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Abstract 

This paper describes a new method of reducing the transverse emittance dilu- 

tion in linear colliders due to both transverse wakefields and dispersive errors. The 

technique is a generalization of the Dispersion-Free [l] correction algorithm; the 

dilutions are corrected locally by varying the beam trajectory. This technique will 

complement the BNS damping [2] method which primarily corrects the dilutions 

resulting from coherent betatron oscillations. Finally, the results of simulations 

are presented demonstrating the viability of the technique. 
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1. Introduction 

In a linear collider the magnets, accelerating structures, and the Beam Position 

Monitors (BPMs) are all typically misaligned relative to the ideal centerline. Thus, 

the beam trajectory is offset in both the magnets and the accelerating structures. 

This can lead to transverse wakefields and dispersive errors which dilute the beam’s 

(projected) transverse emittance, a measure of the phase-space volume occupied by 

the beam. These dilutions then cause a reduction in the collider’s luminosity. This 

paper will describe a new technique of correcting these two sources of transverse 

emittance dilution. 

Both of these dilutions depend upon the transverse alignment of the accelerator 

relative to the beam size. To achieve the necessary luminosity in future linear 

colliders the beam sizes are very small, and, if uncorrected the wakefields and the 

dispersive errors would impose extremely tight transverse alignment tolerances on 

the collider. Thus, correction of these dilutions is crucial for future linear collider 

designs. 

A particle beam consists of particles distributed in six-dimensional phase-space: 

(z,pz, y,p,, z, AE) where the first four coordinates specify the position in the two 

transverse planes and z and AE are the longitudinal position in the bunch and 

the energy deviation. Obviously in a conservative system, which a high-energy 

linear accelerator approximates, the total phase volume is conserved. However, 

the luminosity is strongly dependant upon the projection of this phase volume 

onto the transverse planes. Since the transverse and the longitudinal degrees-of- 

freedom are initially uncoupled, any added correlations will increase this projected 

emittance thereby decreasing the luminosity. 

Both the transverse wakefields and the dispersive errors do just this; they 

correlate the longitudinal and the transverse degrees-of-freedom. Transverse 
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wakefields result from the electromagnetic interaction between the particle bunch 

and its surroundings, namely, the acceleration structures. When a point charge 

travels off-axis in a structure, it leaves behind a transverse wakefield that will de- 

flect subsequent particles. These deflections cause a particle’s trajectory to be a 

function of it’s longitudinal position within the bunch and thereby cause a dilu- 

tion of the (projected) transverse emittance. Likewise, dispersive errors arise when 

the beam travels off-axis. If the beam is offset in a quadrupole magnet, it will be 

deflected. Since particles with different energies are deflected differently, the tra- 

jectory will be a function of the energy deviation and the transverse emittance will 

be diluted. 

2. Theory 

The equation of motion for a particle in a high-energy linear accelerator can be 

written [3] 

-$ $ r(s) $ z(s; z, 6) + (1 - 6) K[z(s; z, 6) - zg] = (1 - 6) G 

+ (1 - 6) Nro mdz’ 00 
J J 

(2.1) 
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where s and z are the longitudinal position in the accelerator and in the bunch, 

and S is the relative energy deviation: S = (y(s) - ~o(s))/$s); note that the 

energy deviation is also a function of s and z. Next, K and G are the normalized 

focusing and bending functions: K(s) = &$$ and G(s) = &By, where po is 

the design particle momentum and B, is the vertical component of the magnetic 

field. N and TO are the number of particles and the classical electron radius, IV, 

and p are the transverse wakefield and the longitudinal distribution function for 
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the particle bunch, and finally, xq and x, are the misalignments of the quadrupoles 

and the accelerator structures. 

