
SLAC-PUB-5359
October 1990

(1)

MONTE CARLO AND DETECTOR SIMULATION IN OOP*

W. B. Atwood, R. Blankenbecler, and P. Kunz
Stanford Linear Accelerator Center

Stanford University, Stanford, CA 94309, USA

T. Burnett3 and K. M. Storr
CERN, ECP Division, CH-1211 Geneva 23, Switzerland

ABSTRACT

Object-Oriented Programming techniques are explored with an
eye towards applications in High Energy Physics codes. Two
prototype examples are given: MCOOP (a particle Monte Carlo
generator) and GISMO (a detector simulation/analysis package).

1. Introduction

High Energy Physics (HEP) as a field came
into being shortly after World War II. Acceler-
ators replaced cosmic rays and computers were
soon required both to gather data as well as
assist in the analysis. The FORTRAN language
was created to facilitate the translation of al-
gorithms and formulas into machine executable
code (FORTRAN stands for FORmIda TRANslation
language!) and was one of the first “higher-
level” languages requiring a compilation step to
produce machine code. HEP quickly adopted
FORTRAN and today FORTRAN dominates our
field. We have come to rely on many FORTRAN
programs and packages, from histogrammers to
memory managers, in achieving our research
goals. Furthermore, entire systems of code such
as GEANT [l] for the simulation of particle de-
tectors and the LUND Monte Carlo [2] for gen-

* Work supported by Department of Energy con-
tract DE-AC03-76SF00515.

$ Permanent address: University of Washington,
Seattle, WA 98195, USA.

erating events have become accepted starting
points in the HEP code world.

FORTRAN code is referred to in computer
science circles as a procedural language. The
label is obvious and descriptive. Our programs
for the most part are repetitively executed algo-
rithms architected along client server lines with
a hierarchy of drivers, subdrivers, . . . and so on.
Our style has changed very little, aside from try-
ing to superimpose a few modern concepts such
as memory management on top of FORTRAN.

Meanwhile the rest of the world contin-
ued to evolve, rather than refine and embellish.
The UNIX operating system and its underly-
ing language C resulted from efforts in the aca-
demic and engineering environments to achieve
greater flexibility and open access to their mini-
computers. The complexities of the graphical
user interface employed on most small comput-
ers required further evolution. Object-Oriented
Programming (OOP) techniques proved them-
selves equal to this challenge and are now used
extensively. It’s worthwhile to note that OOP

Invited talk presented at the Symposium on Detector Reseamh and
Development for the Supercollider, Fort Worth, TX, October 15-18, 1990.

is driven by industrial needs, not hypothetical
requirements from computer scientists.

The applicability of OOP to the comput-
ing problems in HEP is the subject of this pa-
per [3]. Two separate projects have begun in-
vestigations into what typical HEP codes might
“look” and “feel” like in OOP. The first is a
Monte Carlo generator called MCOOP, and the
second is a detector simulation/analysis program
called GISMO. As we shall see, OOP provides a
very natural dialect for these problems. Before
describing these two projects, we digress with a
brief description of OOP especially designed for
people having a FORTRAN background.

2. OOP for FORTRAN People

Object-oriented programming is a techni-
que more than a language [4] and usually is
based upon an existing language. Our expe-
rience has been in Objective-C [5] and as the
name implies, it has the C language at its foun-
dation. (There is also an Objective FORTRAN
on the market, and others.) The program unit
in OOP is something called a class. A class
is defined by two parts: (1) a header file list-
ing and typing the instance variables and defin-
ing the method names and their arguments, and
(2) an implementation file fleshing out the var-
ious methods. As the program is run, instances
of a class, called objects, are created in mem-
ory by the operating system using factory meth-
ods. This is when memory is allocated to the in-
stance variables in contrast to FORTRAN where
the memory is usually allocated at the compile-
link stage. As the name factory method implies,
multiple instances of a class may be present in
memory simultaneously, each with its own set
of instance variables, sharing the same form and
methods but acting independently. Each object
also contains a pointer to its associated class
methods to allow the system to determine which
routines to call for a particular method.

