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ABSTRACT 

Object-Oriented Programming techniques are explored with an 
eye towards applications in High Energy Physics codes. Two 
prototype examples are given: MCOOP (a particle Monte Carlo 
generator) and GISMO (a detector simulation/analysis package). 

1. Introduction 

High Energy Physics (HEP) as a field came 
into being shortly after World War II. Acceler- 
ators replaced cosmic rays and computers were 
soon required both to gather data as well as 
assist in the analysis. The FORTRAN language 
was created to facilitate the translation of al- 
gorithms and formulas into machine executable 
code (FORTRAN stands for FORmIda TRANslation 
language!) and was one of the first “higher- 
level” languages requiring a compilation step to 
produce machine code. HEP quickly adopted 
FORTRAN and today FORTRAN dominates our 
field. We have come to rely on many FORTRAN 
programs and packages, from histogrammers to 
memory managers, in achieving our research 
goals. Furthermore, entire systems of code such 
as GEANT [l] for the simulation of particle de- 
tectors and the LUND Monte Carlo [2] for gen- 
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erating events have become accepted starting 
points in the HEP code world. 

FORTRAN code is referred to in computer 
science circles as a procedural language. The 
label is obvious and descriptive. Our programs 
for the most part are repetitively executed algo- 
rithms architected along client server lines with 
a hierarchy of drivers, subdrivers, . . . and so on. 
Our style has changed very little, aside from try- 
ing to superimpose a few modern concepts such 
as memory management on top of FORTRAN. 

Meanwhile the rest of the world contin- 
ued to evolve, rather than refine and embellish. 
The UNIX operating system and its underly- 
ing language C resulted from efforts in the aca- 
demic and engineering environments to achieve 
greater flexibility and open access to their mini- 
computers. The complexities of the graphical 
user interface employed on most small comput- 
ers required further evolution. Object-Oriented 
Programming ( OOP) techniques proved them- 
selves equal to this challenge and are now used 
extensively. It’s worthwhile to note that OOP 
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is driven by industrial needs, not hypothetical 
requirements from computer scientists. 

The applicability of OOP to the comput- 
ing problems in HEP is the subject of this pa- 
per [3]. Two separate projects have begun in- 
vestigations into what typical HEP codes might 
“look” and “feel” like in OOP. The first is a 
Monte Carlo generator called MCOOP, and the 
second is a detector simulation/analysis program 
called GISMO. As we shall see, OOP provides a 
very natural dialect for these problems. Before 
describing these two projects, we digress with a 
brief description of OOP especially designed for 
people having a FORTRAN background. 

2. OOP for FORTRAN People 

Object-oriented programming is a techni- 
que more than a language [4] and usually is 
based upon an existing language. Our expe- 
rience has been in Objective-C [5] and as the 
name implies, it has the C language at its foun- 
dation. (There is also an Objective FORTRAN 
on the market, and others.) The program unit 
in OOP is something called a class. A class 
is defined by two parts: (1) a header file list- 
ing and typing the instance variables and defin- 
ing the method names and their arguments, and 
(2) an implementation file fleshing out the var- 
ious methods. As the program is run, instances 
of a class, called objects, are created in mem- 
ory by the operating system using factory meth- 
ods. This is when memory is allocated to the in- 
stance variables in contrast to FORTRAN where 
the memory is usually allocated at the compile- 
link stage. As the name factory method implies, 
multiple instances of a class may be present in 
memory simultaneously, each with its own set 
of instance variables, sharing the same form and 
methods but acting independently. Each object 
also contains a pointer to its associated class 
methods to allow the system to determine which 
routines to call for a particular method. 

