 5, f had such a form and the impedance was defined with the simple average; 

consequently, the impedance obtained in Ref. 5 can be used in our present formulas. 

The wake field Ee(wo(t + ~),t) is defined as the field on the trajectory at an 

angular distance w,,r in front of the bunch center. Taking the weighted average of 

(2.1) over r and z, and introducing (2.6) and (2.5), we see that the wake field is given 

by the Fourier transform of the impedance, weighted by the transform of the bunch: 

V(wo7) = -2aREe(w,(t + T), t) = w,q 2 einworXnZ(n, nw,) . P-7) 
n=--00 

The function V is sometimes called the wake potential. It is the “wake voltage per 

turn”; a positive value of Y(wOr) means energy loss by particles at a distance wOr from 

the center of the bunch. 

If the beam environment is not homogeneous, the formula replacing (2.7) is 

V(woT, t) = w,q g einwor 2 Z(n, n’, w,n’)Xn,ei(n-n’)w”t . (2.8) 
n=-w n’=-cxj 

average over one period T = 27r/w, is given by formula (2.7), since the averaging sets 

n = n'. 

Let us now compute the radiated power. The change in energy in time dt is the 

work done by the field Ee, 

dU = JJJ Ee (r, 0, Z, t) [p( r, 8, Z, t)rdrdOdz] [w,rdt] 

JJJ r2drdzf(r, z)&(r, 6, Z, t)A(O - w,t)dOdt 
(2.9) = qwo . 

For the integration over r, we note that r2 varies almost linearly over the extent of the 

beam, which is tiny compared to R. Thus, r2 x Rr and the average (2.4) appears. 

The power is 

dU/dt = qwoR J dOEe(e, t)A(O - wet) 

= qwoR J de J dWemiwt F eineEe(n, w) 5 ein’(e-wot)Xn, . 
(2.10) 

If we now substitute (2.6), and carry out the 8 and w integrals we obtain 

dU/dt = -(qwo)2 2 lAn12Re .Z(n, 72~~) . 

n=-co 
(2.11) 

We have used the properties A-, = AZ and 2(-n, -nw,) = Z(n, nw,)*. Notice that 

the latter follows directly from the definition (2.6) and the corresponding reflect ion 

property of Ee(n, w) and I( n,w). For a delta function bunch, An = 1/27r and 
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dU/dt = -I2 f) Re 2(n,nwo) , 
n=-a3 

(2.12) 

possible impedances, “connected in series.” 

It remains to give formulas for the coupling impedance for the two models to 

be explored. In the first model we have infinite, parallel, perfectly conducting plates, 

separated by a distance h = 2g; the beam circulates in the median plane between the 

plates. As in Ref. 5, the boundary conditions on the plates are enforced by expanding 

the fields in Fourier series in z; for instance, 

Ee(r,n,Z,w) = f& ap(z +dEe(vvw) , (2.13) 
p=l 

where crp = rip/h.. Correspondingly, the z-dependence of charge and current densities 

must be represented by Fourier series. The r-dependence of fields is expressed in terms 

of Bessel functions of order n. 

. In order to obtain the impedance in a convenient analytic form, we choose a 

simple form for the transverse beam profile: 

f(r,z) = W(r)H(z) , W(r) = S(r - R)/R . (2.14) 

With a little numerical work, one could accomodate a function W(r) with a finite 

width. The impedance comes out in terms of the Fourier transform of H(z). Again, 

to get a simple formula, we take H(z) to be a rectangular step function, symmetrical 

about z = 0, but any other choice could be treated easily. 

With the beam profile as stated, the impedance for the parallel-plate problem is 

given by 

Z(n,w) 27~~2, R PwR 1 =-- 
n P h c [ 

A 
P ,,Jn(TpPR) ((Jk(TpR) + iG(rpR)) 

P(Wll 

+ (~)2J.(rpR) (Jn(rpR) + iY,(7pR))] 

(2.15) 

7 

where 

r,” = (w/c)~ - ai , A, = (sin X/LC)~ , z = wpSh/2h , (2.16) 

the vertical size of the beam being 6h. The impedance is in ohms with Z, = 120 R 0. 

In the second model the vacuum chamber is a torus of rectangular cross section. 