In contrast, the data in a FORTRAN pro-
gram might be in COMMON blocks or in data
structures managed by a memory management

package (e.g., ZEBRA, JAZELLE, BOS, etc.). This
data is manipulated and operated on by sub-
routines and functions. Now imagine breaking
the data up into pieces along with the routines
which operate on those pieces. These “chunks”
of data/program might be termed objects. One
of the basic ideas in OOP is to closely connect
the code to the data that it deals with. For ex-
ample, histograms and their associated routines
could be recast as a class. The bins, bin limits,
title, axis definitions, etc., would become the in-
stance variables, while the operations of create,
delete, clear, accumulate, and display would be
the methods of this histogram class. Multiple
instances of this class, i.e., several histograms,
could be present simultaneously, each with its
own bin size, title, accumulation variable, etc.

A method executes other methods in its
own or other classes by sending messages, which
are analogous to subroutine or function calls in
FORTRAN. A message must contain an identifier
of the class (i.e., a pointer to the target object),
the name of the method, then possibily followed
by arguments. In Objective-C, for example, the
syntax is similar to Smalltalk:

[histogramaccum : x]

where histogram is a pointer to the target ob-
ject, uccum: is the accumulation method of the
histogram class and z is the (single) value to be
binned. The “:” is syntactical and separates
methods and arguments from each other; mes-
sages are contained within brackets, “[.. ..I”.

An important feature of OOP is a property
called “inheritance.” This is jargon for the fact
that in OOP, the data, as well as the methods,
are layered (i.e., form a hierarchical tree). This
layering is much more extensive than in familiar
procedural codes and does not refer to layering
in the client server sense. In OOP, classes are
subclassed to other classes. When this is done
the new class “inherits” all the instance vari-
ables us well us the methods of ALL the classes
lying above it in the hierarchy. This could be
illustrated in the previous histogram example
by subclassing our histogram class to a root

2

class which allocates and deallocates memory.
The “create” and udelete” methods of the his-
togram class would then be inherited from the
root class. There would be no need for explicit
code inside the histogram class to enable this
functionality. On the other hand, if an action
method needs to be modified for the subclass,
it may be overridden by simply including new
code in the subclass definition.

This property of inheritance is perhaps one
of the most difficult aspects of OOP (for us old
FORTRAN types) to use effeCtiVdy. It reqUireS

(of us) a new level of abstraction in the creation
of our programs not directly encountered in pro-
cedural code. It is believed by some “oopers”
that abstractions rarely evolve from the top
down, but instead emerge from the bottom up.
This is to say that the programmer is usually
not aware of a new abstract class until he per-
ceives common properties of several existing
classes. He then creates a new abstract class
with these common instance variables and meth-
ods and “bumps them upstairs.” In spite of
the difficulty (novelty?) in developing abstract
classes, they usually prove to be quite valuable
and efficient since they serve to establish the
framework of the program as well as provide
many useful reusable utilities which may be in-
herited by new classes.

Another OOP buzz word is “polymorph-
ism.” What this refers to is that the same func-
tion in different classes can, and usually should,
have the same method name. For example, to
deallocate an object and free up some memory,
we might have a “free” method. The principle
of polymorphism is that all objects can share
the same name of the deallocation method, say,
ufree,” but each class may implement it in its
own way. This should be a familiar concept to
us.. . it replaces “naming conventions” in pro-
cedural languages.

We end this section with a brief discussion
on memory management and how data organi-
zation is handled in Objective-C. One impor-
tant feature of OOP is the fact that memory

management and bookkeeping are not the re-
sponsibility of the programmer but of the com-
piler and the run-time system. (The program-
mer must free objects appropriately, however,
in order to keep memory usage under control.)
First of all, data is bound to objects in OOP.
Since many instances of various classes may be
present simultaneously, a bookkeeping aid for
objects is needed. This is provided in Objective-
C by a class called List. List objects allow
looping over the objects they contain, globally
messaging each of them in turn, and providing
edit functions to add, delete, and insert new
objects into the List. An example usage of a
List object might be to manage a group of his-
togram objects. This would allow global clear-
ing of these histograms with a single message.
Another more primitive data structure manage-
ment tool is the Storage class. This object man-
ages a group of identical data structures, similar
to the concept in JAZELLE of families [6].