In contrast, the data in a FORTRAN pro- 
gram might be in COMMON blocks or in data 
structures managed by a memory management 

package (e.g., ZEBRA, JAZELLE, BOS, etc.). This 
data is manipulated and operated on by sub- 
routines and functions. Now imagine breaking 
the data up into pieces along with the routines 
which operate on those pieces. These “chunks” 
of data/program might be termed objects. One 
of the basic ideas in OOP is to closely connect 
the code to the data that it deals with. For ex- 
ample, histograms and their associated routines 
could be recast as a class. The bins, bin limits, 
title, axis definitions, etc., would become the in- 
stance variables, while the operations of create, 
delete, clear, accumulate, and display would be 
the methods of this histogram class. Multiple 
instances of this class, i.e., several histograms, 
could be present simultaneously, each with its 
own bin size, title, accumulation variable, etc. 

A method executes other methods in its 
own or other classes by sending messages, which 
are analogous to subroutine or function calls in 
FORTRAN. A message must contain an identifier 
of the class (i.e., a pointer to the target object), 
the name of the method, then possibily followed 
by arguments. In Objective-C, for example, the 
syntax is similar to Smalltalk: 

[histogramaccum : x] 

where histogram is a pointer to the target ob- 
ject, uccum: is the accumulation method of the 
histogram class and z is the (single) value to be 
binned. The “:” is syntactical and separates 
methods and arguments from each other; mes- 
sages are contained within brackets, “[.. ..I”. 

An important feature of OOP is a property 
called “inheritance.” This is jargon for the fact 
that in OOP, the data, as well as the methods, 
are layered (i.e., form a hierarchical tree). This 
layering is much more extensive than in familiar 
procedural codes and does not refer to layering 
in the client server sense. In OOP, classes are 
subclassed to other classes. When this is done 
the new class “inherits” all the instance vari- 
ables us well us the methods of ALL the classes 
lying above it in the hierarchy. This could be 
illustrated in the previous histogram example 
by subclassing our histogram class to a root 
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class which allocates and deallocates memory. 
The “create” and udelete” methods of the his- 
togram class would then be inherited from the 
root class. There would be no need for explicit 
code inside the histogram class to enable this 
functionality. On the other hand, if an action 
method needs to be modified for the subclass, 
it may be overridden by simply including new 
code in the subclass definition. 

This property of inheritance is perhaps one 
of the most difficult aspects of OOP (for us old 
FORTRAN types) to use effeCtiVdy. It reqUireS 

(of us) a new level of abstraction in the creation 
of our programs not directly encountered in pro- 
cedural code. It is believed by some “oopers” 
that abstractions rarely evolve from the top 
down, but instead emerge from the bottom up. 
This is to say that the programmer is usually 
not aware of a new abstract class until he per- 
ceives common properties of several existing 
classes. He then creates a new abstract class 
with these common instance variables and meth- 
ods and “bumps them upstairs.” In spite of 
the difficulty (novelty?) in developing abstract 
classes, they usually prove to be quite valuable 
and efficient since they serve to establish the 
framework of the program as well as provide 
many useful reusable utilities which may be in- 
herited by new classes. 

Another OOP buzz word is “polymorph- 
ism.” What this refers to is that the same func- 
tion in different classes can, and usually should, 
have the same method name. For example, to 
deallocate an object and free up some memory, 
we might have a “free” method. The principle 
of polymorphism is that all objects can share 
the same name of the deallocation method, say, 
ufree,” but each class may implement it in its 
own way. This should be a familiar concept to 
us.. . it replaces “naming conventions” in pro- 
cedural languages. 

We end this section with a brief discussion 
on memory management and how data organi- 
zation is handled in Objective-C. One impor- 
tant feature of OOP is the fact that memory 

management and bookkeeping are not the re- 
sponsibility of the programmer but of the com- 
piler and the run-time system. (The program- 
mer must free objects appropriately, however, 
in order to keep memory usage under control.) 
First of all, data is bound to objects in OOP. 
Since many instances of various classes may be 
present simultaneously, a bookkeeping aid for 
objects is needed. This is provided in Objective- 
C by a class called List. List objects allow 
looping over the objects they contain, globally 
messaging each of them in turn, and providing 
edit functions to add, delete, and insert new 
objects into the List. An example usage of a 
List object might be to manage a group of his- 
togram objects. This would allow global clear- 
ing of these histograms with a single message. 
Another more primitive data structure manage- 
ment tool is the Storage class. This object man- 
ages a group of identical data structures, similar 
to the concept in JAZELLE of families [6]. 