As one can see in eq. (2.1), the transverse position is coupled to.both longi- 

tudinal coordinates; our goal is to minimize the effect of this coupling. We can 

gain some insight into the problem by using two two-particle models: one to de- 

termine the wakefield effects and one for the dispersive effects. First, consider two 

macro-particles, each with charge N/2, located at z = fgz, where ot. is the rms 

bunch length. To determine the effect of the wakefields, we examine the difference 

between the trajectories of these two macro-particles Axe, = x(cr,,O) - x(-~,,x) 

where the energy deviation of the second particle x is the “correlated” energy 

spread; this is an energy spread which is correlated with z. Next, to find the effect 

of the dispersive errors, we consider the difference between the trajectory of the 

on-energy head particle and a particle, also located at z = IY~, with an “uncorre- 

lated” energy spread 5: Axd = x(0,, 0) - x(oz, [). 

Assuming that the wakefields and [ are small, we can use eq. (2.1) to solve for 

Ax,,, and Axd perturbatively. The first order solutions are 

5 
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(2.3) 

where x is the trajectory of the on-energy head particle x(cr*,O) and R~~(s,s’) re- 

lates a deflection at s’ to a position as s; the R12 is the Green’s function for the 
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focusing structure of the accelerator. The first term (enclosed in parentheses) in 

both equations will tend to be small. This occurs when the beam trajectory is 

corrected since the dipole correctors G are adjusted to cancel the quadrupoles de- 

flections 1(x4. Since the correction is performed locally, keeping the trajectory 

offsets small throughout the machine, the cancellation is independent of slow vari- 

ations in 2 and 5. Thus, the primary sources of emittance dilution are the last two 

terms of eq. (2.2) and the last term of eq. (2.3). 

Looking at eqs. (2.2) and (2.3), one sees that there are two free parameters 

that can be varied to correct the dilutions: the correlated energy spread x and 

the trajectory x(s). The BNS damping technique [2] does the former; it uses x to 

reduce the second term of eq. (2.2). Specifically, z is adjusted so that TK cancels 

the wakefield NroWJ2y. In the smooth approximation, where K and IV, are 

smooth functions of s, one can solve for a 6 such that this term is always zero. 

Unfortunately, this local cancellation is not possible* in the alternating-gradient 

focusing structures used in high-energy machines. While the wakefield 5%‘~ has a 

constant sign, an alternating-gradient focusing structure usually contains a periodic 

array of discrete focusing magnets with both positive and negative K values. Since 

the energy spread 7 cannot be changed rapidly with s, at best one can adjust s to 

cancel the integral of this term over a cell of the focusing structure. Furthermore, 

since this cancellation depends upon the position x in the quadrupoles and the 

accelerator sections, exact cancellation is only possible if x(s) is correlated from 

point-to-point. This is the case for a coherent betatron oscillation, but it is not true 

if the particle is steered or deflected by random errors as is the case for a corrected 

trajectory. Thus, while the BNS technique can cancel the wakefield effects due to 

* It was assumed here that ~ is due to an energy deviation. It is also possible to vary the 
focusing strength with RF quadrupoles. 
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a coherent betatron oscillation, it may reduce, but cannot cancel, the effects of 

wakefields due to a corrected trajectory. 

The Dispersion-Free (DF) [l] correction technique uses the later approach to 

correct the dispersive emittance dilution. Here, the trajectory x(s) is varied so 

that over any short region of the accelerator the integral in eq. (2.3) is small. 

The technique “measures” the dispersive errors by measuring the difference of two 

trajectories while changing the beam energy, or equivalently, while changing the 

magnet strengths. The equation for this difference orbit is identical to eq. (2.3) 

except that t is replaced by the effective energy change; this is typically around 

10%. Thus, the difference orbit will accurately reflect the emittance dilution except 

for measurement errors and effects of the non-linearity of the dispersive error; a 

complete analysis of all the errors in given in ref. 1. By correcting the difference 

orbit, in concert with the actual trajectory, the DF correction technique can reduce 

the emittance dilution to negligible values. 