Examples of OOP programs are familiar to
most of us although we may not have recognized
them as such. These include popular drawing.
programs on personal computers with the win-
dowed desktop screen layout, etc. Once aware
of OOP it is easy to imagine that most of the
things created on the screen are in fact objects,
and indeed, multiple objects!

We shall see that OOP provides a very flex-
ible coding framework, and now briefly describe
our present formulation of two different applica-
tions. Keep in mind that this is prototype code;
these examples can, however, provide the basis
for a full implementation.

3. McOOP

One important characterization of numer-
ical simulation problems is whether or not the
“active” elements, or degrees of freedom, are
fixed in number and characteristics, or whether
they vary, perhaps even randomly, during the
simulation process. We shall argue that OOP
can offer many unique advantages in this latter
situation [7].

3

The methodology described here, valid for
general simulation problems, is one of our gen-
eral points; the decay Monte Carlo application
is one important example in particle physics.
There are many other possible applications. The
OOP characteristics discussed above and their
uses here are: encapsulation, which will allow a
simple treatment of the physics of each particle
type, messaging and polymorphism, which will
clarify the operation and writing of the code,
and inheritance, which will play a very impor-
tant role in shortening, simplifying, and insur-
ing consistency among the physics objects.

A particular elementary particle is de-
scribed by a set of simple parameters such as
mass, charge, other quantum numbers, space-
time position, momentum-energy, helicity, etc.
These parameters are required for all particles;
thus we are lead to the concept of a minimal
or generic “particle” data set, or class. Unsta-
ble particles require more parameters; lifetimes
and branching ratios for particular decay modes
must be given. In addition to these variables,
we also must add methods to allow a particle
to perform an action, such as decay, in its own
unique way.

We would like the code, in generating a
new particle in the chain, to produce a generic
particle, add any needed general properties, and
finally, add the particular decay parameters spe-
cific to the produced particle type. To minimize
the coding task, we will insist that the program
use well-tested FORTRAN routines (e.g., phase
space generators) whenever possible.

The highest class, a subclass of the ab-
stract root class Object, will be denoted as Pur-
title. In this class, all general and universal
attributes shared by all particle types will be
introduced as instance variables. Action meth-
ods of universal applicability and general util-
ity will also be defined; this will therefore be
the “largest” class. Many utility methods that
are not used in the main code but are useful for
examination, tweaking parameters, debugging,
etc., are also included here for general availabil-

1 O-06
6746Al

Figure 1. The decay Monte Carlo, MCOOP,
class hierarchy.

ity. The general structure of the hierarchy is
shown in Figure 1.

The top “generic” class Particle will have
almost all the instance variables and action meth-
ods. This class is defined by giving a finite list
of physical parameters such as charge, mass,
energy, space-time position, etc., and a list of
methods that act on these parameters. Action
methods will be placed into the hierarchy at a
physically appropriate level, although there is
clearly some freedom here. Polymorphism will
be extensively used.

Let us now move down the hierarchy and
first describe the classes that contain the physi-
cal particles. Two natural subclasses of the Par-
ticle class are introduced, Boson and Fermion.

Next, most of the physical particle types,
the photon, electron, pion, proton, etc., can
now be introduced as a subclass of one of these
two classes. Since ordinary particles decay se-
quentially and independently (except for mix-
ing which can be separately handled), the decay
methods are straightforward to implement.