Examples of OOP programs are familiar to 
most of us although we may not have recognized 
them as such. These include popular drawing. 
programs on personal computers with the win- 
dowed desktop screen layout, etc. Once aware 
of OOP it is easy to imagine that most of the 
things created on the screen are in fact objects, 
and indeed, multiple objects! 

We shall see that OOP provides a very flex- 
ible coding framework, and now briefly describe 
our present formulation of two different applica- 
tions. Keep in mind that this is prototype code; 
these examples can, however, provide the basis 
for a full implementation. 

3. McOOP 

One important characterization of numer- 
ical simulation problems is whether or not the 
“active” elements, or degrees of freedom, are 
fixed in number and characteristics, or whether 
they vary, perhaps even randomly, during the 
simulation process. We shall argue that OOP 
can offer many unique advantages in this latter 
situation [7]. 
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The methodology described here, valid for 
general simulation problems, is one of our gen- 
eral points; the decay Monte Carlo application 
is one important example in particle physics. 
There are many other possible applications. The 
OOP characteristics discussed above and their 
uses here are: encapsulation, which will allow a 
simple treatment of the physics of each particle 
type, messaging and polymorphism, which will 
clarify the operation and writing of the code, 
and inheritance, which will play a very impor- 
tant role in shortening, simplifying, and insur- 
ing consistency among the physics objects. 

A particular elementary particle is de- 
scribed by a set of simple parameters such as 
mass, charge, other quantum numbers, space- 
time position, momentum-energy, helicity, etc. 
These parameters are required for all particles; 
thus we are lead to the concept of a minimal 
or generic “particle” data set, or class. Unsta- 
ble particles require more parameters; lifetimes 
and branching ratios for particular decay modes 
must be given. In addition to these variables, 
we also must add methods to allow a particle 
to perform an action, such as decay, in its own 
unique way. 

We would like the code, in generating a 
new particle in the chain, to produce a generic 
particle, add any needed general properties, and 
finally, add the particular decay parameters spe- 
cific to the produced particle type. To minimize 
the coding task, we will insist that the program 
use well-tested FORTRAN routines (e.g., phase 
space generators) whenever possible. 

The highest class, a subclass of the ab- 
stract root class Object, will be denoted as Pur- 
title. In this class, all general and universal 
attributes shared by all particle types will be 
introduced as instance variables. Action meth- 
ods of universal applicability and general util- 
ity will also be defined; this will therefore be 
the “largest” class. Many utility methods that 
are not used in the main code but are useful for 
examination, tweaking parameters, debugging, 
etc., are also included here for general availabil- 
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Figure 1. The decay Monte Carlo, MCOOP, 
class hierarchy. 

ity. The general structure of the hierarchy is 
shown in Figure 1. 

The top “generic” class Particle will have 
almost all the instance variables and action meth- 
ods. This class is defined by giving a finite list 
of physical parameters such as charge, mass, 
energy, space-time position, etc., and a list of 
methods that act on these parameters. Action 
methods will be placed into the hierarchy at a 
physically appropriate level, although there is 
clearly some freedom here. Polymorphism will 
be extensively used. 

Let us now move down the hierarchy and 
first describe the classes that contain the physi- 
cal particles. Two natural subclasses of the Par- 
ticle class are introduced, Boson and Fermion. 