3. Wake-free correction 

Given the performance of the DF algorithm, we have attempted to extend 

it to also correct wakefields. The goal is to find a new trajectory along which 

both the wakefield and the dispersive effects cancel. The wakefields are caused by 

trajectory offsets in the accelerator sections which are due to both misalignments 

of the accelerator sections and a non-zero trajectory. If we ignore the accelerator 

misalignments, the effective offset in a section is just the average of the position in 

the two adjacent quadrupoles. By varying the quadrupole strengths in a specified 

manner, one can measure a difference orbit where the orbit in the quadrupoles will 

mimic the effects of the wakefields due to the trajectory. From the second term 
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in eq. (2.2), we find that, to mimic the wakefield effect, the quadrupole strengths 

must vary as 

AK 
-cx Lc&) 

K Y(S) K&m&) 
(34 

where ,& and &ad are the beta functions at the middle of the accelerator sections 

and the adjacent quadrupoles and A4 is the betatron phase advance between the 

two [3]. In addition, L,, and Lqud are the lengths of the accelerator sections and 

the quadrupoles. Finally, note that because the correction is local, this condition 

can fluctuate slowly with s. 

Condition (3.1) specifies that the quadrupole strength variation 6 = AK/K has 

opposite signs at focusing (QFs) and defocusing quadrupoles (QDs). In contrast, 

when creating the difference orbit to measure the dispersive error, 6 has the same 

sign at both the QFs and the QDs. To correct both the wakefields and the dis- 

persive errors one minimizes both of these difference orbits along with the actual 

trajectory. Unfortunately, it is not necessarily possible to increase some magnets 

while decreasing others since the quadrupoles are usually run close to their maxi- 

mum strength. Thus, one can use an equivalent procedure where one minimizes a 

difference orbit created by varying only the QFs and a difference orbit created by 

varying only the QD magnets. In addition to being feasible, this later procedure 

also benefits from being simpler. 

Strictly, by examining eq. (2.2), we can see that minimizing these two differ- 

ence orbits will reduce the wakefields if the accelerator sections are aligned to the 

centers of the quadrupoles, not the machine centerline. This can be remedied by 

varying the dipole correctors when varying the quadrupoles. Thus, the dipole cor- 

rectors (partially) cancel the effect of the quadrupole misalignments; they must 

or the trajectory would tend to grow. In practice, the correction technique works 
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better if the accelerator structures are aligned to the quadrupoles, but, as will be 

demonstrated, it still works very well when the accelerator sections are aligned to 

the ideal centerline. 

To recapitulate, the correction algorithm is: (1) measure a difference or- 

bit AXQF(S) created by varying the QFs and the associated dipole correctors, 

(2) measure the difference orbit AXQD(S) created by varying the QDs and the 

associated dipole correctors, (3) measure the actual trajectory x(s), and finally, 

(4) one minimizes all three of these orbits. When developing the DF algorithm, it 

was found that a weighted least-squares is the best minimization procedure. Thus, 

in this variation, one minimizes the sum: 

where each term is weighted by the accuracy of the respective measurement: qp~ 

is the estimated rms of the BPM misalignments and cprec is the rms precision 

(reading-to-reading jitter) of the BPM measurements. Although it does not correct 

the wakefields due to the accelerator section misalignments, this technique will be 

referred to as Wake-Free (WF) correction because the corrected trajectory does 

not cause wakefield or dispersive dilutions. 