4

a #import <objc/Objoct.h>
Xiqort <objc/Lirt.h>

Ointwface Puticlo:Object
c

chu nu.C363;
float chug.;
float hyperchuge;
float m**‘;
float E; /* .n.rg, l /
float px;
.
float ptot;
float lifeSpan;
float lifetime;
BOOL has-decayed;
BOOL ia-Stable;
id parent;
id childlirt; /* progeny list l /
. *....;

)
+ craata:rend.r;
- (char 0) nu.;
- (float) E;
- l tE:(float) En;

.
- decay;
Osnd

bimplemmtation piPlus
+ craatr:sand.r

i
self = [super creat*:sondsr];
rtrcpT(nur."piPlu~");
chug* = 1.0;
hyperchuga = 0.0;
ma.. = 0.130;
br-8non = 0.76;
is-stablr = JO;
has-decayed = IO;
return l elf;
) // end of create:

Qimplementation Particle
+ craata:sander

i
sdf = [: rop.r n.. 3;
parant = Bender;
childlist = t List nul;
lifespan = rando;
r*tu-n l lf;

1
- (float) paru*trr // many

i // utility
return puuetor; // mmthods

) // ruch a#
- l etparametu:(float) qr

t
pr = qx; // these.
r*tu.rn self;

L etc................

- decay // for stable
I // puticlw

roturn self; // only.
)

prints out decay chain.

- decay
i float rx;
if(has-decayed II is-stable)
return self;
rx = ranflatc 0 < rx < 1 1;
if (rx < br-muon) {//mode->muPlna+nnMuon
[childlist addObjoct:buPlw croato:8elfll;
[childList addObject:buJIuon cr*ate:rrlfl];
else i//mode -> poritron+nuElectron.
[childList addObjrct:[positron creatr:selfll;
[childList addObject:buElectron croato:relfll;
)

har-decayod = YES;
[childLirt makeObjectsPerfo~:Oseloctor(docay)~;
// sends decay massage to each child on childList.
r*turn self;
1 // and of decay.

@end
lo-90 6746142

Figure 2. The (.h) and (.m) files of the Particle class, listed on the left and right, respectively, are
shown at the top. The (.m) file for the class piPlus is shown at the bottom. In the decay method,
one creates an instance of each particle class in the chosen mode, sets the parent id, and forms the
childList by invoking a single compound message.

Using charge conjugation invariance to fur-
ther simplify the code, the negatively charged
member is chosen to be a subclass of its pos-
itively charged partner; thus physical parame-
ters will occur in only one spot in the code-
with the relevant positively charged member of
the pair. These pairs possess the same number
and values of branching ratios but have charge
conjugate decay modes.

The class FieldString is introduced to han-
dle the special properties of colored fields. For

example, the decay properties of quarks and
gluons is a collective phenomena in most mod-
els of hadronization; the decay of a rapidly sep-
arating quark-antiquark pair and their accom-
panying gluons is controlled in many models
by the properties of the colored string(s) that
are formed. Thus in the general case, the de-
cay must be treated coherently. This correlated
hadronization process is handled in the Field-
String class, again introduced as a subclass of
Particle as shown in Figure 1.

5

The class Source is introduced to describe
the physical origin of the fields. This is spe-
cialized to the originating collision, i.e., proton-
proton or electron-positron, etc. For the elec-
tron collider case, it includes the initial beam
characteristics, momenta, widths and polariza-
tion, and randomly chooses the final state, i.e.,
a particular type of lepton or quark pair. It then
messages the relevant class to produce instances
of the produced particles, assigns them their
correct kinematics, and finally, orders them to
decay. For p - p or p - a collisions, multiple
instances of quark/gluon, etc., must be created
according to the hadronic interaction model at
hand.

An edited version of the class code is shown
in Figure 2 for Particle and n+. Note in particu-
lar the create: and the decay methods. Note also
that the decay chain is stored NOT as a linked
list, but rather as a “list linked by Lists.”

: This completes the discussion of the parti-
cle hierarchy illustrated in Figure 1. It is some-
thing of a compromise between having many
generations for reasons of coding simplicity, and
few generations for reasons of efficiency.