Next, most of the physical particle types, 
the photon, electron, pion, proton, etc., can 
now be introduced as a subclass of one of these 
two classes. Since ordinary particles decay se- 
quentially and independently (except for mix- 
ing which can be separately handled), the decay 
methods are straightforward to implement. 
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a #import <objc/Objoct.h> 
Xiqort <objc/Lirt.h> 

Ointwface Puticlo:Object 
c 

chu nu.C363; 
float chug.; 
float hyperchuge; 
float m**‘; 
float E; /* .n.rg, l / 
float px; 
. . . . . . . . . . . . 
float ptot; 
float lifeSpan; 
float lifetime; 
BOOL has-decayed; 
BOOL ia-Stable; 
id parent; 
id childlirt; /* progeny list l / 
. . . . . . *....; 

) 
+ craata:rend.r; 
- (char 0) nu.; 
- (float) E; 
- l tE:(float) En; 

. . . . . . . . . . . . . . . . 
- decay; 
Osnd 

bimplemmtation piPlus 
+ craatr:sand.r 

i 
self = [super creat*:sondsr]; 
rtrcpT(nur."piPlu~"); 
chug* = 1.0; 
hyperchuga = 0.0; 
ma.. = 0.130; 
br-8non = 0.76; 
is-stablr = JO; 
has-decayed = IO; 
return l elf; 
) // end of create: 

Qimplementation Particle 
+ craata:sander 

i 
sdf = [: rop.r n.. 3; 
parant = Bender; 
childlist = t List nul; 
lifespan = rando; 
r*tu-n l lf; 

1 
- (float) paru*trr // many 

i // utility 
return puuetor; // mmthods 

) // ruch a# 
- l etparametu:(float) qr 

t 
pr = qx; // these. 
r*tu.rn self; 

L . . . . . . etc................ 

- decay // for stable 
I // puticlw 

roturn self; // only. 
) 

prints out decay chain. 

- decay 
i float rx; 
if(has-decayed II is-stable) 
return self; 
rx = ranflatc 0 < rx < 1 1; 
if (rx < br-muon ) {//mode->muPlna+nnMuon 
[childlist addObjoct:buPlw croato:8elfll; 
[childList addObject:buJIuon cr*ate:rrlfl]; 
else i//mode -> poritron+nuElectron. 
[childList addObjrct:[positron creatr:selfll; 
[childList addObject:buElectron croato:relfll; 
) 

har-decayod = YES; 
[childLirt makeObjectsPerfo~:Oseloctor(docay)~; 
// sends decay massage to each child on childList. 
r*turn self; 
1 // and of decay. 

@end 
lo-90 6746142 

Figure 2. The (.h) and (.m) files of the Particle class, listed on the left and right, respectively, are 
shown at the top. The (.m) file for the class piPlus is shown at the bottom. In the decay method, 
one creates an instance of each particle class in the chosen mode, sets the parent id, and forms the 
childList by invoking a single compound message. 

Using charge conjugation invariance to fur- 
ther simplify the code, the negatively charged 
member is chosen to be a subclass of its pos- 
itively charged partner; thus physical parame- 
ters will occur in only one spot in the code- 
with the relevant positively charged member of 
the pair. These pairs possess the same number 
and values of branching ratios but have charge 
conjugate decay modes. 

The class FieldString is introduced to han- 
dle the special properties of colored fields. For 

example, the decay properties of quarks and 
gluons is a collective phenomena in most mod- 
els of hadronization; the decay of a rapidly sep- 
arating quark-antiquark pair and their accom- 
panying gluons is controlled in many models 
by the properties of the colored string(s) that 
are formed. Thus in the general case, the de- 
cay must be treated coherently. This correlated 
hadronization process is handled in the Field- 
String class, again introduced as a subclass of 
Particle as shown in Figure 1. 

5 



The class Source is introduced to describe 
the physical origin of the fields. This is spe- 
cialized to the originating collision, i.e., proton- 
proton or electron-positron, etc. For the elec- 
tron collider case, it includes the initial beam 
characteristics, momenta, widths and polariza- 
tion, and randomly chooses the final state, i.e., 
a particular type of lepton or quark pair. It then 
messages the relevant class to produce instances 
of the produced particles, assigns them their 
correct kinematics, and finally, orders them to 
decay. For p - p or p - a collisions, multiple 
instances of quark/gluon, etc., must be created 
according to the hadronic interaction model at 
hand. 