The cross section has height h = 2g and width w. The inner and outer torus radii 
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are a and b, respectively. The radial wave functions are expressed in terms of cross 

products of Bessel functions, defined as follows: 

Pn(Z, Y) = Jn(S>K(Y) - L(S)Jn(Y) 9 
(2.17) 

For perfectly conducting walls, the impedance of the torus is given by 

Z(n,w) 2i7r2Zo R =-- &JR sn (7pb, 7pRbn (7pK 7pa) 
n P h nc % (7ph7pu) 

(2.18) 

+ (Z) 
2 Pn(7pbb,7pR)Pn(7pR,7pu) 

Pn (7p4 7p”) 1 * 
The expression (2.18) has poles corresponding to the resonances of the closed, perfectly 

conducting structure, and is imaginary wherever it is finite. When wall resistance is 

introduced, the function acquires a real part and the poles are replaced by sharp peaks 

in the real part. Our calculations include wall resistance, following the theory given in 

Ref. 5. 

The formula (2.15) for parallel plates can be derived immediately from a result 

of Ref. 5; namely, the formula for impedance of a beam circulating in a cylindrical 

pillbox of radius b. One merely takes the limit for b + 00. This is best done using the 

form appropriate to the low-frequency region, in which Bessel functions are replaced by 

modified Bessel functions [see Eq. (4.3) of Ref. 51. The latter have simple exponential 

behavior in the relevant limit. Analytic continuation through the upper half w plane 

produces the high-frequency form (2.15). 

To close this section we recall the well known formula for the total power from 

incoherent synchrotron radiation.6 For a single electron, 

dU 1 2e2p4r4 
dt = $7~~ 3R2 ’ 

(2.19) 

3. Numerical Examples of Wake Field and Energy Loss 

For calculations, we take a Gaussian bunch with length u: 

x(e) = & % exP[-i(y)2] 7 An= & exp[-f(T,‘] . (3.1) 

A wave moving with phase velocity equal to the particle velocity at r = R, i.e., with 

frequency w = won, has wavelength 27rR/ n. The relevant length for our discussion is 

wavelength over 27r, 

X = R/n . (3.2) 
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Table I: Energy losses for four versions of the NLC bunch compressor. 

The values of energy loss AU are for a bunch containing 

N = 2 . lOlo electrons . 

Version v.l v.2 v.3 v.4 

R(m) 84.218 213.6 149.5 106.8 

A6( degrees) 10.89 180 180 180 

U;(IIliCrOIlS) 460 460 460 460 

af (microns) 37 86 61 44 

AU(plates) MeV 0.176 0.164 0.827 2.08 

AU (torus) MeV 0.123 0.0121 0.337 1.30 

AU (incoherent) MeV 2.19 14.2 20.4 28.5 

In terms of X the spectral density of the bunch that appears in in the power formula 

(2.11) is 

IAnI = c2ij2 
u 2 

- exp - - [ ()I x 
. P-3) 

We illustrate with values of cr and R from four different conceptual designs for 

the NLC high-energy (16.2 GeV) bunch compressor [7]. Since the expected beam pipe 
radius is about 1 cm, the plate separation or torus height h will be 2 cm, and the torus 

width w also 2 cm. The beam height 6h, not a significant parameter, will be 1 mm. 

Table I shows the compressor parameters, including the initial and final bunch lengths, 

0; and af, and the total deflection angle A6 of the compressor arc. 

Figure 1 shows a typical graph of the real part of Z(n, nw,)/n, for the parallel- 

plate model including only the p = 1 term in Eq. (2.15); the parameters are R = 149.5 

m and h = 2 cm, for Version 3 of Table I. At the frequencies of the plot, the higher axial 

modes p = 3,5, - - - make a negligible contribution. The Faltens-Laslett estimate (1.1) 

of the peak value is confirmed. According to the estimate (1.2), ReZ/n should first 

have significant magnitude around n = 2 . 10 6. Indeed, it first reaches half-maximum 

at about that point. Figure 2 shows ReZ plotted as a function of X. From the graph 

and (2.11), (3.3), we see that significant power will be radiated only for bunch lengths 

less than 90 p or so with R and h as in Version 3. For longer bunches the relevant 

impedance is too low. 