4. GISMO

GISMO (Graphical Interface for Simulation
and Monte carlo with Objects) is a recent un-
dertaking centered at CERN [S]. The objective
of this project is to explore the applicability of
OOP to particle detector modelling and produc-
tion data analysis in HEP. Specifically we hope
to learn if the modelling/analysis task is more
easily broken up into pieces than is presently
the case. Also, with GISMO, a goal is to “re-
use” modelling code to perform functions in the
analysis chain. Both of these goals are supposed
to be features of OOP and could make an im-
provement on the way HEP collaborations write
their software.

GISMO will have a Graphical User Inter-
face (GUI) allowing for detector modification in
a drawing program environment. The same GUI
will serve as the event display.

1 o-so
6746A3

Figure 3. GISMO’S class hierarchy.

The classes for GISMO are shown in Fig-
ure 3. Detector geometry is organized with the
List class mentioned in Section 2. Detector is a
ulist” of SubDetectors, SubDetectors are a list
of Volumes, and Volumes are a list of Surfaces
which enclose them. Each of these classes is
intended to be a superclass of specific types of
detectors, volumes, and surfaces as indicated in
the figure.

Inheritance plays a crucial role in this hier-
archy. For example, Volume has instance vari-
ables for its title, a material-type index, and the
maximum allowed step size for tracking. Vari-
ables to describe particular types of volumes
are found in the classes subclassed to it. The
Toroid class, for instance, has variables for its
center, principle axis, length, inner and outer
radii. No need to include title, material type,
etc., as these attributes are inherited from Vol-
ume.

Recall that inheritance applies to not only
the data, but to the methods as well. Volume is
subclassed to List, hence anything a List can do
(any messages a List will accept), Volumes can
also do. This subclassing was done since most
Volumes can be conveniently described by a list
of surfaces (Volume is a List of Surfaces!). Vol-
umes can be messaged to tell if a space point
lies inside, how far along a helical trajectory
to the boundary, as well as to be created and

6

deleted. Most of these methods can be general-
ized (with the exception of the create method)
from all Volumes and hence appear in the Vol-
ume superclass. For example, to determine if
a space point lies inside a Volume, the Volume
messages each of its Surfaces to tell if a radial
vector passing through the space point inter-
sects it. If the number of intersected surfaces
is odd, the point lies inside. This is quite gen-
eral and usually won’t have to be superceded by
code in each specific type of volume subclasses
to Volume.

In GISMO, subdetector definitions are also
treated in a hierarchy. At the top there is the
List class to manage the Volumes in the Sub-
Detector. Then comes SubDetector itself. It
provides methods common to all subdetectors
such as track propagation and management of
geometry related questions such as arclength to
swim, “inside,” etc. SubDetector is a superclass
for real detectors such as DriftChamber. In
DriftChamber, for example, are the details of a
typical axial/stereo wire chamber. This in turn
could serve as a model from which to build drift
chamber variants, each providing specialized in-
stance variables and methods peculiar to them-
selves. The original code, List-SubDetector-
DriftChamber, need not be touched (i.e., rewrit-
ten) but simply appended to and superceded by
the subclassing process using inheritance.

GISMO simulates events as follows. Detec-
tor ingests a Monte Carlo event and creates an
Event object which is a List of the Tracks to
be processed. The Track class is similar to Par-
ticle in MCOOP but also includes instance vari-
ables describing its spatial location, its present
momentum, and so on. (In the next version
of GISMO it would be interesting to subclass
Track to the MCOOP Particle class!) Track is
subclassed to List because if it decays or in-
teracts it will be a list of its daughter Tracks.
The Track class has the ustepby” method (i.e.,
“swim”) and takes as arguments a distance to
step by and the material (index) in which to
step (necessary to compute multiple scattering,
interactions and energy loss). The physics of

- pmpagatr: (ParWa ‘) MCTradr

MC I MCTrd;
vohma - [sell lowlevd]:

J(vo*nwLnl)(

mtiwial I [volum g&MaltialJ;
alii - YES; efx@+x&. ENTRY:
vhile(alivr 6 (endptmdel.LEAVE)) (

IsoIl choo¶estep: volume :sardmgm : 6ardploacle];
(bade sleptby: axlmglh in: maleriar);
ii I [trid ChakSiatus];
[lrw addlr&J’chl: (ahe) ? ar&sxb: ENOPOIHTJ;

t

mwlnfill; 70-90
t 61.61.