An edited version of the class code is shown 
in Figure 2 for Particle and n+. Note in particu- 
lar the create: and the decay methods. Note also 
that the decay chain is stored NOT as a linked 
list, but rather as a “list linked by Lists.” 

: This completes the discussion of the parti- 
cle hierarchy illustrated in Figure 1. It is some- 
thing of a compromise between having many 
generations for reasons of coding simplicity, and 
few generations for reasons of efficiency. 

4. GISMO 

GISMO (Graphical Interface for Simulation 
and Monte carlo with Objects) is a recent un- 
dertaking centered at CERN [S]. The objective 
of this project is to explore the applicability of 
OOP to particle detector modelling and produc- 
tion data analysis in HEP. Specifically we hope 
to learn if the modelling/analysis task is more 
easily broken up into pieces than is presently 
the case. Also, with GISMO, a goal is to “re- 
use” modelling code to perform functions in the 
analysis chain. Both of these goals are supposed 
to be features of OOP and could make an im- 
provement on the way HEP collaborations write 
their software. 

GISMO will have a Graphical User Inter- 
face (GUI) allowing for detector modification in 
a drawing program environment. The same GUI 
will serve as the event display. 
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Figure 3. GISMO’S class hierarchy. 

The classes for GISMO are shown in Fig- 
ure 3. Detector geometry is organized with the 
List class mentioned in Section 2. Detector is a 
ulist” of SubDetectors, SubDetectors are a list 
of Volumes, and Volumes are a list of Surfaces 
which enclose them. Each of these classes is 
intended to be a superclass of specific types of 
detectors, volumes, and surfaces as indicated in 
the figure. 

Inheritance plays a crucial role in this hier- 
archy. For example, Volume has instance vari- 
ables for its title, a material-type index, and the 
maximum allowed step size for tracking. Vari- 
ables to describe particular types of volumes 
are found in the classes subclassed to it. The 
Toroid class, for instance, has variables for its 
center, principle axis, length, inner and outer 
radii. No need to include title, material type, 
etc., as these attributes are inherited from Vol- 
ume. 

Recall that inheritance applies to not only 
the data, but to the methods as well. Volume is 
subclassed to List, hence anything a List can do 
(any messages a List will accept), Volumes can 
also do. This subclassing was done since most 
Volumes can be conveniently described by a list 
of surfaces (Volume is a List of Surfaces!). Vol- 
umes can be messaged to tell if a space point 
lies inside, how far along a helical trajectory 
to the boundary, as well as to be created and 
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deleted. Most of these methods can be general- 
ized (with the exception of the create method) 
from all Volumes and hence appear in the Vol- 
ume superclass. For example, to determine if 
a space point lies inside a Volume, the Volume 
messages each of its Surfaces to tell if a radial 
vector passing through the space point inter- 
sects it. If the number of intersected surfaces 
is odd, the point lies inside. This is quite gen- 
eral and usually won’t have to be superceded by 
code in each specific type of volume subclasses 
to Volume. 

In GISMO, subdetector definitions are also 
treated in a hierarchy. At the top there is the 
List class to manage the Volumes in the Sub- 
Detector. Then comes SubDetector itself. It 
provides methods common to all subdetectors 
such as track propagation and management of 
geometry related questions such as arclength to 
swim, “inside,” etc. SubDetector is a superclass 
for real detectors such as DriftChamber. In 
DriftChamber, for example, are the details of a 
typical axial/stereo wire chamber. This in turn 
could serve as a model from which to build drift 
chamber variants, each providing specialized in- 
stance variables and methods peculiar to them- 
selves. The original code, List-SubDetector- 
DriftChamber, need not be touched (i.e., rewrit- 
ten) but simply appended to and superceded by 
the subclassing process using inheritance. 

