SLAC-PUB-5372 October 1990 (T/E)

RECENT RESULTS IN CHARM DECAYS FROM MARK III*

Jonathan F. Labs

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA Representing the Mark III Collaboration

ABSTRACT

Measurements of $D^0 \to \bar{K^0} \pi^0$, $\bar{K^0} \eta$ and $\bar{K^0} \eta'$ are reported. Preliminary results of a search for the doubly Cabibbo-suppressed decays $D^+ \to K^+ \pi^- \pi^+$ and $K^+ \pi^0$ are also given. Both analyses used $9.3 \pm 0.47 \text{pb}^{-1}$ of data collected near the $\psi(3770)$ at SPEAR.

ANALYSIS OF $D^0 \rightarrow \bar{K^0} \pi^0$, $\bar{K^0} \eta$ **AND** $\bar{K^0} \eta'$

The decays, $D^0 \to \bar{K^0} \pi^0$, $\bar{K^0} \eta$ and $\bar{K^0} \eta'$ are interesting first in that they are color-suppressed. Secondly, the standard spectator diagrams only produce $\bar{K^0} \eta$ and $\bar{K^0} \eta'$ through non- $s\bar{s}$ components in their wave functions; hence they should be produced with roughly equal strength. Non-spectator processes, such as W-exchange or final state interactions, can generate these channels via the $s\bar{s}$ components; these processes would cause an excess of $\bar{K^0} \eta'$ over $\bar{K^0} \eta$.^[1]

Mode	ARGUS	CLEÖ	MARKIII
$D^0 \to \bar{K^0} \pi^0$	$1.7\pm0.4\pm0.3$	$2.3\pm0.4\pm0.5$	$1.8\pm0.2\pm0.2$
$D^0 \to \bar{K^0} \eta$	$1.4\pm0.5\pm0.3$		$1.6\pm0.6\pm0.4$
$D^0 \rightarrow \bar{K^0} \eta'$	$1.9\pm0.4\pm0.3$		$3.3\pm0.3\pm1.0$

Table I.^[2]

Table 1. lists our measurements for each of these channels, together with ARGUS and CLEO measurements. None of the color-suppressed channels are greatly suppressed. Taking the Mark III and Argus numbers, the ratio $BR(D^0 \rightarrow \bar{K^0} \eta')/BR(D^0 \rightarrow \bar{K^0} \eta)$ is found to be 1.8 ± 0.5 (weighted average). Factoring out the phase space contributions, the ratio of matrix elements squared is 2.5 ± 0.7 . That this number deviates from unity is an indication that non-spectator processes may play a role in hadronic charm decays.

ANALYSIS OF DOUBLY CABIBBO-SUPPRESSED DECAYS

Naively, the spectator model predicts doubly Cabibbo-suppressed decays (DCSD) to be suppressed relative to Cabibbo-allowed decays (CAD) by a factor of $(\rho^2 \simeq 1) \tan^4 \theta_C$. Weak decay phenomenology, however, predicts $\rho^2 > 1$ for many DCSD channels.^[3] The D^+ DCSD are interesting first because $\rho^2 \gg 1$ is predicted. This enhancement arises from Pauli interference

^{*} This work was supported in part by the Department of Energy, under contracts DE-AC03-76SF00515, DE-AC02-76ER01195, DE-AC03-81ER40050, DE-AM03-76SF00010, and DE-AC02-87ER40318, and by the National Science Foundation.

affecting CAD's but not DCSD's. Secondly, the D^+ DCSD produce unique final states, unlike the D^0 DCSD which generate final states identical to those produced by $D^0 \overline{D^0}$ mixing. Reported here are the *preliminary* results of the first search for $D^+ \rightarrow K^+ \pi^- \pi^+$ and $K^+ \pi^0$. For the $K^+ \pi^- \pi^+$ analysis, proper track selection and anti-background requirements are first imposed. A scatter plot of the invariant mass vs. beam constrained mass is then formed from the resulting $K^+ \pi^- \pi^+$ candidates. The beam constrained mass depends upon the correct track combination, while the invariant mass requires the right particle identification. Figure 1 shows the resulting plot where three events remain in the signal region. Monte Carlo studies estimate the background to be $0.8 \pm 0.3 \pm 0.3$ events in the signal region. The calculation of Ref. 3 predicts the number of expected events to be between 0.5 and 0.8.

For the $K^+ \pi^0$ analysis, proper track selection and anti-background requirements are imposed. A histogram of $U \equiv P^{\mu}_{recoil} P_{K\mu}$ is then made from the resulting $K^+ \pi^0$ candidates. The U variable depends upon the correct track identification of the charged track. Figure 2 shows the resulting plot with no events remaining in the signal region. Monte Carlo studies estimate the level of background to be < 0.2 at 90% CL. The number of real events expected^[3] is ~ 0.2.

A previous analysis of $D^0 \overline{D^0}$ mixing and D^0 DCSD suggests that ρ^2 for the D^0 is larger than theoretical predictions^[4]. The results for $D^+ \to K^+ \pi^- \pi^+$ suggests a similar trend in the D^+ DCSD.

REFERENCES

- 1. H. Lipkin, Phys. Rev. Lett., 46, 1307 (1981).
- 2. P. Karchin, In Proceedings of the 1989 Int. Symp. on Lepton and Photon Interactions at High Energies, Stanford, p. 105.
- 3. I. I. Bigi, In Proceedings of the Sixteenth SLAC Summer Institute on Particle Physics, Stanford, p. 31.
- 4. G. Gladding, In Proceedings of the Int. Symp. on Production and Decay of Heavy Flavors, Stanford, p. 178.