Figure 3 shows ReZ/n for an aluminum toroidal chamber with parameters for 

Version 3. The beam is centered in the chamber. The threshold at which the impedance 
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Figure 1: bz( n,nw,)/n versus n for Figure 2: ReZ( n,nw,)/n versus X for 
the parallel-plate model, R = 149.5m, the parallel-plate model, R = 149.5m, 
h = 2cm h = 2cm. 

is first appreciable is a bit higher than in the parallel-plate model, but the maximum 
occurs at about the same point. The resistive wall theory is somewhat defective, in 

that ReZ is negative at some distance from either resonance peak. In the calculation, 
we put ReZ = 0 wherever the theory gives negative values. 

To estimate the total energy loss in the arc, we assume that the energy loss 
per unit angle of deflection at a particular bunch length is the same as in our steady 
state model running at the same (fixed) bunch length. Repeating the steady state 
calculation for many bunch lengths, we find a curve for &J/d0 versus Q. Since u 
decreases in the compressor almost linearly with 0, this is equivalent to knowing dU/d0 
as a function of 6. Integration with respect to 0 produces the figures for total energy 
loss shown in Table I. The values are in MeV per particle, supposing that the bunch 
contains N = 2. lOlo electrons. The conductivity of aluminum is used for the toroidal 
chamber, whereas the parallel plates are perfectly conducting. For comparison, values 
for incoherent radiant energy are listed. For that, we assume that the energy radiated 
per unit angle is (l/w,) &J/c&, with dU/dt given by Eq. (2.19). 

The curve of &J/d8 for Version 3 of the compressor is shown in Figure 4, for the 
parallel-plate model. In all four versions the energy loss is sharply concentrated near 
the end of the arc, since elsewhere the impedance is too small at wavelengths within 
the bunch spectrum lA,12. Th e corresponding curve for the resistive toroidal chamber 

has a similar form, but is concentrated still closer to the end of the arc, due to the 
higher threshold of the impedance. The high-threshold effect is especially pronounced 
in Version 2 of the compressor, which has relatively large values of R and af. 

For a given final bunch length crf, one can reduce the coherent radiation by 
making R as large as possible and the transverse dimensions of the chamber as small 
as possible. This raises the threshold (2.2) for th e onset of a large impedance, and 

allows the bunch spectrum (3.3) to cut off the radiation. 
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Figure 3: ReZ( 72, nwo)/n versus n for 
aluminum toroidal chamber, 
R = i49.5m, h = w = 2cm. 
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Figure 4: dU/dO for the parallel-plate 
model in Version 3 of the bunch com- 
pressor. 

In Figure 5 we show the wake voltage per turn, as defined by (2.7), for the 
parallel-plate problem and Version 3 of the compressor. Particles within one o of the 
bunch center lose energy, whereas those around two u on either side gain energy. The 
peak wake voltage per unit length is comparable to typical wakes in the SLAC linac 
structure, which amount to a few volts per picocoulomb over a 3.5 cm cell. 

Corresponding results for the toroidal model are displayed in Figure 6. Within 
two Q of the center the behavior is similar, although the voltage is somewhat lower 
due to the higher threshold of the torus impedance. The persistent oscillations well 
beyond the bunch length can be understood if we refer to the lim iting case of infinite 
conductivity. As that lim it is approached, the peak of ReZ(n, nw,) narrows to a delta 
function, and the wake field has the form exp(inw,r) with essentially a single value of 
n. In fact, the oscillations in Figure 6 have almost exactly the period of such a single 
exponential, if we choose n to have the value at the peak of the impedance; (in units 
of bunch length, the wavelength of the oscillation should be 2aR/na, which in the 
present example is about five). If we increase the Q of the system by increasing the 

conductivity, we find numerically that the wake indeed approaches the expected single 
oscillatory exponential. In Figure 6 the oscillations before and after the bunch die off 
relatively quickly, because a band of n values is involved. In Ref. 5, Section 7, it was 
shown that the band width is given approximately as 

An 2R 1 - -- 
--wQ’ n (3.4) 

The result (3.4) arises from the peculiar nature of the dispersion relation w(n) 
of the resonances of this structure. In the (w, n)-plane, the dispersion curve is almost 
parallel to the synchronism line w = w,n at the point where the two cross. This means 

that a rather broad range of n-values can be simultaneously synchronous and resonant 
when the system has resistive walls. 
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Figure 5: Wake voltage per turn for 
the parallel-plate model, R = 149.5m, 
h = 2cm, bunch length 0 = 61pm. 

Figure 6: Wake voltage per turn for 
the toroidal chamber, R = 149.5 m , 
h = w = 2 cm, bunch length d = 
61pm. 
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