4. Simulations 

In table 1, the performance of the DF and WF techniques is compared against a 

standard correction algorithm, the l-to-l method. The l-to-l algorithm adjusts the 

trajectory to zero the BPM measurements; typically, in this technique one only uses 

the BPMs and correctors located near the focusing quadrupoles. The correction 

was simulated in a preliminary design of the Next Linear Collider (NLC) [4] where 
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the vertical beam size is tiny, roughly 2 pm. The results in table 1 are the average 

of correcting 20 sets of random error distributions and Q,O is the initial undiluted 

vertical emittance. The error distributions have 70 pm rms vertical quadrupole and 

BPM misalignments, and 2 pm rms BPM precision errors; the accelerator sections 

were aligned to the ideal machine centerline. In addition, the optimal BNS energy 

spread has been added to the beam in all three cases. Finally, the initial conditions 

(ys, yb) were optimized [5] ft a er l-to-l correction to further reduce the dilution; 

while this procedure reduces the dilution from nearly 50 cys when using the l-to-l 

algorithm, it yields little improvement when using DF or WF correction. The WF 

technique performs extremely well; it virtually eliminates all of the emittance dilu- 

tion and it does a better job correcting the trajectory than the other two methods. 

Figure 1 shows plots of the beam distribution after (a) l-to-l, (b) DF, and 

(c) WF correction for one of the 20 cases in table 1. The scatter-plots on the left 

are the projections of the beam distributions in the y-y’ phase space while the 

right-hand plots are projections onto the y-z plane. One can immediately see that 

the beam emittance is seriously diluted after l-to-l correction; this is primarily due 

to dispersive errors. Next, after DF correction, the dispersive errors are corrected, 

but the distribution displays the tails characteristic of transverse wakefields; these 

arise from the random trajectory. Finally, after WF correction, one can see that 

the dilution due to both the dispersive errors and the wakefields is negligible. 

5. Discussion 

Before concluding, we need to discuss the correction of the wakefields due 

to accelerator section misalignments which the WF technique does not correct. 

One possible solution involves moving the accelerator sections or alternately 

using dispersion-free trajectory bumps [6]. If the higher-order terms of eq. (2.2) 
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are negligible, then the correction is simple; one can correct the local errors with 

a global solution. Unfortunately, in the NLC and most other future linear collider 

designs, this is not true. In this case, one would like to correct the effects locally, 

but local correction requires local measurements; this is difficult. One method is a 

variation of the WF technique where one measures a difference orbit while varying 

the strength of the wakefield [7]. Th is can be accomplished by changing either the 

bunch population N or the bunch length gZ. Another idea is to measure the wake- 

fields directly by measuring the higher-order modes induced in the accelerating 

structures. This allows one to align the structures to the beam itself [8]. 

Barring local correction, one may still be able to eliminate the dilution by using 

multiple “knobs” or bumps to cancel the non-linear effects. When simulating 70 pm 

rms accelerator section misalignments in the NLC, we have used six dispersion-free 

bumps to reduce the emittance dilution from over 700% to less than 10%. 

To conclude, we note that the WF technique reduces the emittance dilution 

due to misaligned quadrupoles and a non-zero trajectory extremely well. Since the 

technique is very similar to the DF method, we know that it is a robust algorithm 

and it is not sensitive to effects such as jitter and calibration errors. Furthermore, 

the technique will effectively decouple the emittance dilution from the transverse 

alignment of the quadrupoles and the BPMs. Thus, this technique, and in general, 

the idea of using the trajectory to cancel the emittance dilutions, will likely prove 

indispensable in future linear colliders. 
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Table 1 
Correction in the NLC 

Method Trajectory rms 

l-to-l 22.9 f 21.3 Q,O 72f3pm 

9.3 f 7.3 EyO 

1.09 f 0.05 q/O 

55f5pm 

44f3pm 

12 



Figure Caption 

1. The beam distribution after (a) l-to-l, (b) DF, and (c) WF correction. 

The left-hand plots are the y-y’ phase space while the right-hand plots 

are the beam in y-z space. 

13 



10 

- 
5. - 0 
)r 

-10 

IO 
- 
5 
- 0 
)r 

-10 

IO 

- 
5. - 0 

sl 

-10 

10-90 

:. . . 
I I I 

- (W .: (’ ,‘.$, .: 

- (4 

-4 -2 0 2 200 0 -200 
Z 

6745Al 

Fig. 1 