GISMO simulates events as follows. Detec- 
tor ingests a Monte Carlo event and creates an 
Event object which is a List of the Tracks to 
be processed. The Track class is similar to Par- 
ticle in MCOOP but also includes instance vari- 
ables describing its spatial location, its present 
momentum, and so on. (In the next version 
of GISMO it would be interesting to subclass 
Track to the MCOOP Particle class!) Track is 
subclassed to List because if it decays or in- 
teracts it will be a list of its daughter Tracks. 
The Track class has the ustepby” method (i.e., 
“swim”) and takes as arguments a distance to 
step by and the material (index) in which to 
step (necessary to compute multiple scattering, 
interactions and energy loss). The physics of 

- pmpagatr: (ParWa ‘) MCTradr 

MC I MCTrd; 
vohma - [sell lowlevd]: 

J(vo*nwLnl)( 

mtiwial I [volum g&MaltialJ; 
alii - YES; efx@+x&. ENTRY: 
vhile(alivr 6 (endptmdel.LEAVE) ) ( 

IsoIl choo¶estep: volume :sardmgm : 6ardploacle]; 
(bade sleptby: axlmglh in: maleriar); 
ii I [trid ChakSiatus]; 
[lrw addlr&J’chl: (ahe) ? ar&sxb: ENOPOIHTJ; 

t 

mwlnfill; 70-90 
t 61.61. 

Figure 4. The propagate method from the Sub- 
Detector class. 

particles propagating in matter is part of the 
Track class definition. 

Detector messages the first SubDetector 
with the id of the first Track in the event with 
the message to propagate. The Subdetector prop- 
agates this Track until it has decayed, inter- 
acted, or left the subdetector as illustrated by 
the code sample (see Figure 4). Detector pro- 
ceeds to the next SubDetector and so on until 
it reaches the end of its list. Detector then pro- 
cesses the next Track until none are left ‘alive.” 

SubDetector creates a Tracksegment Ob- 
ject to manage the set of track points that are 
computed along a particles trajectory. Track- 
segment is subclassed to the Storage class as 
track points are a fixed format data structure. 
Of course the number of track points in a Track- 
segment is arbitrary. The Tracksegment class 
can display these track points for the event dis- 
play and provides an implicit “loop” over track- 
points for modelling the subdetector’s response. 
Tracksegments are managed in SubDetector by 
a List object. 

An arclength is computed by taking the 
minimum of the maximum allowed step for the 
Volume, the distance to the wall, or some other 
criterion provide by a specific subdetector type. 
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Track is then messaged to “stepby” in the mate- 
rial of the Volume. At the end of each step the 
Tracksegment is messaged to add a track point 
to itself. The process is continued until the par- 
ticle has interacted, decayed, or left the Sub- 
Detector. Once all the Tracks have been prop- 
agated through the Detector each subdetector 
will be messaged sim&teResponse to compute 
and produce raw data facsimiles. 

The analysis phase of GISMO has yet to 
be designated in detail. The idea will be to 
use the same object as in the simulation phase, 
adding methods to them to compare hypothet- 
ical tracks and interactions generated by a pat- 
tern recognition to those recorded either dur- 
ing simulation or actually measured in a real 
detector. 

5. Conclusion 

The OOP programmer does no explicit or 
detailed memory management 7~0~ other book- 
keeping chores; hence, the writing, modifica- 
tion, and extension of the code is considerably 
simplified. Inheritance can be used to simplify 
the class definitions as well as the instance vari- 
ables and action methods of each class; thus the 
work required to add new classes, parameters, 
or new methods is minimal. 

The software industry is moving rapidly to 
OOP since it has been proven to improve pro- 
grammer productivity, and promises even more 
for the future by providing truly reusable soft- 
ware. The High Energy Physics community clear- 
ly needs to follow this trend. 
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