Figure 4. The propagate method from the Sub-
Detector class.

particles propagating in matter is part of the
Track class definition.

Detector messages the first SubDetector
with the id of the first Track in the event with
the message to propagate. The Subdetector prop-
agates this Track until it has decayed, inter-
acted, or left the subdetector as illustrated by
the code sample (see Figure 4). Detector pro-
ceeds to the next SubDetector and so on until
it reaches the end of its list. Detector then pro-
cesses the next Track until none are left ‘alive.”

SubDetector creates a Tracksegment Ob-
ject to manage the set of track points that are
computed along a particles trajectory. Track-
segment is subclassed to the Storage class as
track points are a fixed format data structure.
Of course the number of track points in a Track-
segment is arbitrary. The Tracksegment class
can display these track points for the event dis-
play and provides an implicit “loop” over track-
points for modelling the subdetector’s response.
Tracksegments are managed in SubDetector by
a List object.

An arclength is computed by taking the
minimum of the maximum allowed step for the
Volume, the distance to the wall, or some other
criterion provide by a specific subdetector type.

7

Track is then messaged to “stepby” in the mate-
rial of the Volume. At the end of each step the
Tracksegment is messaged to add a track point
to itself. The process is continued until the par-
ticle has interacted, decayed, or left the Sub-
Detector. Once all the Tracks have been prop-
agated through the Detector each subdetector
will be messaged sim&teResponse to compute
and produce raw data facsimiles.

The analysis phase of GISMO has yet to
be designated in detail. The idea will be to
use the same object as in the simulation phase,
adding methods to them to compare hypothet-
ical tracks and interactions generated by a pat-
tern recognition to those recorded either dur-
ing simulation or actually measured in a real
detector.

5. Conclusion

The OOP programmer does no explicit or
detailed memory management 7~0~ other book-
keeping chores; hence, the writing, modifica-
tion, and extension of the code is considerably
simplified. Inheritance can be used to simplify
the class definitions as well as the instance vari-
ables and action methods of each class; thus the
work required to add new classes, parameters,
or new methods is minimal.

The software industry is moving rapidly to
OOP since it has been proven to improve pro-
grammer productivity, and promises even more
for the future by providing truly reusable soft-
ware. The High Energy Physics community clear-
ly needs to follow this trend.

PI

PI

PI

PI

PI

PI

VI

PI

REFERENCES

R. Brun et al., “GEANT: Simulation Pro-
gram for Particle Physics for Particle Physics
Experiments,” CERN-DD/78/2 (July 1978).

T. Sjostrand and M. Bengtsson, Comp.
Phys. Corn. 43, 367 (1987).

For a data analysis application, see: W. B.
Atwood, R. Blankenbecler, P. F. Kunz,
B. Mours, A. Weir, and G. Word, “The
Reason Project,” SLAC-PUB-5242 (April
1990).

See, for example, P. F. Kunz, “Object-
Oriented Programming,” SLAC-PUB-5241
(April 1990); Invited paper given at 8th
Conference on Computing in High Energy
Physics, Santa Fe, NM, April 9-13, 1990.

See B. J. Cox, Object-Oriented Program-
ming, An Evolutionary Approach. Addison-
Wesley, 1986. Objective-C is available from
Stepstone Corporation, Sandy Hook, CT.

A. S. Johnson et al., JAZELLE, Proceed-
ings of the 8th Computing in High Energy
Physics Conference, AIP Conference 209,
1989, p. 285; also see A. S. Johnson and
D. J. Sherden, SLAC-PUB-263.

R. Blankenbecler, “Object-Oriented Pro-
gramming for Simulation Problems in Phys-
ics,” SLAC-PUB-5251 (May 1990).

W. B. Atwood, T. Burnett, R. Cailliau,
D. Myers, and K. M. Storr, GISMO (Graph-
ical Interface for Simulation and Monte
carlo with Objects), a CERN ECP Division
Project.

